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Abstract. Let Sn = ξ1 + · · · + ξn be a sum of i.i.d. non-negative random
variables, S0 = 0. We study the asymptotic behaviour of the probability
P{X(T ) > n}, n→∞, where X(t) = max{n ≥ 0 : Sn ≤ t}, t ≥ 0, is the corre-
sponding renewal process. The stopping time T has a heavy-tailed distribution
and is independent of X(t). We treat two different approaches to the study:
via the law of large numbers and by using the large deviation techniques. The
first approach is applied to the case when T has a heavier tail than exp(−

√
x).

The second one is mostly applied to the case of the so-called “moderately heavy
tails” when T has a lighter tail than exp(−

√
x). As a corollary, the distribu-

tional Little’s law allows us to obtain the tail asymptotics for a stationary queue
length in a single server queue with subexponential service times. More gener-
ally, if a stable queueing system satisfies the distributional Little’s law and if
a stationary sojourn time distribution of a “typical” customer is heavy-tailed
and its asymptotics is known, then the results of this paper provide a way for
obtaining the tail asymptotics for a stationary queue length.
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1. Introduction

Let ξ, ξn, n=1, 2, . . ., be i.i.d. non-negative random variables with positive
mean value µ ≡ E ξ > 0. Put Sn = ξ1 + · · ·+ ξn, S0 = 0. Let X(t) = max{n ≥
0 : Sn ≤ t} be the undelayed renewal process.

The main goal of the paper is to study the asymptotic behaviour of the prob-
ability P{X(T ) > n}, where T is a stopping time, independent of {X(t), t ≥ 0},
with heavy-tailed distribution F .

Definition 1.1. A distribution F with an unbounded support is called a heavy-
tailed distribution (or a long-tailed distribution) if F (x+ t) ∼ F (x)1 as x→∞,
for each fixed t.

Note that for any random variable T with a heavy-tailed distribution F it
holds that E exp(εT ) =∞ for each ε > 0 or, equivalently,

F (x)eεx →∞ as x→∞. (1.1)

We have

P{X(T ) > n} = P{Sn+1 ≤ T}
= E{P{T ≥ Sn+1 | Sn+1}} = EF (Sn+1 − 0),

where F (x) = F ((x,∞)) is the right tail of F . Hence, as n→∞, we concentrate
on the quantity

EF (Sn) ≡ E exp(−g(Sn)),

where
g(x) = − logF (x). (1.2)

By definition, g(x) = 0 for x < 0 and g(x) is a non-decreasing function such
that g(x)→∞ as x→∞.

Definition 1.2. A distribution F with the tail exp(−xβ), x > 0, β > 0, is
called a Weibull distribution with parameter β.

In a recent paper [1], Asmussen, Klüppelberg and Sigman considered two
distinct cases when T has either a heavier or a lighter tail than that of the
Weibull distribution with parameter 1/2. In the first case, they showed that

P{X(T ) > n} ∼ F (nµ), n→∞,

under mild conditions on X(t). In the second (“moderately heavy”) case, the
asymptotics is obtained under restriction that X(t) is a homogeneous Poisson
process with intensity 1/µ and F (x) = γ(x) exp(−xβ), where β ∈ [1/2, 1) and γ

1Hereinafter, a(x) ∼ b(x) means that a(x)/b(x)→ 1 as x→∞.
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is a continuous function satisfying certain conditions. In particular, it is shown
that the tail of X(T ) is heavier than that of T/µ.

In this paper, we study both of the mentioned cases and find the asymptotics
of P{X(T ) > n} under more general conditions: for any renewal process X(t)
and for a wide class of functions F . Our technique differs from that of [1]: in
Section 3, we make use of the law of large numbers (LLN), while the results of
Sections 5–8 are based on tools from the large deviations theory.

Our investigations are motivated in particular by the following queueing
problem: find the tail asymptotics of a stationary queue length Q in a stable
“first-in-first-out” queueing system. Due to distributional Little’s law (see [4]),
Q is equal in distribution to N(U) where N(t) is a stationary (delayed) renewal
input process with interarrival times ξn, U is independent of N and has the
distribution of the stationary sojourn time of a “typical” customer. Assume
that the asymptotics of P{U > x}, x→∞, is known and is heavy-tailed. Then
(see Section 2) P{N(U) > n} ∼ P{X(U) > n} as n → ∞ and the asymptotics
of P{X(U) > n} can be found by using the results of Sections 3 and 5–8.

For instance, let us consider a stableGI/GI/1 queue (among other examples,
one can mention a FCFS multi-server queue, a tandem of queues, etc.). Let σ
be a “typical” service time and ρ = Eσ/E ξ < 1. Then the asymptotics of
P{U > x}, x → ∞, is well known (see, e.g., [9]): it is either exponential if
E exp(λσ) is finite for a certain λ > 0 or

P{U > x} ∼ ρ(1−ρ)−1 P{σ(s) > x} as x→∞

if the distribution of σ(s),

P{σ(s) > x} = (Eσ)−1

∞∫
x

P{σ > y}dy,

is subexponential (see definition in [9]). In [1], one can find a further discussion
and references on the topic and related problems.

The paper is organized as follows. Section 2 contains some preliminary
results. In particular, we show that the asymptotics of N(U) and X(U) do not
differ in the heavy-tailed case. In Section 4 we give definitions and properties
of the Cramèr transform and the rate function and obtain uniform estimates of
the probability for the sum Sn to be in a compact set.

The main results of the paper concerning E exp(−g(Sn)) are obtained in
Sections 3 and 5–8. We use two different approaches: (a) linear approxima-
tions of g(Sn) around nµ and the LLN (see Section 3) and (b) large deviations
techniques (see Sections 5–8).

Section 3 deals with the case g(x) = o(x1/2). In [1], it is shown that the
equivalence P{X(T ) > n} ∼ F (nµ) holds for a general process {X(t), t ≥ 0}
satisfying the CLT, under certain conditions on the distribution of T . We obtain
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an analogue of this result for a general renewal process which may not satisfy
the CLT; we do not assume the existence of E ξ2. Conditions on the distribution
of T are also weakened.

In Section 5, we obtain a general result concerning the desired asymptotics
of functions g such that g(x) = o(x). Namely,

E exp(−g(Sn)) ∼ exp(−Hn(tn)), n→∞,

where Hn(x) = g(x) + nΛ(x/n), Λ is the rate function of ξ and tn, tn ≤ nµ, is
a root of a certain equation.

In Section 6, we investigate the properties of Hn, tn and the asymptotic
behaviour of Hn(tn) under further restrictions on g. Specific examples and
applications of the results are given when F (x) = xγ exp(−xβ) with γ > 0
and β ∈ (0, 2/3); see Corollaries 6.1, 6.2 and 6.4. A counterexample to the
asymptotics in [1, Remark 4.4] is given, and the proper convergence rate is
derived in (6.11).

In Section 7, we develop a generalization of the results of Section 6 by using
an iterative procedure. In general, it is not easy to obtain tn. The iterative
procedure replaces tn by some t

(k)
n in a finite number of steps, where t

(k)
n is

easy to derive and where the replacement of Hn(tn) by Hn(t(k)
n ) causes only

an error of o(1) as n → ∞. Special assumptions on g are required. This leads
to a methodology for asymptotic estimation for a large class of heavy-tailed
distributions F .

In Section 8 (Theorem 8.1), we apply the results of Section 6 to the case of
the standard Poisson process X(t) and F (x) = exp(−u(x)− xβ), β ∈ (0, 1), for
a suitable u(x).

2. Preliminaries

In the sequel we use the following general qualitative results.

Lemma 2.1. Let F be any distribution satisfying condition (1.1). If δ > 0,
then P{Sn ≤ n(µ−δ)} = o(EF (Sn)) as n→∞.

Proof. By the Chebyshev inequality in the exponential form, for λ > 0 we have
the following estimate:

P{Sn ≤ n(µ−δ)} = P{exp(−λ(Sn − n(µ−δ)) ≥ 1}
≤ E exp(−λ(Sn − n(µ−δ))) = (E exp(−λ(ξ1 − µ+ δ)))n.

Since E(ξ1−µ+δ) = δ > 0, E exp(−λ(ξ1−µ+δ)) < 1 for sufficiently small λ > 0.
Thus, there exists ε > 0 such that

P{Sn ≤ n(µ−δ)} = o(e−nε) as n→∞.
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According to the law of large numbers, P{Sn ≤ 2nµ} → 1 as n→∞. Hence,

EF (Sn) ≥ F (2nµ) P{Sn ≤ 2nµ} ∼ F (2nµ).

Now the relation of the lemma follows from condition (1.1). 2

Lemma 2.2. Let two distributions F and G be tail equivalent, i.e. F (x) ∼ G(x)
as x→∞. If condition (1.1) holds, then EF (Sn) ∼ EG(Sn) as n→∞.

Proof. Putting δ = µ/2, from Lemma 2.1 we obtain

EF (Sn) ∼ E{F (Sn); Sn > nµ/2},
EG(Sn) ∼ E{G(Sn); Sn > nµ/2}

as n→∞. Now the conclusion of Lemma 2.2 follows from the condition F (x) ∼
G(x). 2

Lemma 2.3. Let ξ0 ≥ 0 be a random variable independent of everything else.
If F is a heavy-tailed distribution, then

EF (ξ0 + Sn) ∼ EF (Sn) as n→∞.

Proof. A heavy-tailed distribution satisfies condition (1.1). By Lemma 2.2, for
each fixed t > 0, EF (t+ Sn) ∼ EF (Sn) as n→∞. We also have F (t+ Sn) ≤
F (Sn). Therefore, the representation

EF (ξ0 + Sn)
EF (Sn)

=

∞∫
0

EF (t+ Sn)
EF (Sn)

P{ξ0 ∈ dt}

and the Lebesgue bounded convergence theorem complete the proof. 2

Corollary 2.1. Consider a stable GI/GI/1 queue (see Introduction). Let the
distribution of U be heavy-tailed. Then

P{Q > n} = P{N(U) > n} ∼ P{X(U) > n} as n→∞,

where N is the stationary (delayed) input renewal process and X is the unde-
layed one.

3. Asymptotic behaviour of E exp(−g(Sn)) in the case g(x) = o(x1/2)

3.1. Decomposition of a characteristic-type function at zero point

In [8], the series expansion for the characteristic function E exp(iλη) of a
random variable η was established at the point λ = 0 under assumption that
η has some moment of non-integer order. The following lemma extends some
results of [8] to a wider class of functionals of η.
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Lemma 3.1. Let η be a random variable and let f(λ) : R→ C be a continuous

function such that |f(λ)| ≤ f0 for some f0 < ∞. Define the function f̂(λ) ≡
E f(λη), λ ∈ R. Fix a positive integer k. Let f have the kth order derivative,

sup
λ
|f (k)(λ)| = fk <∞,

and let E |η|α be finite for some α ∈ [k−1, k). Then the function f̂(λ) admits
the following decomposition, as λ→ 0:

f̂(λ) =
k−1∑
j=0

f (j)(0)
j!

µjλ
j + o(λα),

where µj = E ηj .

Proof. Since E |η|α < ∞, E{ηj ; |η| > c} = o(1/cα−j) as c → ∞, for any
j ∈ [0, k−1]. Therefore, there exists a function d(c) such that d(c)/c → 0 as
c→∞ and

P{|η| > d(c)} = o(1/cα), (3.1)
E{|η|j ; |η| > d(c)} = o(1/cα−j), j ≤ k−1. (3.2)

We have∣∣∣f̂(λ)−
k−1∑
j=0

f (j)(0)
j!

µjλ
j
∣∣∣

≤
∣∣∣E
{
f(λη)−

k−1∑
j=0

f (j)(0)
j!

ηjλj ; |η| ≤ d(c)
}∣∣∣

+ f0 P{|η| > d(c)}+
k−1∑
j=0

|f (j)(0)|
j!

|λ|j E{|η|j ; |η| > d(c)}. (3.3)

Taking into account that∣∣∣f(z)−
k−1∑
j=0

f (j)(0)
j!

zj
∣∣∣ ≤ fk

k!
|z|k

for any z ∈ R, k − α > 0 and d(c) = o(c) as c→∞, we get∣∣∣E
{
f(λη)−

k−1∑
j=0

f (j)(0)
j!

ηjλj ; |η| ≤ d(c)
}∣∣∣

≤ fk|λ|k E{|η|k; |η| ≤ d(c)}

≤ fk|λ|k E{|η|α/|η|α−k; |η| ≤ d(c)}

≤ fk|λ|kdk−α(c) E |η|α = |λ|ko(ck−α). (3.4)
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Putting c = 1/λ and substituting (3.1)–(3.4) into (3.3), we reach the conclusion
of the lemma. 2

3.2. LLN in the case E |η|α <∞ for some α ∈ [1, 2)

Let ηn, n ≥ 1, be i.i.d. random variables. For Tn = η1 + · · · + ηn, the
following Kolmogorov – Marcinkiewicz strong law of large numbers is valid (see,
e.g., [6, p. 243]).

Lemma 3.2. Let E |η1|α be finite for some α ∈ [1, 2) and let E η1 = 0. Then
Tn/n

1/α → 0 as n→∞ almost surely.

Note that the weak convergence Tn/n
1/α ⇒ 0 follows from Lemma 3.1.

Indeed, for any fixed λ ∈ R,

E exp(iλTn/n1/α) = (E exp(iλη1/n
1/α))n = (1 + o((n−1/α)α))n → 1 as n→∞.

3.3. Asymptotic behaviour of E exp(−g(Sn))

The following theorem deals with a function d(x) = o(x1/2), and, in partic-
ular, with any Weibull distribution with parameter β ∈ (0, 1/2).

Theorem 3.1. Let γ ∈ (1/2, 1]. For any function d(x) such that d(x)→∞ as
x→∞, let

g(x+ xγ/d(x)) = g(x) + o(1) as x→∞. (3.5)

If E ξ1/γ is finite, then

E exp(−g(Sn)) ∼ exp(−g(nµ)) = F (nµ) as n→∞.

Remark 3.1. Given γ ≤ 1, the function g(x) = x1−γ satisfies condition (3.5).

Corollary 3.1. Let F (x) ∼ xγ1 exp(−cxβ), γ1 ∈ R, c > 0, β ∈ (0, 1/2). If
E ξ1/(1−β) is finite, then EF (Sn) ∼ F (nµ) as n→∞.

Proof of Theorem 3.1. Let a twice differentiable function f be such that f(x) =
exp(x) for x ≤ 1 and let the second derivative of f be bounded. Due to the
conditions 1/γ ∈ [1, 2) and E ξ1/γ <∞, Lemma 3.1 implies that E f(λ(ξ−µ)) =
1 + o(λ1/γ) as λ→ 0. Taking into account that ξ is non-negative we obtain for
λ ∈ (−1/µ, 0)

E eλ(ξ−µ) = E f(λ(ξ − µ)) = 1 + o(λ1/γ) as λ ↑ 0.

Therefore, there exists a sequence d1(x)→∞ such that

E exp(−d1(nµ)(ξ − µ)/nγ) = 1 + o(1/n) as n→∞.
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Hence,

E exp(−d1(nµ)(Sn − nµ)/nγ) =
(

E exp(−d1(nµ)(ξ − µ)/nγ)
)n

= (1 + o(1/n))n → 1.

On the other hand, according to Lemma 3.2, there exists a function d2(x) →
∞ such that d2(nµ)(Sn − nµ)/nγ converges weakly to 0. We set d(x) =
min(d1(x), d2(x)). Then d(x)→∞ and

E exp(−d(nµ)(Sn − nµ)/nγ)→ 1 as n→∞ (3.6)

and d(nµ)(Sn − nµ)/nγ converges weakly to 0. Taking into account that it
implies the convergence

E
{

exp(−d(nµ)(Sn − nµ)/nγ); d(nµ)|Sn − nµ|/nγ ≤ 1
}
→ 1,

from (3.6) we deduce that

E
{

exp(−d(nµ)(Sn − nµ)/nγ); d(nµ)(Sn − nµ)/nγ ≤ −1
}
→ 0 as n→∞.

(3.7)
Now turn to condition (3.5). First it implies that

g(Sn)− g(nµ) ≡ g
(
nµ+

nγ

d(nµ)
d(nµ)(Sn−nµ)/nγ

)
− g(nµ)

converges weakly to 0 as n→∞. Therefore, by (3.6),

E
{

exp(−(g(Sn)− g(nµ))); d(nµ)(Sn − nµ)/nγ > −1
}
→ 1. (3.8)

Second, (3.5) provides the existence of a constant c such that

g(y)− g(x) ≥ −µγ(x−y)d(x)/xγ − c

for all x > 0 and y ∈ [x/2, x]. Therefore, the inequality

exp(−(g(Sn)− g(nµ))) ≤ exp(−d(nµ)(Sn − nµ)/nγ + c)

holds if Sn ∈ [nµ/2, nµ]. ¿From this inequality and from (3.7), we obtain the
convergence

E
{

exp(−(g(Sn)− g(nµ))); d(nµ)(Sn−nµ)/nγ ≤ −1, Sn ≥ nµ/2
}
→ 0.

Together with Lemma 2.1, this convergence implies that

E
{
e−g(Sn); d(nµ)(Sn−nµ)/nγ ≤ −1

}
= o(e−g(nµ)) as n→∞.

Combining this with (3.8) we complete the proof. 2
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4. Some estimates via the rate function

In this section, we remove the assumption that ξ is positive and that µ = E ξ
is finite. Define ϕ(λ) = E exp(λξ). In the sequel we assume that

λ− ≡ inf{λ ≤ 0 : ϕ(λ) <∞} < 0.

Then, in particular, µ ∈ (−∞,∞].

4.1. The rate function and the Cramèr transform

We recall the notions and some properties of the rate function and the
Cramèr transform. We set

α− = lim
λ→λ−

ϕ′(λ)/ϕ(λ) = lim
λ→λ−

d lnϕ(λ)/dλ.

It is well known (see, e.g., [3, Chapter XVI, § 7]) that the function lnϕ(λ) is
strictly convex. Hence, α− < ϕ′(0)/ϕ(0) = µ, where ϕ′(0) is the left derivative
at zero.

If the random variable ξ is bounded from below, then λ− = −∞ and α−
coincides with essential infimum of ξ, i.e. α− = inf{x: P{ξ < x} > 0}. If the
random variable ξ is unbounded from below and λ−= − ∞, then α− = −∞.
If the random variable ξ is from below and λ− is finite, then α− may take any
value from the interval [−∞, µ).

Since the function lnϕ(λ) is strictly convex, for α ∈ (α−, µ] the function
αλ− lnϕ(λ) has a unique maximum, say, at point λ(α). Then

d lnϕ(λ)/dλ
∣∣
λ=λ(α)

= α.

The function λ(α) is increasing and λ(µ) = 0. The function

Λ(α) ≡ sup
λ
{αλ− lnϕ(λ)} = αλ(α)− lnϕ(λ(α)), α ∈ (α−, µ], (4.1)

is called the rate function. By differentiating (4.1) we have Λ′(α) = λ(α); there-
fore, the function Λ is strictly convex. We have Λ(µ)=Λ′(µ)=0. For convenience,
we set Λ(α) = λ(α) = 0 for all α ≥ µ.

Definition 4.1. A random variable ξ(α) with the distribution

P{ξ(α) ∈ du} = eλ(α)u P{ξ ∈ du}/ϕ(λ(α))

is called the Cramèr transform of the random variable ξ.
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Note that ξ(α) = ξ for α ≥ µ. By definition,

E ξ(α) = ϕ′(λ)/ϕ(λ)
∣∣
λ=λ(α)

=
{
α, if α < µ,
µ, if α ≥ µ,

σ(α)2 ≡ Var ξ(α) = ϕ′′(λ)/ϕ(λ)
∣∣
λ=λ(α)

− α2 = (lnϕ(λ))′′
∣∣
λ=λ(α)

.

By differentiating the relation ϕ′(λ)/ϕ(λ)
∣∣
λ=λ(α)

= α with respect to α ≤ µ and
taking into account that Λ′(α) = λ(α) we get

σ(α)2 = 1/Λ′′(α). (4.2)

In particular, if Var ξ <∞, then Λ′′(µ) = 1/Var ξ > 0.

4.2. Estimate of the probability that Sn is in a compact set

Let r be a parameter from a certain parameter set. For any r, let {ξrk}∞k=1

be a sequence of i.i.d. random variables with an arbitrary distribution, Srn =
ξr1 + · · ·+ ξrn, n ≥ 1.

For any c > 0, define a random variable ξ[c]
r1 with the distribution

P{ξ[c]
r1 ∈ B} ≡ P{ξr1 ∈ B | ξr1 ∈ [−c, c]}.

We need the following extension of Theorem 9 in [7, Chapter III] to the
parametric case.

Lemma 4.1. If there exists a constant c > 0 such that

inf
r

P{ξr1 ∈ [−c, c]} > 0, (4.3)

inf
r

Var ξ[c]
r1 > 0, (4.4)

then there exists a constant c1 such that

sup
x∈R

P{Srn ∈ [x, x+1]} ≤ c1/
√
n

for each n ≥ 1.

Remark 4.1. Lemma 4.1 can be derived from uniform estimates of the concen-
tration function (see, e.g., [5, § 2.2]). We prefer however to give a direct proof,
which follows [7, Chapter III, § 2].

Proof of Lemma 4.1. Let ψ[c]
r (λ) = E exp(iλξ[c]

r1) be the characteristic function
of ξ[c]

r1 . Since the random variables |ξ[c]
r1 | are bounded by c, the following repre-

sentation holds:

ψ[c]
r (λ) = exp(iλE ξ

[c]
r1) E exp(iλ(ξ[c]

r1 − E ξ
[c]
r1))

= exp(iλE ξ
[c]
r1)
(

1− λ2
(Var ξ[c]

r1

2
+ θr(λ)

))
,
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where θr(λ) → 0 as λ → 0 uniformly in r. Taking into account (4.4), we
conclude that there exists δ > 0 such that for |λ| ≤ δ and for any r,

|ψ[c]
r (λ)| ≤ 1− δλ2. (4.5)

Let ψr(λ) = E exp(iλξr1) be the characteristic function of ξr1. Since

ψr(λ) = ψ[c]
r (λ) P{ξr1 ∈ [−c, c]}+ E{exp(iλξr1); |ξr1| > c},

from (4.5) we obtain that

|ψr(λ)| ≤ (1−δλ2) P{ξr1 ∈ [−c, c]}+ P{|ξr1| > c} ≤ 1− ελ2 (4.6)

for |λ| ≤ ε, where ε = δminr P{ξr1 ∈ [−c, c]} is positive, due to condition (4.3).
Consider a random variable η with the characteristic function (see [3, Chap-

ter XVI, § 3])

ψ(λ) = E eiλη =
{

1− |λ|/ε, if |λ| ≤ ε;
0, if |λ| > ε.

We assume η to be independent of Srn. The characteristic function of the sum
Srn + η is equal to ψnr (λ)ψ(λ). Since the function |ψ(λ)| is integrable, the
following inverse formula (see [3, Chapter XV, § 3]) holds for every y < z:

P{Srn + η ∈ [y, z]} =
1

2π

∞∫
−∞

e−iλy − e−iλz

iλ
ψnr (λ)ψ(λ)dλ.

Therefore, for c2 = (z − y)/2π,

P{Srn + η ∈ [y, z]} ≤ c2

∞∫
−∞

|ψr(λ)|nψ(λ)dλ ≤ c2

ε∫
−ε

(1−ελ2)ndλ,

by the definition of ψ(λ) and (4.6). Since 1− ελ2 ≤ exp(−ελ2),

P{Srn + η ∈ [y, z]} ≤ c2

∞∫
−∞

exp(−nελ2) dλ =
c2
√
π√

nε
≡ c3√

n
. (4.7)

Let u be such that P{|η| ≤ u} ≥ 1/2. Put y = x−u and z = x+1+u. We get
the inequalities

P{Srn+η ∈ [y, z]} ≥ P{Srn ∈ [x, x+1], |η| ≤ u} ≥ P{Srn ∈ [x, x+1]}/2.

Combining this with (4.7) we obtain the assertion of the lemma. 2
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4.3. Estimate for the probability that Sn is in a compact set via the
rate function

Lemma 4.2. Let α1 ∈ (α−, µ]. Then there exists a constant c1 such that the
following inequality holds for each n ≥ 1 and α ∈ [α1,∞):

P{Sn ∈ [nα−1, nα)} ≤ c1e−nΛ(α)/
√
n. (4.8)

Remark 4.2. Under the assumption E |ξ|3 < ∞, Lemma 4.2 follows from the
uniform large deviation principle (see, for example, [2, Lemmas 3 and 4]).

Proof of Lemma 4.2. Consider independent copies ξ(α)
n , n ≥ 1, of the random

variable ξ(α). Let S(α)
n = ξ

(α)
1 + · · ·+ξ(α)

n . The following inverse formula holds:

P{Sn ∈ du} = ϕn(λ(α))e−λ(α)u P{S(α)
n ∈ du}.

Hence,

P{Sn ∈ [nα−1, nα)} = ϕn(λ(α))

nα∫
nα−1

e−λ(α)u P{S(α)
n ∈ du}

≤ ϕn(λ(α))e−λ(α)αn P{S(α)
n ∈ [nα−1, nα)}

= e−nΛ(α) P{S(α)
n ∈ [nα−1, nα)}, (4.9)

by definition (4.1) of the rate function Λ(α). The family of random variables
{ξ(α)

1 , α ≥ α1} satisfies the conditions of Lemma 4.1 with respect to r = α.
Hence

P{S(α)
n ∈ [nα−1, nα)} ≤ c1/

√
n, (4.10)

for some c1, uniformly in n ≥ 1 and α ∈ [α1,∞). Substituting (4.10) into (4.9),
we obtain (4.8). 2

5. Asymptotic behaviour of E exp(−g(Sn)) in the general case, via the
linear approximation at another point

From our point of view, the tools of Section 3 (linear approximations at
the point nµ plus LLN or even CLT) cannot be used to treat the asymptotic
behaviour of E exp(−g(Sn)) = EF (Sn) in the general case, g(x) = o(x). For
example, if g(x) = xβ with β ∈ (1/2, 1), then the advantage of the linear
approximation of g(Sn) at the point nµ is doubtful. It seems reasonable to
approximate the value of g(Sn) at a point which is located to the left of nµ.

We assume that there exist functions g∗(x) and d(x) such that g∗(x) ≥ 0 is
continuous, g∗(x)→ 0, d(x)→∞ as x→∞ and

|g(y)− g(x)− g∗(x)(y−x)| ≤ ε1(x), (5.1)
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uniformly in {y : |y−x| ≤ d(x)
√
x}, where ε1(x) ↓ 0. In particular, the distri-

bution F is heavy-tailed. We set

H(x) = Hn(x) ≡ g(x) + nΛ(x/n),
h(x) = hn(x) ≡ g∗(x) + λ(x/n);

here the function h(x) plays the role of the “derivative” for H(x).
Fix α0 ∈ (α−, µ). Note that α− ≥ 0, because P{ξ ≥ 0} = 1. Since g∗(x) ≥ 0

and λ(µ) = 0, h(nµ) ≥ 0. Since g∗(x) → 0, the value of h(nα0) tends to the
negative limit λ(α0) < 0 as n → ∞. In view of these relations and because of
the continuity of g∗ and λ, for n large enough, there exists at least one point
t = tn ∈ (nα0, nµ] such that h(t) = 0, i.e.

g∗(t) = −λ(t/n). (5.2)

If there are many solutions to equation (5.2), we can take any of them. Note that
there is no solution to equation (5.2) in the domain [0, nα0] for all sufficiently
large n. Therefore, nµ − tn ≤ n(µ − α0) for all sufficiently large n. Since we
may take α0 ∈ (α−, µ) as close to µ as we like, nµ− tn = o(n) as n→∞. In the
next section, we prove that in “regular” cases, nµ− t ∼ ng∗(nµ)σ2 if σ2 = Var ξ
is finite.

Theorem 5.1. Let (5.1) hold. Moreover, let for any x > 0 and y ≥ (α0/µ)x,

|g(y)− g(x)− g∗(x)(y−x)| ≤ ε2(x)(1 + |y−x|2/x), (5.3)

where ε2(x) ↓ 0 as x→∞. If σ2 = Var ξ is finite, then

EF (Sn) ≡ E exp(−g(Sn)) = exp(−H(t))(1 + o(1)) as n→∞.

Remark 5.1. Note that (5.1) implies (5.3) in the domain |y−x| ≤ d(x)
√
x for

ε2(x) = ε1(x).

Remark 5.2. Conditions (5.1) and (5.3) hold if the function g is twice differen-
tiable and xg′′(x) → 0 as x → ∞. In this case, g∗(x) = g′(x). For instance, if
g(x) = xβ , β ∈ (0, 1), then g∗(x) = g′(x) = βxβ−1,

0 ≥ yβ − xβ − βxβ−1(y−x) ≥ −(1−β)xβ−1(y−x)2/x,

and one can take d(x) = o(x(1−β)/2) and ε2(x) = (1−β)xβ−1.

Proof of Theorem 5.1. We use the estimate∣∣E exp(−g(Sn))− E exp(−g(t)− g∗(t)(Sn − t))
∣∣

≤ E
{∣∣ exp(−g(Sn))− exp(−g(t)− g∗(t)(Sn − t))

∣∣; |Sn−t| ≤ d(n)
√
n
}

+ E
{

exp(−g(Sn)) + exp(−g(t)− g∗(t)(Sn − t)); Sn−t < −d(n)
√
n
}

+ E
{

exp(−g(Sn)) + exp(−g(t)− g∗(t)(Sn − t)); Sn−t > d(n)
√
n
}

≡ E1 + E2 + E3.
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Condition (5.1) yields

E1 ≤ (exp(ε1(t))− 1) E{exp(−g(Sn)); |Sn − t| ≤ d(n)
√
n} = o(E exp(−g(Sn))).

The rest part of the proof is based on Lemmas 5.3–5.7, which are stated and
proved below. Lemmas 5.3 and 5.7 imply that

E2 = o(E exp(−g(Sn)) + exp(−H(t))).

It follows from Lemmas 5.4–5.6 that E3 = o(E exp(−g(Sn)) + exp(−H(t))) as
well. Therefore,

E exp(−g(Sn)) = (1+o(1)) E exp(−g(t)−g∗(t)(Sn− t))+o(exp(−H(t))). (5.4)

We have

E exp(−g∗(t)(Sn − t)) = ϕn(−g∗(t)) exp(g∗(t)t) = exp(g∗(t)t+ n lnϕ(−g∗(t)))

(as before, ϕ(λ) = E exp(λξ)). By the choice of the point t, g∗(t) = −λ(t/n).
Hence,

E exp(−g∗(t)(Sn − t)) = exp(−λ(t/n)t+ n lnϕ(λ(t/n))).

By the definition of the point λ(t/n), the power of the exponent is equal to
−nΛ(t/n). Therefore,

E exp(−g(t)− g∗(t)(Sn − t)) = exp(−g(t)− nΛ(t/n)) = exp(−H(t)).

Substituting this into (5.4) completes the proof of Theorem 5.1. 2

Lemma 5.1. Under the conditions of Theorem 5.1, there exist a constant δ > 0
and a sequence ε3(n) ↓ 0 such that

H(x) ≥ H(t) + δ(x− t)2/n− ε3(n) (5.5)

for any x ∈ [nα0, nµ+(nµ−t)]. In addition, if |x− t| = o(
√
n), then

H(x) = H(t) + o(1). (5.6)

Proof. Since t ≥ nα0, (5.3) and (5.2) imply

g(x) ≥ g(t) + g∗(t)(x− t) + o(1) + o((x− t)2/t)
= g(t)− λ(t/n)(x− t) + o(1) + o((x− t)2/n), (5.7)

as n→∞, for any x. If x ∈ [nα0, nµ], then from the Taylor expansion, for some
θ = θ(x) between t/n and x/n,

Λ(x/n) = Λ(t/n) + λ(t/n)
x− t
n

+ λ′(θ)
(x− t)2

2n2
. (5.8)
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It follows from (5.7) and (5.8) that for x ∈ [nα0, nµ],

H(x) ≥ H(t) + λ′(θ)
(x− t)2

2n
+ o(1) + o((x− t)2/n) as n→∞.

Due to (4.2), λ′(α) = 1/σ(α)2 for α ≤ µ. Hence

inf
u∈[α0,µ]

λ′(u) ≡ 9δ > 0.

Therefore, λ′(θ) ≥ 9δ and, for x ∈ [nα0, nµ],

H(x) ≥ H(t) + 4δ(x− t)2/n− ε3(n), ε3(n) ↓ 0 as n→∞.

Thus (5.5) is proved in the domain x ∈ [nα0, nµ]. It remains to consider the
domain x ∈ [nµ, nµ+(nµ−t)]. If x ≥ nµ, then Λ(x/n) = 0 and H(x) = g(x) =
H(nµ) + g(x)− g(nµ). Hence for x ∈ [nµ, nµ+(nµ−t)],

H(x) ≥ H(nµ) ≥ H(t) + 4δ(nµ− t)2/n− ε3(n)
≥ H(t) + δ(x− t)2/n− ε3(n),

and (5.5) is proved.
Now let |x− t| = o(

√
n). Then it follows from condition (5.1) that

g(x) = g(t) + g∗(t)(x− t) + o(1) = g(t)− λ(t/n)(x− t) + o(1). (5.9)

Further, sup
u∈[α0,µ]

λ′(u) <∞. From (5.8) we obtain

Λ(x/n) = Λ(t/n) + λ(t/n)(x− t)/n+ o(1/n) (5.10)

and (5.9) together with (5.10) prove (5.6). 2

Following the lines of the proof of Lemma 5.1, we obtain the following lemma.

Lemma 5.2. Under the conditions of Theorem 5.1, there exist a constant δ > 0
and a sequence ε3(n) ↓ 0 such that

H̃(x) ≥ H̃(t) + δ(x− t)2/n− ε3(n) (5.11)

for any x ∈ [nα0, nµ+(nµ−t)], where

H̃(x) = H̃n(x) ≡ g(t) + g∗(t)(x− t) + nΛ(x/n).

Lemma 5.3. Let condition (5.1) hold. Then

E
{

exp(−g(Sn)); Sn < nα0

}
= o(E exp(−g(Sn))),

E
{

exp(−g(t)− g∗(t)(Sn − t)); Sn < nα0

}
= o(E exp(−g(Sn)))

as n→∞.
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Proof. The first relation is implied by Lemma 2.1, since F is heavy-tailed and
α0 < µ. Since g∗(x)→ 0, the second relation follows from the estimate

E
{

exp(−g(t)− g∗(t)(Sn − t)); Sn < nα0

}
≤ exp(g∗(t)t) P{Sn < nα0}
= exp(o(n)) P{Sn < nα0},

and from the proof of Lemma 2.1. 2

Lemma 5.4. Let σ2 ≡ Var ξ be finite. Then

E
{

exp(−g(Sn)); Sn > nµ+ d(n)
√
n/2

}
= o(E exp(−g(Sn))) as n→∞.

Proof. Due to the CLT

E exp(−g(Sn)) ≥ exp(−g(nµ)) P{Sn ≤ nµ} ∼ exp(−g(nµ))/2 as n→∞.

Using this estimate and the Chebyshev inequality, we complete the proof:

E{exp(−g(Sn));Sn ≥ nµ+ d(n)
√
n/2}

≤ exp(−g(nµ)) P{Sn ≥ nµ+ d(n)
√
n/2}

≤ 4σ2 exp(−g(nµ))/d2(n) = o(E exp(−g(Sn))).

2

Lemma 5.5. Under the conditions of Theorem 5.1

E
{

exp(−g(t)− g∗(t)(Sn − t)); Sn > nµ+ d(n)
√
n/2

}
= o(exp(−H(t)))

as n→∞.

Proof. By the Chebyshev inequality, we have

E
{

exp(−g(t)− g∗(t)(Sn − t)); Sn ≥ nµ+ d(n)
√
n/2

}
≤ exp(−g(t)− g∗(t)(nµ− t)) P{Sn ≥ nµ+ d(n)

√
n/2}

≤ 4σ2 exp(−g(t)− g∗(t)(nµ− t))/d2(n)

= o(exp(−g(t)− g∗(t)(nµ− t))).

In view of Lemma 5.2,

g(t) + g∗(t)(nµ− t) = H̃(nµ) ≥ H̃(t) + o(1) = H(t) + o(1).

This completes the proof of the lemma. 2
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Lemma 5.6. Under the conditions of Theorem 5.1, as n→∞, we have

E+ ≡ E
{

exp(−g(Sn)); t+d(n)
√
n ≤ Sn < nµ+d(n)

√
n/2

}
= o(exp(−H(t))); (5.12)

E
{

exp(−g(t)− g∗(t)(Sn − t)); t+d(n)
√
n ≤ Sn < nµ+d(n)

√
n/2

}
= o(exp(−H(t))). (5.13)

Proof. First,

E+ ≤ E′+ ≡ E
{

exp(−g(Sn)); t+ d(n)
√
n ≤ Sn < nµ+ (nµ− t)

}
.

Indeed, if d(n)
√
n/2 < nµ − t, then the domain of integration in E′+ is larger

than in E+. If d(n)
√
n/2 ≥ nµ− t, then

t+ d(n)
√
n = t+ d(n)

√
n/2 + d(n)

√
n/2 ≥ nµ+ d(n)

√
n/2

and the domain of integration in E+ is empty, as well as in E′+. In this case
E+ = E′+ = 0.

Put t1 = t+ d(n)
√
n and t2 = nµ+ (nµ− t). We have

E′+ =
t2∑
k=t1

E{exp(−g(Sn)); k−1 ≤ Sn < k}

≤
t2∑
k=t1

exp(−g(k − 1)) P{Sn ∈ [k−1, k)}

≤ c4

t2∑
k=t1

exp(−g(k)) P{Sn ∈ [k−1, k)},

since exp(−g(k − 1)) ∼ exp(−g(k)). Applying Lemma 4.2 we obtain

E′+ ≤
c5√
n

t2∑
k=t1

e−g(k)e−nΛ(k/n) =
c5√
n

t2∑
k=t1

e−H(k). (5.14)

According to the first assertion of Lemma 5.1 we have

t2∑
k=t1

e−H(k) = e−H(t)
t2∑
k=t1

e−(H(k)−H(t))

≤ e−H(t)
t2∑
k=t1

exp(−δ(k − t)2/n+ ε3(n))

∼ e−H(t)
t2−t∑

k=d(n)
√
n

exp(−δk2/n)
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≤ e−H(t)

∞∫
d(n)
√
n

exp(−δx2/n) dx

= e−H(t)
√
n

∞∫
d(n)

exp(−δy2) dy = o(e−H(t)
√
n),

since d(n) → ∞. Substituting this into (5.14) we get (5.12); (5.13) can be
obtained in the same way, by using Lemma 5.2. 2

Lemma 5.7. Under the conditions of Theorem 5.1, as n→∞, we have

E− ≡ E
{

exp(−g(Sn)); nα0 ≤ Sn < t− d(n)
√
n
}

= o(e−H(t));

E
{

exp(−g(t)− g∗(t)(Sn − t)); nα0 ≤ Sn < t− d(n)
√
n
}

= o(e−H(t)).

Proof. It follows the lines of the proof of Lemma 5.6. For example, let us show
that E− = o(e−H(t)). Put t3 = nα0 and t4 = t− d(n)

√
n. Then

E− ≤ c4
t4∑
k=t3

e−g(k) P{Sn ∈ [k−1, k)}.

Applying Lemma 4.2 and the first assertion of Lemma 5.1, we obtain

E− ≤ c5√
n

t4∑
k=t3

e−H(k) ≤ c6e
−H(t)

√
n

t4∑
k=t3

exp(−δ(k − t)2/n)

≤ c6e
−H(t)

√
n

−d(n)
√
n∫

−∞

exp(−δx2/n) dx = o(e−H(t)),

since d(n)→∞. The lemma is proved. 2

6. Asymptotic behaviour of the point t = tn and the value of e−H(t),
in particular cases

Let t̂ = t̂n ∈ (nα0, nµ] be any point satisfying the relation

g∗( t̂ ) = −λ( t̂/n) + o(1/
√
n) as n→∞. (6.1)

In particular, one can take t̂n = tn, where tn is from (5.2).

Lemma 6.1. Under the conditions of Theorem 5.1, t̂n = tn + o(
√
n) and

E exp(−g(Sn)) ∼ exp(−H( t̂ )) as n→∞.
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Proof. It follows from (6.1) and (5.2) that

g∗( t̂ )− g∗(t) = λ(t/n)− λ( t̂/n) + o(1/
√
n) = λ′(θ)(t− t̂ )/n+ o(1/

√
n)

= (t− t̂ )/nσ2 + o(1/
√
n+ |t− t̂ |/n) (6.2)

as n→∞, since λ′(θ)→ 1/σ2. Condition (5.3) implies

g(t) = g( t̂ ) + g∗( t̂ )(t− t̂ ) + o(1 + (t− t̂ )2/n);
g( t̂ ) = g(t) + g∗(t)( t̂− t) + o(1 + (t− t̂ )2/n).

Thus,
(g∗( t̂ )− g∗(t))(t− t̂ ) = o(1 + (t− t̂ )2/n). (6.3)

Combining this with (6.2) we obtain

(t− t̂ )2/n = o(|t− t̂ |/
√
n+ 1) = o

(
(|t− t̂ |/

√
n+ 1)2

)
as n→∞.

Hence, (t−t̂ )/
√
n = o(|t−t̂ |/

√
n + 1), which implies the first assertion of the

lemma. Now the second assertion follows from (5.6) and Theorem 5.1. 2

Lemma 6.2. Let u(x) be a function satisfying the condition:

u(x+ y) = u(x) + o(1 + |y|/
√
x) (6.4)

as x→∞ uniformly in y ≥ −x. Then, under the conditions of Theorem 5.1,

E exp(−u(Sn)− g(Sn)) ∼ exp(−u(t)−H(t)) as n→∞.

Remark 6.1. Typical examples of functions u satisfying (6.4) are xβ for β < 1/2
and (log x)β for any β ∈ R.

Proof of Lemma 6.2. Taking into account that |y/
√
x| ≤ 1 + y2/x, we obtain

the relation
u(x+ y) = u(x) + o(1 + y2/x).

Note that the function g1(x) ≡ u(x) + g(x) satisfies conditions (5.1) and (5.3)
with g∗1 = g∗. In this case, H1 = u+H and h1 = h. Hence t satisfies the equation
g∗1(t) = −λ(t/n) and, due to Theorem 5.1, E exp(−g1(Sn)) ∼ exp(−H1(t)). The
proof is complete. 2

Lemma 6.3. Let σ2 ≡ Var ξ be finite. Then any solution tn to equation (5.2)
satisfies

nµ− tn = (1+o(1))ng∗(tn)σ2 as n→∞. (6.5)

If
g∗(x−o(x)) = g∗(x) + o

(
g∗(x) + 1/

√
x
)

as x→∞, (6.6)



562 S. Foss and D. Korshunov

then
nµ− tn = (1+o(1))ng∗(nµ)σ2 + o(

√
n) as n→∞. (6.7)

Moreover,
nµ− tn = (1+o(1))ng∗(nµ)σ2 as n→∞, (6.8)

provided that
g∗(x−o(x)) = (1+o(1))g∗(x) as x→∞. (6.9)

Remark 6.2. The function xβ , β ∈ R, satisfies condition (6.9).

Proof of Lemma 6.3. Recall that nµ − tn = o(n) as n → ∞. By the Taylor
expansion, λ(t/n) = λ(µ) + λ′(θ)(t/n − µ), where θ ∈ [t/n, µ]. Since λ(µ) = 0
and λ′(µ) = 1/σ2, from (5.2) we obtain that

g∗(t) = (1/σ2 + o(1))(µ− t/n),

which is equivalent to (6.5). Further, if condition (6.6) holds then g∗(t) =
(1 + o(1))g∗(nµ) + o(1/

√
n), which together with (6.5) implies relation (6.7).

Finally, (6.5) and (6.9) imply (6.8). 2

Corollary 6.1. Assume that the conditions of Theorem 5.1 hold. If g∗(x) =
o(1/
√
x) as x → ∞, then E exp(−g(Sn)) ∼ exp(−g(nµ)) as n → ∞, which

coincides with the asymptotics in Theorem 3.1.

Proof. Since tn ≥ nα0, g∗(tn) = o(1/
√
n). By this relation, it follows from (6.5)

that nµ − t = o(
√
n). Applying (5.6), we deduce H(t) = H(nµ) + o(1). Now

the corollary follows from Theorem 5.1. 2

Theorem 6.1. Assume that the conditions of Theorem 5.1 and (6.6) hold.
Then

H(tn) = g(nµ)− (1+o(1))n(g∗(nµ)σ)2/2 + o(1) as n→∞.

Proof. By Lemma 6.3 we have

nµ− tn = (1+o(1))ng∗(nµ)σ2 + o(
√
n).

Put ∆ ≡ (1+o(1))ng∗(nµ)σ2. By virtue of (5.6), H(tn) = H(nµ−∆) + o(1) as
n→∞. From (5.3) we have

g(nµ−∆) = g(nµ)− g∗(nµ)∆ + o(1 + ∆2/n)
= g(nµ)− (1+o(1))n(g∗(nµ)σ)2 + o(1).

Since Λ(µ) = 0, Λ′(µ) = 0 and Λ′′(µ) = 1/σ2, we get

nΛ((nµ−∆)/n) = n(1/σ2 + o(1))∆2/2n2 ∼ n(g∗(nµ)σ)2/2.

Now the assertion of the theorem follows from the last two relations. 2
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Corollary 6.2. Assume that the conditions of Theorem 5.1 and (6.6) hold. If
g∗(x) = O(1/

√
x) as x→∞, then

E exp(−g(Sn)) ∼ exp(−g(nµ) + n(g∗(nµ)σ)2/2)

as n→∞.

In particular, the asymptotics E exp(−g(Sn)) ∼ exp(−g(nµ) + (cσ)2/8µ)
holds if F (x) = xγ exp(−cxβ) and β = 1/2. If β > 1/2, then it is necessary to
refine the asymptotics given in Lemma 6.3 and Theorem 6.1.

Lemma 6.4. Let the conditions of Theorem 5.1 and (6.6) hold. Let

g∗(x+O(xg∗(x))) = g∗(x) +O((g∗(x))2) + o(1/
√
x) as x→∞. (6.10)

If E ξ3 is finite, then

nµ− tn = g∗(nµ)nσ2 +O(n(g∗(nµ))2) + o(
√
n) as n→∞.

Remark 6.3. The function xβ , β ∈ R, satisfies condition (6.10).

Remark 6.4. Since E ξ3 <∞, λ′′(µ) = −[ϕ′′′(0)−3ϕ′′(0)ϕ′(0)+2(ϕ′(0))3]/σ6 =
−E(ξ − µ)3/σ6 is finite.

Proof of Lemma 6.4. It follows from condition (6.10) that

g∗(tn) = g∗(nµ) +O((tn − nµ)2/n2) + o(1/
√
n).

Since λ(µ) = 0, λ′(µ) = 1/σ2 and λ′′(µ) is finite,

λ(tn/n) = (tn − nµ)/nσ2 +O((tn − nµ)2/n2).

Therefore, from (5.2) we obtain that

g∗(nµ) +O((nµ− t)2/n2) + o(1/
√
n) = (nµ− t)/nσ2.

Since nµ−t ∼ ng∗(nµ)σ2, the proof is complete. 2

Corollary 6.3. Under the conditions of Lemma 6.4, assume that g∗(x) =
o(1/x1/4). Then tn = nµ− g∗(nµ)nσ2 + o(

√
n).

Corollary 6.4. Under the conditions of Lemma 6.4, assume that g∗(x) =
o(1/x1/3) and

g(x+ y) = g(x) + g∗(x)y + o(1) +O(y2g∗(x)/x) as x→∞.

Then

E exp(−g(Sn)) ∼ exp(−g(nµ) + n(g∗(nµ)σ)2/2) as n→∞.
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Proof of Corollary 6.4. Since g∗(x) = o(1/x1/3), Corollary 6.3 and (5.6) imply
H(tn) = H(nµ− g∗(nµ)nσ2) + o(1) as n→∞. By Theorem 5.1, we obtain

E exp(−g(Sn))
∼ exp(−H(nµ− g∗(nµ)nσ2))
= exp(−g(nµ− ng∗(nµ)σ2)− nΛ(µ− g∗(nµ)σ2))
= exp

{
− g(nµ) + n(g∗(nµ)σ)2 + o(1) +O(n(g∗(nµ))3)

− nλ′(µ)(g∗(nµ)σ2)2/2 +O(n(g∗(nµ))3)
}

= exp
{
− g(nµ) + n(g∗(nµ)σ)2 − nλ′(µ)(g∗(nµ)σ2)2/2 + o(1)

}
.

Using the relation λ′(µ) = 1/σ2 we arrive at the conclusion. 2

In particular, if F (x) = exp(−xβ) and β < 2/3, then

E exp(−Sβn) ∼ exp−g(nµ) + β2σ2(nµ)2β−1/2µ.

If F is the exponential distribution with parameter 1/µ, then σ2 = µ2; in this
case we obtain the equivalence

E exp(−Sβn) ∼ exp(−(nµ)β + β2(nµ)2β−1µ/2). (6.11)

For any β ∈ (1/2, 2/3), the last inequality contradicts Remark 4.4 from [1],
which states that

E exp(−Sβn) ∼ exp(−(nµ)β + (1− β)β2(nµ)2β−1µ). (6.12)

Indeed, (1− β)β2 < β2/2 and (6.12) cannot be true.

7. Sequential approximations for t and H(t)

In the previous section, we found a number of first terms in the expansion of
H(t). Here we propose a sequential procedure which allows us to approximate
t and, therefore, H(t). We use the notation

L(λ) = (lnϕ(λ))′ = ϕ′(λ)/ϕ(λ) = E ξeλξ/E eλξ.

By the definition of λ(α), α = ϕ′(λ)/ϕ(λ) for λ = λ(α). Therefore, L(λ(α)) = α
and L is the inverse function to λ. Therefore, t is a root of equation (5.2) if
and only if t = nL(−g∗(t)). If 0 < λ′(µ) = 1/σ2 < ∞, then t̂ ∈ (nα0, nµ]
satisfies (6.1) if and only if

t̂ = nL(−g∗( t̂ )) + o(
√
n) as n→∞. (7.1)

Recall that H(x) = g(x) + xλ(x/n)− n lnϕ(λ(x/n)). Set

D(x) = g(x)− xg∗(x)− n lnϕ(−g∗(x)).
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By (5.2), H(t) = D(t). Since λ(L(−g∗(x))) = −g∗(x),

D(x)−H
(
nL(−g∗(x))

)
= g(x)− g

(
nL(−g∗(x))

)
+
(
nL(−g∗(x))−x

)
g∗(x)

= o
(
1 + (nL(−g∗(x))− x)2/x

)
owing to condition (5.1). Setting x = t̂, by Lemma 6.1 and (5.6) we get

D( t̂ ) = H(nL(−g∗( t̂ ))) + o(1) = H( t̂+ o(
√
n)) + o(1)

= H(t+ o(
√
n)) + o(1) = H(t) + o(1).

Thus we obtained the following theorem.

Theorem 7.1. Let t̂ satisfy (7.1). Then, under the conditions of Theorem 5.1,
H(t) = D( t̂ ) + o(1) as n→∞.

Put t(1) = nµ and t(k+1) = nL(−g∗(t(k))) for any integer k. Let L∗ =
supλ≤0 L

′(λ). We have

|t(2) − t(1)| = n|L(−g∗(nµ))− L(0)| ≤ L∗ng∗(nµ), (7.2)
|t(k+1) − t(k)| = n|L(−g∗(t(k)))− L(−g∗(t(k−1)))|

≤ L∗n|g∗(t(k))− g∗(t(k−1))|. (7.3)

Lemma 7.1. For any fixed k, t(k) ∼ nµ as n→∞. In addition, if there exists
δ > 0 such that

g∗(x) = o(x−δ), (7.4)
g∗(x+v)− g∗(x) = o(vx−1−δ) (7.5)

as x→∞ uniformly in v > 0, then, for any fixed k ≥ 1/2δ,

H(t) = H(t(k)) + o(1) = D(t(k)) + o(1) as n→∞.

Proof. Since g∗(nµ)→ 0, it follows from (7.2) that t(2) ∼ nµ as n→∞. Then,
by (7.3), t(k) ∼ nµ as n→∞, for any fixed k.

Due to (7.3) and (7.5), for all sufficiently large n,

|t(k+1) − t(k)| = o(|t(k) − t(k−1)|n−δ).

By induction, (7.2) and (7.4) we get

t(k+1) − t(k) = o(|t(2) − t(1)|n−(k−1)δ) = o(nn−kδ) = o(
√
n).

Thus, nL(−g∗(t(k))) − t(k) = t(k+1) − t(k) = o(
√
n) and one can take t̂ = t(k)

and apply Theorem 7.1. 2
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For example, assume that δ = 1/4. Then we take k = 2 and use the
expansion L(λ) = L(0) + λL′(0) + o(λ) = µ+ λσ2 + o(λ). We get

t(2) = nL(−g∗(nµ)) = n(µ− σ2g∗(nµ)) + o(
√
n).

Thus, H(t) = D( t̂ ) +o(1), where t̂ = nµ−ng∗(nµ)σ2. Now one can check that
the expansion of D( t̂ ) at the point nµ yields the asymptotics of Corollary 6.4
if δ = 1/3.

8. Asymptotic behaviour of E exp(−g(Sn)) in the case of a Poisson
renewal process

In this section we apply the general results of the previous sections to the
special case of a Poisson process X(t) with intensity 1/µ. Then ξ has the expo-
nential distribution with mean µ, variance σ2 = µ2 and the Laplace transform

ϕ(λ) = 1/(1− λµ), λ < 1/µ.

We have α− = 0. The solution to the equation d lnϕ(λ)/dλ = α is equal to
λ(α) = 1/µ− 1/α for α ∈ (0, µ].

Let F be a Weibull distribution with parameter β ∈ (0, 1). In this case,
equation (5.2) has the form βtβ−1 = −λ(t/n) or, equivalently,

βtβ + t/µ = n, (8.1)

which is identical to equation (4.2) from [1]. Since

Λ(α) =

α∫
µ

λ(θ)dθ =
α− µ
µ

+ ln
µ

α
,

Theorem 5.1 gives the asymptotics

E exp(−Sβn) ∼ exp(−tβ − nΛ(t/n)) = exp(−tβ + n(1− t/nµ))(t/nµ)n

= exp(−(1− β)tβ + n ln(1− βtβ/n)) as n→∞, (8.2)

because t/nµ = 1− βtβ/n. Since

ln(1− βtβ/n) = −βtβ/n− (β2µ2β/2 + o(1))n2β−2,

we may write the following estimate for E exp(−Sβn):

E exp(−Sβn) ∼ exp(−(1− β)tβ − βtβ − (β2µ/2 + o(1))(nµ)2β−1). (8.3)

By Lemma 6.3, t = nµ − (µβ + o(1))(nµ)β as n → ∞. Hence, tβ = (nµ)β −
(β2µ+ o(1))(nµ)2β−1 and it follows from (8.3) that

E exp(−Sβn) ∼ exp(−(1−β)tβ−β(nµ)β+(β2µ(β−1/2)+o(1))(nµ)2β−1). (8.4)
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Let us compare this with the asymptotics given in [1, Theorem 4.1]:

E exp(−Sβn) ∼ exp(−(1− β)tβ − β(nµ)β). (8.5)

For β > 1/2 it turns out that the latter two asymptotics are different; (8.4) is
heavier than (8.5).

Finally, we give the following correct version of Theorem 4.1 from [1].

Theorem 8.1. Let F (x) = exp(−u(x)−xβ), where β ∈ (0, 1) and u(x) satisfies
condition (6.4). Then

E exp(−Sβn) ∼ exp(−u(t)− (1− β)tβ + n ln(1− βtβ/n)) as n→∞,

where t is the solution to equation (8.1). In addition, if

u(x+O(xβ)) = u(x) + o(1) as x→∞, (8.6)

then

E exp(−Sβn) ∼ exp(−u(nµ)− (1− β)tβ + n ln(1− βtβ/n)) as n→∞.

Proof. The first assertion follows from (8.2) and Lemma 6.2.
For g(x) = xβ , we may take g∗(x) = g′(x) = βxβ−1. By Lemma 6.3,

nµ−t = O(ng′(nµ)) = O(g(n)). This relation and condition (8.6) imply u(t) =
u(nµ) + o(1) and, therefore, the second assertion of Theorem 8.1. 2
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[1] S. Asmussen, C. Klüppelberg and K. Sigman (1999) Sampling at subexpo-
nential times, with queueing applications. Stoch. Process. Appl. 79, 265–286.

[2] A.A. Borovkov and D.A. Korshunov Probabilities of large deviations for one-
dimensional Markov chains. Part 2. Pre-stationary distributions in exponential
case. Theory Probab. and Appl. 45, 437–468.

[3] W. Feller (1971) An Introduction to Probability Theory and Its Applications,
Vol. 2. Wiley, New York.

[4] R. Haji and G.F. Newell (1971) A relation between stationary queue and
waiting time distribution. J. Appl. Probab. 8, 617–620.



568 S. Foss and D. Korshunov

[5] W. Hengartner and R. Theodorescu (1973) Concentration Functions. Aca-
demic Press, New York, London.
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