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Abstract

For a distributionf™*” of a random sunb, = & + ... + &, of i.i.d. random variables
with a common distributiorf” on the half-line[0, o), we study the limits of the ratios of
tails F'*7(x) /F(z) asz — oo (herer is an independent counting random variable). We also
consider applications of obtained results to random walks, compound Poisson distributions,
infinitely divisible laws, and sub-critical branching processes.
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1. Introduction. Let &y, &, ..., be independent identically distributed nonnegative random
variables. We assume that their common distribufibon the half-line[0, co) has an unbounded
support, thatisf'(x) = F(x,00) > 0forall x. PutSy = 0andS, =& +...+&,n=1,2,....

Let 7 be a counting random variable which does not depen{gh,>; and has finite mean.
Denote byF*™ the distribution of a randomly stopped s\ip=&; + ... + &;.

In this paper we discuss how does the tail behavioufdfrelate to that of” and, in particular,
under what conditions

lim inf Ff (z) = Er. Q)

s ()

Relations on lower limits and on limits of ratios of from (1) have been first discussed by Rudin
[21]. Theoren®* of that paper states (for an integgrthe following

Theorem 1. Let there exists a positive € [1, co) such thatE£? = oo, but Er? < co. Then(1)
holds.

Rudin’s studies were motivated by the paper [7] of Chover, Ney, and Wainger who considered,
in particular, the problem of existence of a limit for the ratio

£ (x)

asx — oo. (2)

From Theorem 1, it follows that, if' andr satisfy its conditions and if a limit of (2) exists, then
that limit must be equdtr.

The research of Denisov is partially supported by the Dutch BSIK proRRICKS. The research of Foss and
Korshunov supported by the Royal Society International Joint Project programme No. ???

2Address: Eurandom, P.O. Box 513 - 5600 MB Eindhoven, The Netherlands. E-mail address:
Denisov@eurandom.tue.nl

3Address: School of MACS, Heriot-Watt University, Edinburgh EH14 4AS, UK; and Sobolev Institute of Mathe-
matics, 4 Koptyuga Pr., Novosibirsk 630090, Russia. E-mail address: S.Foss@ma.hw.ac.uk

“Address: Sobolev Institute of Mathematics, 4 Koptyuga pr., Novosibirsk 630090, Russia. E-mail address: Kor-
shunov@math.nsc.ru



Rudin proved Theorem 1 via probability generating functions techniques. Below we give an
alternative and a more direct proof of Theorem 1 in the case of any pogifivee not necessarily
integer). Our method is based on truncation arguments; in this way, we propose a general scheme
(see Theorem 4 below) which may be applied also to distributions with all finite moments.

The conditionE£P = oo rules out a lot of distributions of interest, say, in the theory of subex-
ponential distributions. For example, log-normal and Weibull-type distributions have all moments
finite. Our first result presents a natural moment condition on stopping#iguaranteeing re-
lation (1) for the whole class of heavy-tailed distributions. It is intuitively clear that, for that,
should be light-tailed.

Recall that a random variable hasa light-tailed distribution F on [0, 00) if Ee?¢ < oo
with somey > 0. OtherwiseF' is calleda heavy-tailedistribution; this happens if and only if
Ee"¢ = oo for all v > 0.

Theorem 2. Let F' be a heavy-tailed distribution andhave a light-tailed distribution. Thefl)
holds.

Proof of Theorem 2 is based on a new technical tool (see Lemma 2) and significantly differs
from a proof of Theorem 1 in [15] where a particular case: 2 was considered. Theorem 2 is
restricted to the case of light-tailed but here extends Rudin’s result to the class of all heavy-tailed
distributions. The reasons for the restrictiorie’” < oo come from the proof of Theorem 2 but
in fact are rather natural; the tail efshould be lighter than the tail of any heavy-tailed distribution.
Indeed, if¢; > 1thenF*7(x) > P{7 > x}. This shows that the tail df*" is at least as heavy as
that of 7. Note that, in Theorem 1, in some sense, the tail'tf is heavier than the tail of.

Theorem 2 may be applied in various areas where randomly stopped sums do appear — see Sec-
tions 8-11 (random walks, compound Poisson distributions, infinitely divisible laws, and branch-
ing processes) and, e.g., [17] for further examples.

For any distribution o0, o), let

o) = /0 T F(dr) € (0,00], 7 €R,

and

7 = sup{y : (7) < oo} € [0,00].
Note that the moment-generating functip(ry) is monotone continuous in the intervatco, 7),
andp(7) = lim () € [1, 00}.

Theorem 3. Letp(7) < co andE(p(7) + ¢)7 < oo for somes > 0. Assume that

()
F(x

— ¢ asr — oo,

~—

wherec € (0, cc]. Thene = E(t¢"1(%)).

For (comments on) earlier partial results in the case 2, see, e.g., papers [6-8, 10, 15, 19,
20, 22] and further references therein.
2. Preliminary result. We start with the following

Theorem 4. Let there exist a non-decreasing concave functio® ™ — R such that

Ee"® < o0 and Egeh(g) = 0. 3)



Foranyn > 1, putA,, = EeM&+-+&) |f F is heavy-tailed and if
ETAT_l < 09, (4)
then(1) holds.

Proof. First we restate Theorerti* of Rudin [21] in Lemma 1 below in terms of probability
distributions and stopping times.

Lemma 1. For any distributionF’ on [0, co) with unbounded support and any independent count-
ing random variabler,
T
lim inf Ff (z) > Er.

O

It follows from Lemma 1 that it is sufficient to prove the upper bound in Theorem 4. Assume
the contrary, i.e. there exigt> 0 andx such that

F*(x) > (Er+06)F(z) forallz > x. (5)
For any positiveh > 0, consider a concave function
hy(z) = min{h(z),bz}. (6)

SinceF is heavy-tailedh(x) = o(x) asx — oc. Therefore, for any fixed, there exists:y such
thath,(x) = h(x) for all z > (. Hence, by the condition (3),

Ee™©) <« o and Eg¢e™) = . (7
For anyz, we have the convergenég(z) | 0 asb | 0. Then, for any fixed:,
App = EeM@t-+&) |1 ash | 0.
This and the condition (4) imply that there existsuch that
ETA; 1, < ET+6/2. (8)
For any random variabl¢ and positivet, put¢Y = min{¢,¢}. Then

E(e! ..+ el)eh@tten) X B 4.t yem@ttin)

= P = n
Eé‘gt] ehw(€1) ; Edt] ehw(&1) b }
0 [t] hy(€14...+En)
= ZnE£1 e[t] P{r =n}
ot E¢; eho(61)

> Eggt]ehb(€1)+hb(§2+~-+§n)

E&{ﬂ ehb (51)

IN

P{r =n},

n=1
by concavity of the functioih,. Hence,

B+ dhem@rte) &2 mellom(@Bot (et

P{r—
Eét]ehb(&) - —’ Edﬂehb(&) {fr=n}
= Z nAn_1,P{r =n}
n=1
< E7T+9/2, 9)

3



by (8).
On the other hand, sindg; + ... + &) <4+ 4+ ¢,

EEl 4 4 dhem@tte) E(& + ... + &) eho@t+r)
ng] ehv(€1) - ggt eho(€1)
_ fooooox[t] ehb(m) F*T (d(L‘) | (10)
fO x[t]ehb(x)F(dgj)
The right side, after integration by parts, is equal to
fooo F(z)d(xlehv (@)
Jo© F(z)d(atlehs(=)) -

SinceE¢; €)= oo, both integrals (the divident and the divisor) in the latter fraction tend to
infinity ast — oo. For thenon-decreasindunction h;(x), together with the assumption (5) it
implies that

P (2) (e ° T (1) d (2l o (@)
f ( ) (z ) — Sy F¥T(2)d(z ) . Bras
J&F (zllehn(@)) f F(z)d(zlehs(@))

Substituting this into (10) we get a contradiction to (9) for sufficiently larg€he proof is com-
plete.

3. Proof of Theorem 1. Let an integerk be such thap — 1 < k < p. Without loss of
generality, we can assume tiB¢* < oo.

Consider a concave non-decreasing funcfién) = (p — 1) Inz. ThenEe"€) < oo and
E¢e€) = 0o. Thus,

A, = BG4 — B 4. g, )P
< (Bl +&)HPE

since(p — 1)/k < 1. Further,

> E(&G Gy

i1, in=1

cnk,

E(& +...+&)F

IN

where

c= sup E(& -...-&,) < oo
1<i1,... i <n
due toEEF < oo. Hence A, < ¢P~D/kpp—1forall n. Therefore, we gdEr A, < P~ V/FErP <
oo. All conditions of Theorem 4 are met and the proof is complete.
4. Characterization of heavy-tailed distributions. In the sequel we need the following
existence result which generalises a lemma by Rudin [21, page 989] onto the whole class of
heavy-tailed distributions. Fix any< (0, 1].

Lemma 2. If a random variableg > 0 has a heavy-tailed distribution, then there exists a mono-
tone concave functioh : R™ — R such thatEe¢) < 1 + § andE¢e® = .



Proof. Without loss of generality assume that> 0 a.s. We will construct a piecewise linear
functionh(x). For that we introduce two sequences,| oo ande,, | 0 asn — oo, and let

h(z) =h(xp-1) +en(x —xp—1) ifx € (rp_1,zn], n>1.

This function is monotone, sineg, > 0. Moreover, this function is concave, due to the mono-
tonicity of ¢,,.
Putzy = 0 andh(0) = 0. Since¢ is heavy-tailed, we can choose > 2! so that

E{cf:¢ € (z0,21)} + " F(z1) > €"®0) 1 6=TF(0)+34.
Choose=; > 0 so that

E{e"5€ € (w0, m]} + € Flay) = e"F(0) +6/2,
which is equivalent to say that

E{e"®): ¢ € (xg,21]} + "TVF(21) = e MEIF(0) 4 6/2,

By induction we construct an increasing sequeng@nd a decreasing sequenge> 0 such
thatz,, > 2™ and

E{eh(g);f € (Tp_1,2n)} + eh(w7‘)F($n) = €h(x"71)F($n71) +46/2"

foranyn > 2. Forn = 1 this is already done. Make the induction hypothesis for same 2.
Due to heavy-tailedness, there exists | > 2"*! so large that

E{e™ &™) ¢ € (2, 2nga]} + e T F () > 144
Note that
E{esn+1(§fxn);§ c (3771, xn+1]} + 65n+1(In+1*In)F(‘fEn+1)

as a function o, is continuously decreasing #(x,,) ass,, 1 | 0. Therefore, we can choose
ent1 € (0,e,,) SO that

E{€5n+1(§—iﬂn);€ c (-Tn, $n+1]} + e€n+l($n+1_xn)F(:L‘n+l)
= Flan) + /(2.

By definition of h(x) this is equivalent to the following equality:
E{"®);¢ € (am, wnia]} + "V P(wnsn) = "OF () +6/27,

Our induction hypothesis now holds with+ 1 in place ofn as required.
Next,

Ec"®) = SN E{"9)¢ € (w1, 2]}

IN
kR

(ehmfﬂf(ggn_l) — @ F(z,) + 5/2")

1
(0)+5=1+4.

I
o §

5



On the other hand, since, > 2,

E{geh(f);ﬁ >rnt = Z E{geh($)§§ € (Tr—1, 7]}

k=n+1

2" Z E{e"®); ¢ € (x)_1, 2]}
k=n+1

2" Z <eh(m’“*1)ﬁ($k_1) — M@ (2) + 5/2k).
k=n+1

Y

Y

Then, for anyn,
E{¢"®):¢ > z,} > 27e@F(2,)+6 >,

which impliesE¢e™(€) = co. Note also that necessarliyn,, . €, = 0; otherwisdim inf h(z)/z >

0 and¢ is light tailed. The proof of the lemma is complete. o
5. Proof of Theorem 2.Sincer has a light-tailed distribution,

Er(l+e)™ ! < o

for some sufficiently smalt > 0. By Lemma 2, there exists a concave increasing function
h(0) = 0, such thalBe 1) < 1 + ¢ andE¢, ) = co. Then by concavity

A, = Eeh(§1+---+§n) < Eeh(fl)-i--.--i-h(fn) < (1 + é_)n'

Combining altogether, we g&rA,_; < oo. All conditions of Theorem 4 are met and the proof
is complete.

6. Fractional exponential moments.One can go further and obtain various results on lower
limits and equivalencies for heavy-tailed distributiansvhich have all finite power moments (like
Weibull and log-normal distributions). For instance, the following result takes place (see [9] for
the proof):

Let there existy, 0 < o < 1, such thatEe®” = oo for all ¢ > 0. If Ee’™ < oo for some
0 > 0, then(1) holds.

7. Tail equivalence for randomly stopped sumsThe following auxiliary lemma compares
the tail behavior of the convolution tail and that of the exponentially transformed distribution.

Lemma 3. Let the distributionF and the numbery > 0 be such thatp(y) < oo. Let the
distribution G be the result of the exponential change of measure with parameter, G(du) =

e F(du)/e(v). LetT be an independent stopping time such tBat” () < oo andv have the
distributionP{v = k} = ©*(v)P{r = k}/E¢" (7). Then

lim inf Gf (z) > % lim inf Ff (z)
z—o0  (G(x) Ep™1(y) z—c0 F(1)
and
lim sup — < ——limsup = .
r—oo  G() E¢™(7) 2moo  F(z)



Proof. Put

¢ = liminf Ff (x)

By Lemma 1¢ € [ET, oo]. For any fixed: € (0, ¢), there existg;p > 0 such that, for any: > z,
F*(z) > cF(x). (11)
By the total probability law,

Go(z) = > Plv=FkG*)
k=1

PP =k} [, F(dy)
Ep™(v) . @k ()

k=1
[ — o
= —— ) P{r=k} / eVE* (dy).
E¢7(y) ; z
After integration by parts, the latter sum is equal to
S P{r = K[ FH() + /
k=1 x

= " F*T (1) +/ F*7(y)de.

F*k(y)dew]

Using also (11) we get, for > =z,

o)

G7e) 2 g [ewf(x)-i- /x F(y)de’”’}
= EQOT(’}/>/$ ewF(dy):WG(x)'

Letting ¢ T ¢, we obtain the first conclusion of the lemma. The proof of the second conclusion
follows similarly.

Lemma4. If 0 <7 < 00, p(7) < oo, andE(p(7) + €)™ < oo for somes > 0, then

.. () “1/a
lim inf — < Et1¢"
minfo=oy = Bre ()
and
. F*T(ac) —1/~
lim sup ——= Ero™ )
mewp =y = B ()

Proof. We apply tbe exponential change of measure with parametard consider the distri-
bution G(du) = €™ F(du)/¢(7) and the stopping time with the distributionP{r = k} =
©*@)P{7T = k}/E¢" (7). Again from the definition of}, the distribution’ is heavy-tailed. The
distribution ofv is light-tailed, becausEe™ < oo with k = In(¢(7) +¢) —In p(7) > 0. Hence,

lim sup — > liminf — = Ey,
ol Cla) = o= G(x)

by Theorem 2. The result now follows from Lemma 3 with= 7, sinceEv = ET¢™ (7)/E¢" (7).

7



Proof of Theorem 3In the case wherd’ is heavy-tailed, we have = 0 andy(7) = 1. By
Theorem 2¢ = E7 as required.

In the caséy € (0, 00) andp(7) < oo, the desired conclusion follows from Lemma 4.

8. Supremum of a random walk. Let {¢,,} be a sequence of independent random variables
with a common distributio” onR andE¢; = —m < 0. PutSy = 0,5, =& +--- + &,. By
the SLLN, M = sup,,~( Sy, is finite with probability 1.

Let F! be the inte_grated-tail distribution @™, that is,

Fl(z) = min(l,/ F(y)dy), x> 0.
It is well-known (see, e.qg. [1, 12, 13] and references therein) that i€ .7, then
P{M>a} ~ ~Fl(z) asz— oc. (12)
m
Korshunov [18] proved the converse: (12) implies € .. Now we accompany this assertion by
the following
Theorem 5. Let F! be long-tailed, that isFZ(z + 1) ~ FI(z) asz — oc. If, for somer > 0,
P{M >z} ~ cFl(z) asz— oo,
thenc = 1/m and F'! is subexponential.
Proof. Consider the defective stopping time
n=inf{n >1: 5, >0} < oo
and let{¢,,} be i.i.d. random variables with common distribution function
G(z) =P{y, <z} =P{S, <z |n < oo}

It is well-known (see, e.g. Feller [14, Chapter 12]) that the distribution of the maximiim
coincides with the distribution of the randomly stopped stymt+ - - - 4 -, where the stopping
time 7 is independent of the sequenfe,, } and is geometrically distributed with parameper
P{M >0} <1,i.e.,P{r =k} = (1 —p)pFfork=0,1,.... Equivalently,
P{M e B} = G"(B).
From Borovkov [4, Chapter 4, Theorem 10] Af is long-tailed, then
_ 1—p—u
~ I
G(z) o Fl(x). (13)
Then it follows from the theorem hypothesis that
fp_njgé(x) asr — oo.
Therefore, by Theorem 3 with = 0, c = E7(1 — p)/pm = 1/m. Then it follows from [11] that
F! is subexponential. Now the proof is complete.
9. The compound Poisson distribution. Let F' be a distribution orR,. andt a positive
constant. LetG be the compound Poisson distribution

tn

G = e_tg — F*,
|
ot

G*(z) ~

Consideringr in Theorem 3 withP {7 = n} = t"e~/n!, we get

8



Theorem 6. Letp(7) < oo. If, for somec > 0, G(z) ~ c¢F(z) asz — oo, thenc = te!(¢()-1),

Corollary 1. The following statements are equivalent:
(i) F' is subexponential;
(i) G is subexponential;
(i) G(x) ~ tF(x) asz — oo;
(iv) F' is heavy-tailed and(x) ~ cF(x) asx — oo, for somec > 0.

Proof. Equivalence of (i), (ii), and (iii) was proved in [11, Theorem 3]. The implication=ii)
follows from Theorem 3 withy = 0.

Some local aspects of this problem for heavy-tailed distributions were discussed in [2, Theo-
rem 6].

10. Infinitely divisible laws. Let F' be an infinitely divisible law orj0, cc). The Laplace
transform of an infinitely divisible law' can be expressed as

/oo e—AxF(dx) _ e—ak—fooc(l—e*’\w)u(dac)
0

(see, e.g. [14, Chapter XVII]). Here > 0 is a constant and theévy measure’ is a Borel
measure on0, co) with the properties: = v(1,00) < oo andfo1 zv(dr) < co. PutG(B) =
v(BN(1,00))/ .

The relations between the tail behaviour of meaduend the correspondingdvy measure
were considered in [11, 19]. The local analogue of that result was proved in [2]. We strength the
corresponding result of [11] in the following way.

Theorem 7. The following assertions are equivalent:
(i) F is subexponential;
(i) G is subexponential,
(iii) 7(x) ~ F(z) asz — oc;
(iv) Fis heavy-tailed and(x) ~ cF(x) asz — oo, for somec > 0.

Proof. Equivalence of (i), (ii), and (iii) was proved in [11, Theorem 1].
It remains to prove the implication (i (iii). It is pointed out in [11] that the distributiod’
admits the representatidn = Fy x Fy, whereF;(z) = O(e%) for somes > 0 and

F _ —MZM G*n

SinceF is heavy-tailed and is light-tailed, we get the equivalend&x) ~ Fa(z) asz — oo.
Therefore, ag — oo,

uG(z) = v(x) ~cF(z) ~ cFa(x).

With necessity is heavy-tailed, and = 1 by Corollary 1.

11. Branching processes.In this section we consider the limit behaviour of sub-critical,
age-dependent branching processes for which the Malthusian parameter does not exist.

Leth(z) be the particle production generating function of an age-dependent branching process
with particle lifetime distributionF' (see [3, Chapter V], [16, Chapter VI] for background). We
take the process to be sub-critical, i4.= h'(1) < 1. Let Z(t) denote the number of particles



at timet. It is known (see, for example, [3, Chapter IV, Section 5] or [5]) tBat(¢) admits the
representation

EZ(t) = (l—A)iA”*W(t).

n=1

It was proved in [5] for sufficiently small values of and then in [6, 7] for anyd < 1 that

EZ(t) ~ F(t)/(1 — A) ast — oo, providedF' is subexponential. The local asymptotics were
considered in [2].
Applying Theorem 3 withr geometrically distributed argl = 0, we deduce

Theorem 8. Let F' be heavy-tailed, and, for some> 0, EZ(t) ~ cF(t) ast — oo. Then
c¢c=1/(1 - A) andF is subexponential.
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