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Abstract

We consider asymptotics for the maximum of a modulated random walk whose incre-
ments ξXn

n are heavy-tailed. Of particular interest is the case where the modulating
process X is regenerative. Here we study also the maximum of the recursion given
by W0 = 0 and, for n ≥ 1, Wn = max(0, Wn−1 + ξXn

n ).

1 Introduction

Let Sn =
∑n

1 ξi be a sum of i.i.d. random variables (r.v.s) with a negative finite mean
Eξ1 = −a < 0. The common distribution of the random variables ξn is assumed to be
right heavy-tailed (i.e. E exp(λξ1) = ∞ for all λ > 0). Moreover, the second tail of this
distribution is assumed to be subexponential (see Section 2 for definitions). Then the
classical result (see, e.g., [12]) states that, as y → ∞,

P(sup
n

Sn > y) ∼ 1

a

∫ ∞

y

P(ξ1 > t)dt. (1)

We consider here a more general random walk

Sn =
n∑
1

ξXi
i (2)

whose increments ξXn
n are modulated by an independent sequence X = {Xn}n≥1 (see

Section 2 for more precise definitions and notation). We assume that Sn → −∞ a.s. and
find conditions which are sufficient for the probability of the “rare” event P(supn Sn > y)
to behave asymptotically (as y → ∞) similarly to (1). The results obtained may be applied
to the study of complex stochastic models with modulated input.

Particular cases, with X a finite Markov chain, were considered in [2] and [1]. S. Asmussen
([4]) proposed an approach for getting the asymptotics for P(supn Sn > y) on the basis of
a regenerative structure: if the maximum of the partial sums over a typical cycle behaves
asymptotically as the end-to-end sum, and these asymptotics are subexponential, then
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the result (1) stays the same. In [5], the authors assumed that X is countably-valued, a
certain dependence between the Xn and the ξx

n was allowed, and some homogeneity in x of
the distributions of the random variables ξx

n was required. By the use of matrix-analytic
methods, they found the asymptotics for the stationary distribution of a Markov chain
with increments ξXn

n .

In [7], upper and lower bounds were found for the asymptotics of P(R > y), as y → ∞,
where R is the stationary response time in a tandem queue. Then, in [9], the asymptotics
for the stationary waiting time W in the second queue were studied. Note that W may be
represented as the limit of a recursion

Wn = max(0,Wn−1 + ξXn
n )

where X = {Xn} forms a Harris ergodic Markov chain. In [6], the exact asymptotics for
P(R > y) were found. The proof is based on ideas similar to that of Lemma 2 of the
present paper.

Finally, nice overviews on the current state of large deviations theory in the presence of
heavy tails were given in [10] and in recent new books [8] and [3].

We state our main results in Section 2. We consider in particular the case where the
modulating process X is regenerative, where we give also an instructive example and
counterexample. The latter shows our conditions on the tail of the distribution of the
regeneration time to be best possible—in a sense made clear there. We study also the
queueing theory recursion given by W0 = 0 and, for n ≥ 1, Wn = max(0,Wn−1 + ξXn

n ).

In Section 3 we collect together some useful known results, most of which are required for
our proofs. These are given in Section 4. Perhaps the key result of the entire paper is
Lemma 2 of that section, which develops an idea found also in [6].

2 The main results

Let (X ,B) be a measurable space and X = {Xn}n≥1 an X -valued discrete-time random
process. Let P : X ×B0 → [0, 1] (where B0 is the Borel σ-algebra on R) be a function such
that

(i) for every x ∈ X , P (x, ·) is a probability measure;

(ii) for every B ∈ B0, P (·, B) is a measurable function.

For each x ∈ X , let Fx denote the distribution function of P (x, ·). For each integer n ≥ 1,
introduce the family of real-valued random variables {ξx

n}x∈X . Assume that these families
are mutually independent (in n), do not depend on the process X, and that, for each x ∈ X
and each n, ξx

n has distribution function Fx. We define the random walk {Sn}n≥0 modulated
by the process X by S0 = 0 and, for any n = 1, 2, . . .,

Sn =
n∑

i=1

ξXi
i .
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Define also, for n ≥ 1,
Mn = max

0≤i≤n
Si,

and let
M = sup

n≥0
Sn.

Further, for each y > 0, define

µ(y) = min{n ≥ 1 : Sn > y}.
Note that µ(y) = ∞ if and only if M ≤ y.

We are interested the asymptotics of the upper-tail distribution of M under conditions
which guarantee that the random walk Sn behaves sufficiently regularly and has a strictly
negative drift, and where additionally the distribution functions Fx have, in some appro-
priate sense, heavy positive tails. More precisely, we wish to make statements, under such
conditions, about the behaviour, for any B ∈ B and as y → ∞, of P(M > y, Xµ(y) ∈ B).

Motivated by queueing theory applications, we are also interested in the behaviour of the
process {Wn}n≥0 defined recursively by W0 = 0 and, for n ≥ 1,

Wn = max(0,Wn−1 + ξXn
n ). (3)

We assume throughout that P is such that each probability measure P (x, ·) (i.e. each
distribution Fx) has a finite mean. We further assume throughout that there exist a
distribution function F on R+ with finite mean, and a measurable function c : X → R+

such that

F x(y) ∼ c(x)F (y) as y → ∞, for all x ∈ X , (4)

sup
x

sup
y≥0

F x(y)

F (y)
= L, for some L < ∞. (5)

Here, for any distribution function H on R, H denotes the tail distribution given by
H(y) = 1 − H(y).

The following two conditions on the pair (X, P ) will be satisfied in all our results, either
by hypothesis or as a consequence of more fundamental modelling assumptions. (We
show below that these conditions may arise naturally in the case where the process X is
regenerative, but they may also arise in other contexts.)

(C1) There exists some probability distribution π on (X ,B) such that, for some positive
integer d,

P(Xn ∈ ·) + . . . + P(Xn+d−1 ∈ ·)
d

→ π(·), as n → ∞, (6)

in total variation norm. Here define also

C(B) =

∫
B

c(x)π(dx), B ∈ B, (7)

and put C = C(X ).
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(C2) The pair (X, P ) is such that

lim
n→∞

Sn

n
= −a, a.s., for some a > 0. (8)

We need to recall the following definitions. For any distribution function H on R, the
integrated, or second-tail, distribution Hs is given by

H
s
(y) = min

(
1,

∫ ∞

y

H(t)dt

)
.

A distribution function H on R+ is long-tailed if H(y) > 0 for all y and, for any fixed
z > 0,

H(y + z)

H(y)
→ 1 as y → ∞.

A distribution function H on R+ is subexponential if H(y) > 0 for all y and

H
∗2

(y)

H(y)
→ 2 as y → ∞.

(where H∗2 is the convolution of H with itself). It is well known that any subexponential
distribution is long-tailed.

We now have Theorems 1 and 2 below.

Theorem 1. Assume that the conditions (C1) and (C2) hold and that F s is long-tailed.
Then

lim inf
y→∞

P(M > y,Xµ(y) ∈ B)

F
s
(y)

≥ C(B)

a
, for all B ∈ B. (9)

Theorem 2. Assume that the conditions (C1) and (C2) hold, that F s is subexponential,
and that there exists a distribution function G with negative mean

m(G) ≡
∫ ∞

−∞
t dG(t) < 0 (10)

such that F x(y) ≤ G(y) for all x and y. Then

lim
y→∞

P(M > y,Xµ(y) ∈ B)

F
s
(y)

=
C(B)

a
, for all B ∈ B. (11)

Remark 1. In an obvious sense, the best candidate for the distribution function G in
Theorem 2 is the right-continuous version of G̃(y) = supx Fx(y).
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As mentioned above, the conditions (C1) and (C2) are frequently satisfied in applications.
Perhaps the most common instance occurs in the case where X is a regenerative process.
Here there exists an increasing integer-valued random sequence 0 ≤ T0 < T1 < T2 < . . .
a.s., such that, if τ0 = T0, τn = Tn − Tn−1, n ≥ 1, then

Z0 = {τ0; X1, . . . , XT0},
Zn = {τn; XTn−1+1, . . . , XTn}, n ≥ 1,

are mutually independent for n ≥ 0 and identically distributed for n ≥ 1. Here τ0 is the
length of the 0th cycle, τ ≡ τ1 the length of the first cycle, etc; in particular, if τ0 = 0,
then the 0th cycle is empty.

Assume also, for X regenerative as above, that Eτ is finite. Then the condition (C1) is
automatically satisfied with

d = GCD{n : P(τ = n) > 0}

and the probability measure π given by

π(B) = E

(
T1∑

i=T0+1

I(Xi ∈ B)

)
, B ∈ B, (12)

where I is the indicator function. Suppose also that the modulated random walk Sn is
constructed as above, that ∫

X
E(|ξx

1 |)π(dx) < ∞, (13)

and that ∫
X

Eξx
1 π(dx) = −a, for some a > 0. (14)

Then, it is an elementary exercise, using the Strong Law of Large Numbers, to show that
the condition (C2) is satisfied with a as given by (14).

Example 1. For a particular example of such a random walk modulated by a regenerative
process, consider a stable tandem queue GI/GI/1 → GI/1 which is defined by three

mutually independent sequences {tn}, {σ(1)
n }, and {σ(2)

n } of i.i.d. random variables with

Et1 > max{Eσ
(1)
1 ,Eσ

(2)
1 }. Here the tn are the inter-arrival times at the first queue, while

the σ
(1)
n and the σ

(2)
n are the service times at the first and second queues respectively. Let

{Xn} be the sequence of inter-departure times from the first queue. Then this sequence is
regenerative (the regeneration indices corresponding to those customers who arrive to find
the first queue empty), and the distribution of Xn converges in the total variation norm to

a stationary distribution with mean Et1. Consider the sequence ξXn
n = σ

(2)
n − Xn. Under

natural conditions (see Theorems 3–5 below), we can show that the tail distribution of
the supremum of a modulated random walk with increments ξXn

n asymptotically coincides
with that of the stationary waiting time in the second queue.
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In the case of a regenerative process as above we obtain, in Theorems 3 and 4 below, the
conclusion (11) of Theorem 2 under weaker conditions than that given by (10). In each
case the cost is that of suitable conditions on the distributions of the cycle times τ0 and τ .
Both the theorems are adapted to typical queueing theory applications.

Theorem 3. Assume that X is regenerative with Eτ < ∞, that the conditions (13) and
(14) hold (with π as given by (12)), and that F s is subexponential. Assume also that

P(bτ0 > y) = o(F
s
(y)), P(bτ > y) = o(F (y)), as y → ∞, (15)

for all b > 0. Then the conclusion (11) of Theorem 2 again follows.

Remark 2. As already discussed, the assumptions of Theorem 3 ensure that the earlier
conditions (C1) and (C2) are satisfied.

Remark 3. It will follow from the proof of Theorem 3 that it is enough to assume that the
condition (15) holds for a certain sufficiently large b.

Remark 4. The condition (15) holds for all b > 0 if there exists some λ > 0 such that both
E exp(λτ) and E exp(λτ0) are finite.

Under the conditions of Theorem 4 we relax the requirement that the condition (15) hold
for all b > 0. This requirement may fail to be satisfied in some examples where the
conditions of Theorem 4 are, however, quite natural—see, e.g., Example 1.

Theorem 4. Assume that X is regenerative with Eτ < ∞, that the conditions (13) and
(14) hold, and that F s is subexponential. Assume also that there exists a family {Gx}x∈X
of distribution functions on R+ such that Gx(y) is measurable in x for all y,

F x(y) ≤ Gx(y) for all x and for all y, (16)

and, for each x, Gx may be represented as a distribution function of a difference of two
independent r.v.s

Gx(y) = P(ζ − bx ≤ y), (17)

where the distribution of ζ does not depend on x,

lim sup
y→∞

P(ζ > y)

F (y)
< ∞, (18)

bx is non-negative a.s., and

EπbX ≡
∫

Ebx π(dx) > Eζ. (19)

Assume further that the condition (15) holds for some b > Eζ. Then the conclusion (11)
of Theorem 2 follows once more.
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Remark 5. The assumptions on X in Theorem 4 again ensure that the earlier condition (C1)
is satisfied, while it follows from (16), (17) and (19) that the condition (14), and so the
condition (C2), is satisfied.

Remark 6. It is easy to see that the asymptotics for P(M > y) may be quite different
from (11) if the assumption (15) fails. For instance, assume that the remaining conditions
of Theorem 4 hold with X = R, Fx = Gx for all x, ζ ≥ 1 a.s., and bx ≡ 0 for all x 6= 0.
Assume also that X0 = 0, T0 = 0, τ ≡ τ1 = min{n > 0: Xn = 0}. The condition (19) here
becomes Eb0 > EζEτ . Then

M ≥ max(τ1 − 1, τ1 − b0
τ1

+ τ2 − 1, . . .) ≡ M∗.

If the second tail for P(τ > t) is subexponential (and so also long-tailed), then, by (1),

P(M∗ > y) ∼ 1

E(b0 − τ)

∫ ∞

y

P(τ > t)dt.

Finally, again in the case where X is regenerative, we consider the process {Wn}n≥0 defined
earlier by (3). In the special case where Fx = F for all x ∈ X (so that {ξn} is an i.i.d.
sequence), it is well known that the distributions of Wn and Sn coincide. However, this is
not generally the case in the present setting.

Theorem 5. Assume that X is regenerative with Eτ < ∞. Then, under the conditions of
either Theorem 2, Theorem 3 or Theorem 4,

lim
y→∞

1

F
s
(y)

lim sup
n→∞

P(Wn > y) = lim
y→∞

1

F
s
(y)

lim inf
n→∞

P(Wn > y) =
C

a
. (20)

Remark 7. In fact, under the conditions of Theorem 3 or 4, the condition on τ0 (in (15))
is not required for Theorem 5.

3 Useful Properties

We recall some known properties of distributions. For any distribution function G on R
let

m(G) ≡
∫ ∞

−∞
t dG(t)

denote its mean. Further, we make the convention that, for distribution functions G and
H, we write H(y) ∼ 0 · G(y) if H(y) = o(G(y)) as y → ∞.

Property 1. Suppose that distribution functions G and H are such that m(G) is finite,
m(H) = −h for some h > 0, and H(y) = o(G(y)) as y → ∞. Then, for any ε > 0 we
can find a distribution function Hε such that H(y) ≤ Hε(y) for all y, m(Hε) ≤ −h/2 and
Hε(y) = εG(y) for all sufficiently large y.
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Property 2. Suppose that distribution functions G and H are such that Gs exists, and
that H(y) ∼ cG(y) as y → ∞ for some c ≥ 0. Then Hs exists and H

s
(y) ∼ cG

s
(y) as

y → ∞.

Property 3. Suppose that a distribution function G is such that its second tail distribution
Gs is long-tailed. Then

G(y) = o(G
s
(y)) as y → ∞. (21)

Further, for any g > 0 and any sequence {αn} such that αn → α as n → ∞,

lim
y→∞

1

G
s
(y)

∞∑
n=k

αnG(y + l + ng) =
α

g
for all k and for all l. (22)

Property 4. Suppose that distribution functions G and H are such that H(y) ∼ cG(y)
as y → ∞ for some c > 0. Then if G is subexponential, H is subexponential, while if Gs

subexponential, Hs is subexponential and H
s
(y) ∼ cG

s
(y) as y → ∞.

Property 5. Let ξ1, ξ2, . . . , ξn be n mutually independent r.v.s and G a subexponential dis-
tribution such that, for i = 1, 2, . . . , n, P(ξi > y) ∼ ciG(y) as y → ∞, where c1, c2, . . . , cn ≥
0. Then

P(ξ1 + ξ2 + . . . + ξn > y) ∼ (c1 + c2 + . . . + cn)G(y) as y → ∞.

Property 6. Let {ξn}n≥1 be an i.i.d. sequence of nonnegative random variables with subex-
ponential distribution G. For any n, put

αn = sup
y≥0

P(ξ1 + . . . + ξn > y)

P(ξ1 > y)
≡ sup

y≥0

G
∗n

(y)

G(y)
.

Then, for any u > 0 one can choose k > 0 such that αn ≤ k(1 + u)n for all n.

Property 7 (Veraverbeke’s Theorem). Let {ξn}n≥1 be an i.i.d. sequence of random
variables with distribution function G and a negative mean −g = Eξ1 < 0. Suppose that the
second-tail distribution Gs is subexponential. Set S ′

n =
∑n

i=1 ξi, and M ′ = max(0, supn S ′
n).

Then, as y → ∞,

P(M ′ > y) ∼ P

(⋃
n≥1

{ξn > y + ng}
)

∼
∑
n≥1

P(ξn > y + ng) ∼ 1

g
G

s
(y). (23)

Thus, under the conditions of Veraverbeke’s Theorem, the supremum M ′ is large if and
only if one of summands is large. The following three properties are all corollaries of
Veraverbeke’s Theorem. In particular Property 9 follows easily on using also Property 1
above.
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Property 8. Under the conditions of Veraverbeke’s Theorem above, for any g̃ ∈ (0, g),

∞∑
n=1

P(M ′
n ≤ y, S ′

n ∈ (−ng̃, y], S ′
n+1 > y) = o(G

s
(y)) as y → ∞,

where, for each n, M ′
n = max(0, max1≤i≤n S ′

i).

Property 9. Let {ξn}n≥1 be an i.i.d. sequence of random variables with distribution func-
tion H and negative mean Eξ1 < 0. Suppose that H(y) = o(G(y)), as y → ∞, for some dis-
tribution function G whose second-tail distribution Gs is subexponential. Set S ′

n =
∑n

i=1 ξi

and M ′ = max(0, supn S ′
n). Then

P(M ′ > y) = o(G
s
(y)) as y → ∞.

Property 10. Let {ξn}n≥1 be an i.i.d. sequence of random variables with distribution
function H and negative mean Eξ1 < 0. Suppose that H(y) ∼ c(G(y)), as y → ∞,
for some c ≥ 0 and some distribution function G whose second-tail distribution Gs is
subexponential. Let τ ′ be an independent positive integer-valued random variable. Then

P

(
max

1≤n≤τ ′

n∑
i=1

ξi > y

)
= o(G

s
(y)) as y → ∞.

4 Proofs

Proof of Theorem 1. We prove the theorem in the case where the constant d of the condi-
tion (C1) is equal to 1. The modification required for the general case is quite obvious. By
the Strong Law of Large Numbers, for any ε ∈ (0, a), we can choose R ≡ R(ε) such that

P (Sn ∈ [−R − n(a + ε), R − n(a − ε)] for all n = 0, 1, 2, . . .) ≥ 1 − ε.

Put
Dn = {Si ∈ [−R − i(a + ε), R − i(a − ε)] for all i = 0, 1, 2, . . . , n}

and D ≡ D∞. Since D∞ ⊆ Dn for all n, P(Dn) ≥ 1 − ε.

9



Now, for all sufficiently large y > 0,

P(M > y,Xµ(y) ∈ B)

=
∞∑

n=0

P(Mn ≤ y, Sn+1 > y,Xn+1 ∈ B)

≥
∞∑

n=0

P(Dn, Sn+1 > y,Xn+1 ∈ B)

≥
∞∑

n=0

∫
B

P(Dn, Xn+1 ∈ dx)F x(y + R + n(a + ε))

≥
∞∑

n=0

[∫
B

P(Xn+1 ∈ dx)F x(y + R + n(a + ε)) − P(D)LF (y + R + n(a + ε))

]

≥
∞∑

n=0

[∫
B

π(dx)F x(y + R + n(a + ε)) − (
P(D) + δn+1

)
LF (y + R + n(a + ε))

]
,

where, for each n, δn = supB |P(Xn ∈ B)−π(B)| is the distance in total variation between
the distributions of Xn and π. The condition (C1) implies that δn → 0 as n → ∞. Since
F s is long-tailed, it now follows from (4), (5) and (22) that, for all x,

lim
y→∞

1

F
s
(y)

∞∑
n=0

F x(y + R + n(a + ε)) =
c(x)

a + ε

and that

lim sup
y→∞

1

F
s
(y)

∞∑
n=0

F x(y + R + n(a + ε)) ≤ lim
y→∞

L

F
s
(y)

∞∑
n=0

F (y + R + n(a + ε))

=
L

a + ε
(24)

(where the convergence to the limit above is of course independent of x). Hence, by the
Bounded Convergence Theorem,

lim
y→∞

1

F
s
(y)

∞∑
n=0

∫
B

π(dx)F x(y + R + n(a + ε)) =
C(B)

a + ε
. (25)

Also, again from (22),

lim
y→∞

1

F
s
(y)

∞∑
n=0

δn+1F (y + R + n(a + ε)) = 0.

Thus, again using (24),

lim inf
y→∞

1

F
s
(y)

P(M > y,Xµ(y) ∈ B) ≥ C(B) − LP(D)

a + ε
.

Now let ε → 0 to obtain the required result.
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We now give two lemmas which are required for the remaining results.

Lemma 1. Suppose that the conditions of Theorem 1 hold and that

lim sup
y→∞

P(M > y)

F
s
(y)

≤ C

a
. (26)

Then the conclusion (11) follows.

Proof. From (26), for any B ∈ X ,

C

a
≥ lim sup

y→∞

P(M > y)

F
s
(y)

= lim sup
y→∞

(
P(M > y,Xµ(y) ∈ B)

F
s
(y)

+
P(M > y,Xµ(y) ∈ B)

F
s
(y)

)

≥ lim sup
y→∞

P(M > y,Xµ(y) ∈ B)

F
s
(y)

+ lim inf
y→∞

P(M > y,Xµ(y) ∈ B)

F
s
(y)

≥ lim sup
y→∞

P(M > y,Xµ(y) ∈ B)

F
s
(y)

+
C(B)

a
,

where the last inequality follows by Theorem 1. Since C = C(B) + C(B), the conclusion
(11) follows as required.

In each of the proofs of Theorems 2, 3 and 4 we show that, for all ε satisfying 0 < ε < a,
there exists R > 0 (depending on ε) such that, if, for each n = 1, 2, . . .,

D′
n ≡ {Sj ≤ R − j(a − ε) for all j = 1, . . . , n − 1; Sn+i − Sn ≤ R for all i = 1, 2, . . .},

(27)
then P(D′

n) > 1 − ε for all n. In each case we then require Lemma 2 below to complete
the proof.

Lemma 2. Suppose that F s is subexponential, that there exist a sequence of i.i.d. random
variables {ψn}n≥1 and a constant L1 such that Eψ1 < 0 and

P(ψ1 > y) ≤ L1F (y) (28)

for all y ≥ 0, and that ψn is independent of D′
n for all n ≥ 1. Suppose further that the

condition (C1) is satisfied and that

P(M > y) ≤ P(M > y,Mψ > y) + o(F
s
(y)) as y → ∞, (29)

where Mψ = max(0, supn

∑n
i=1 ψi). Then the conclusion (11) follows.
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Proof. As in the proof of Theorem 1, we assume that the constant d of the condition (C1)
is equal to 1. We may further assume, without loss of generality, that the condition (28)
is satisfied with equality for all sufficiently large y. (If this is not the case we can use
Property 1 of Section 3 to replace {ψn}n≥1 with i.i.d. sequence {ψ̃n}n≥1 satisfying all the
conditions of the lemma and with also the required equality in (28).) It follows that the
common distribution of the random variables ψn has a second-tail distribution which is
subexponential. Thus, if g = −E(ψ1) (so g > 0), it follows from the conditions of the
lemma and Veraverbeke’s Theorem that

P(M > y) ≤ P(M > y,Mψ > y) + o(F
s
(y))

=
∞∑

n=1

P(M > y, ψn > y + ng) + o(F
s
(y))

≤ Σ1 + Σ2 + o(F
s
(y)), (30)

where

Σ1 =
∞∑

n=1

P(D′
n,M > y), Σ2 =

∞∑
n=1

P(D
′
n,M > y, ψn > y + ng).

Since, for each n, ψn is independent of D′
n, we have, using (22),

Σ2 ≤
∑

n

P(D
′
n)P(ψn > y + ng) ≤ (1 + o(1))

εL1

g
F

s
(y) as y → ∞. (31)

We now consider Σ1. Take y > R. For any n, the event

Vn ≡ D′
n ∩ {ξXn

n ≤ y − 2R + (n − 1)(a − ε)} ⊆ {M ≤ y}. (32)

To see this, note that, on the set Vn, Sj ≤ R − j(a − ε) for all j < n,

Sn = Sn−1 + ξXn
n ≤ y − R

and, for i = 1, 2, . . .,

Sn+i = Sn + (Sn+i − Sn) ≤ y − R + R = y.

Thus, from (32),

Σ1 ≤
∑

n

P(ξXn
n > y − 2R + (n − 1)(a − ε))

=
∑

n

∫
X

P(Xn ∈ dx)F x(y − 2R + (n − 1)(a − ε))

≤
∑

n

∫
X

π(dx)F x(y − 2R + (n − 1)(a − ε)) + L
∑

n

δnF (y − 2R + (n − 1)(a − ε)),

12



where, as in the the proof of Theorem 1, δn is the distance in total variation between the
distributions of Xn and π, and so tends to 0 as n → ∞. Exactly as in that proof, it now
follows from (22) and the Bounded Convergence Theorem that

lim sup
y→∞

Σ1

F
s
(y)

≤ C

a − ε
.

It now follows, on recalling (30) and (31) and letting ε → 0, that the condition (26) of
Lemma 1 is satisfied. The required conclusion (11) now follows from that lemma.

Proof of Theorem 2. It follows from the condition (5) that, without loss of generality, we
can assume that G(y) ≤ LF (y) for all y. Let {αn}n≥1 be an i.i.d. sequence of random
variables uniformly distributed on (0, 1) and independent of X = {Xn}. Construct the
required family of random variables {ξx

n}n≥1 by defining, for each n, ξx
n = F−1

x (αn); for
each n define also ψn = G−1(αn). Here, for any distribution function H, the quantile
function H−1 is given by

H−1(t) = sup{z : H(z) ≤ t}.
Note that the pairs (ξx

n, ψn), n ≥ 1, are independent in n, that the sequence {ψn}n≥1 is
i.i.d. with Eψ1 < 0 (from (10)) and distribution function G, and that

ξx
n ≤ ψn a.s.. (33)

Put Sψ
n =

∑n
j=1 ψj and

Mψ = max(0, sup
n

Sψ
n ).

From the SLLN for {ψn} and from the condition (C2), for any ε > 0, there exists R > 0
such that, for any n = 1, 2, . . .,

P(Sj < R − j(a − ε), j = 1, 2, . . . , n − 1; Sψ
n+i − Sψ

n < R, i = 1, 2, . . .) > 1 − ε.

Hence, from (33), P(D′
n) > 1 − ε for all n, where each D′

n is as given by (27). Also from
(33),

P(M > y) = P(M > y,Mψ > y).

It is now easy to check that all the conditions of Lemma 2 are satisfied, with each ψn and
D′

n as given here, and the required result now follows from that lemma.

The following further two lemmas are also required in each of the proofs of Theorems 3
and 4 (where in each case X is regenerative).

Lemma 3. Suppose that X is regenerative with Eτ < ∞ and also that F s is subexponential.
Let {{ηx

n}x∈X}n≥1 be a sequence of families of random variables such that these families
are independent and identically distributed in n and are further independent of X. Suppose
further that there exists a constant b > 0 satisfying the condition (15) and such that

ηx
1 ≤ b a.s. for all x, (34)

13



and that ∫
X

Eηx
1 π(dx) < 0. (35)

Define

Mη = max

(
0, sup

n

n∑
i=1

ηXi
i

)
.

Then
P(Mη > y) = o(F

s
(y)) as y → ∞.

Proof. Define

βn =
Tn∑

i=Tn−1+1

ηXi
i , n ≥ 1.

Observe that {βn}n≥1 is an i.i.d. sequence with, from (34) and (35),

Eβ1 < 0, βn ≤ bτn, n ≥ 1.

Since also X is regenerative with E(τ) < ∞, we can choose K > 0 sufficiently large that if

γn = max(βn, bτn − K), n ≥ 1, (36)

then {γn}n≥1 is an i.i.d. sequence with

Eγ1 < 0, γn ≤ bτn, n ≥ 1. (37)

Define also

Mγ = max

(
0, sup

n≥1

n∑
i=1

γi

)
.

It follows from (37), the assumed condition (15) (for b as given) and the extension of
Veraverbeke’s Theorem given by Property 9 of Section 3, that

P(Mγ > y) = o(F
s
(y)), as y → ∞. (38)

Now

Mη ≤ bτ0 + sup(bτ1, β1 + bτ2, β1 + β2 + bτ3, . . .)

≤ bτ0 + K + sup(γ1, γ1 + γ2, γ1 + γ2 + γ3, . . .)

≤ bτ0 + K + Mγ,

where the second inequality above follows from (36). Further τ0 and Mγ are independent.
The required result now follows from (38), the assumed condition (15) and Property 5 of
Section 3.
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The following lemma combines the results of Lemmas 2 and 3 to provide a set of conditions
for the regenerative case under which there follows the desired conclusion (11) of both
Theorems 3 and 4.

Lemma 4. Suppose that X is regenerative with Eτ < ∞ and also that F s is subexpo-
nential. Suppose also that there exist a sequence of i.i.d. random variables {ψn}n≥1 and a
constant L1 satisfying the conditions of Lemma 2, i.e. that

E(ψ1) < 0, P(ψ1 > y) ≤ L1F (y) for all y ≥ 0, (39)

and that
ψn is independent of D′

n for all n ≥ 1 (40)

(where D′
n is as given by (27)). Suppose further that there exists a sequence of families

of random variables {{ηx
n}x∈X}n≥1 and a constant b > 0 satisfying all the conditions of

Lemma 3, and that
ξx
n ≤ ψn + ηx

n, x ∈ X , n ≥ 1. (41)

Again define

Mψ = max

(
0, sup

n

n∑
i=1

ψi

)
, Mη = max

(
0, sup

n

n∑
i=1

ηXi
i

)
.

Finally, suppose that Mψ and Mη are independent. Then the conclusion (11) follows.

Proof. As in the proof of Lemma 2 we may assume, without loss of generality, that
P(ψ1 > y) = L1F (y) for all sufficiently large y. It then follows from the conditions
on the sequence {ψn} and Veraverbeke’s Theorem that

P(Mψ > y) ∼ L1F
s
(y), as y → ∞, (42)

while it follows from Lemma 3 that

P(Mη > y) = o(F
s
(y)), as y → ∞. (43)

From the condition (41) we have that

M ≤ Mψ + Mη. (44)

Since also Mψ and Mη are independent, it now follows from (42), (43), (44) and Property 5
of Section 3 that

P(M > y) = P(M > y,Mψ > y) + o(F
s
(y)) as y → ∞. (45)

Finally, since X is regenerative, the condition (C1), and so now all the conditions of
Lemma 2, are satisfied and so the required conclusion (11) again follows from that lemma.
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Proof of Theorem 3. We construct the sequences {ψn}n≥1 and {{ηx
n}x∈X}n≥1 and the con-

stants L1 and b such that all the conditions of Lemma 4 are satisfied.

It follows from (5) that we can find a distribution function G on R such that

F x(y) ≤ G(y) ≤ LF (y), (46)

for all y and for all x ∈ X . As in the proof of Theorem 2, let {αn}n≥1 be an i.i.d.
sequence of random variables uniformly distributed on (0, 1) and independent of X = {Xn}.
Again construct the required family of random variables {ξx

n}n≥1 by defining, for each n,
ξx
n = F−1

x (αn); for each n define also ζn = G−1(αn). Then the pairs (ξx
n, ζn), n ≥ 1, are

independent in n, the sequence {ζn}n≥1 is i.i.d., and

ξXn
n ≤ ζn a.s., for all n. (47)

For y0 > 0, define

u(y0) = E[I(ζ1 > y0)ζ1], v(y0) = −
∫
X

E[I(ζ1 ≤ y0)ξ
x
1 ]π(dx).

Observe that u(y0) → 0 as y0 → ∞ and, by the conditions (13) and (14), v(y0) → a as
y0 → ∞. Choose y0 sufficiently large and K > 0 such that

u(y0) < P(ζ1 > y0)K < v(y0). (48)

We define the required i.i.d. sequence {ψn}n≥1 by

ψn = I(ζn > y0)(ζn − K).

It follows from the construction of this sequence, and in particular from (46), (48) and the
definition of u(y0), that it satisfies the conditions (39) and (40) of Lemma 4 with L1 = L.
Define also, for each n and for each x,

ηx
n = I(ζn ≤ y0)ξ

x
n + I(ζn > y0)K,

The random variables ηx
n are bounded above by b = max(y0, K). Further, by (48) and the

definition of v(y0), ∫
X

Eηx
1 π(dx) < 0.

It now follows, using also the condition (15) of the theorem, that the sequence {{ηx
n}x∈X}n≥1

and b as given above satisfy the conditions of Lemma 3, and so also of Lemma 4.

The condition (41) follows on observing that, from (47), for all x and for all n,

ξx
n = I(ζn > y0)(ξ

x
n − K) + I(ζn ≤ y0)ξ

x
n + I(ζn > y0)K

≤ ψn + ηx
n.

Finally, it is not difficult to see that the random variables Mψ and Mη (defined as in the
statement of Lemma 4) are independent (although the sequences {ψn} and {ηXn

n } of which
they are the maxima are not independent!). The required conclusion (11) now follows from
Lemma 4.
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Proof of Theorem 4. We again use Lemma 4. It follows from the conditions of the theorem
that we may take b such that

Eζ < b < EπbX (49)

and satisfying (15). It follows also from (18) that there exists L1 > 0 such that

P(ζ > y) ≤ L1F (y) (50)

for all y. Further, we may define random variables {ξx}x∈X , ζ, and {bx}x∈X in such a way
that ζ and the family {bx}x∈X are independent and, for all x,

ξx ≤ ζ − bx a.s.. (51)

For n = 1, 2, . . ., let {ξx
n, bx

n, ζn} be i.i.d. copies of {ξx, bx, ζ}, such that these sequences are
jointly independent of the process X. Define, for all n,

ψn = ζn − b, ηx
n = b − bx

n, x ∈ X . (52)

Then it is easy to check, from (49)–(52) and the condition (15) and the independence
assumption of the theorem, that all the conditions of Lemma 4 are satisfied. The se-
quences {ψn}n≥1 and {{ηx

n}x∈X}n≥1 and the constants L1 and b of that lemma are as given
here. We thus have the required result.

Proof of Theorem 5. We again give the proof in the case d = 1. It follows straightforwardly
from the regenerative structure of X, the condition Eτ < ∞, and the condition (C2) that
the random vectors

Y0 = {τ0; W1, . . . ,WT0},
Yn = {τn; WTn−1+1, . . . ,WTn}, n ≥ 1,

form a Harris ergodic Markov chain (see, for example, [11]). Then, since d = 1, it is
again straightforward that Wn converges in the total variation norm to a distribution on
R+ which is independent of that of Y0. Now let X̃ = {X̃n}−∞<n<∞ be the corresponding
stationary version of the process X indexed over the entire set of integers, and similarly
extend the i.i.d. sequence of families {{ξx

n}x∈X}n≥1 to {{ξx
n}x∈X}−∞<n<∞. Let {W̃n}n≥0

(with W̃0 ≡ 0 as usual) be the corresponding version of the process {Wn}n≥0. It follows
from the recursion (3) that

W̃n = max
(
0, ξX̃n

n , ξX̃n
n + ξ

X̃n−1

n−1 , . . . , ξX̃n
n + · · · + ξX̃1

1

)
which, by stationarity, has the same distribution as

max
(
0, ξ

X̃−1

−1 , ξ
X̃−1

−1 + ξ
X̃−2

−2 , . . . , ξ
X̃−1

−1 + · · · + ξ
X̃−n

−n

)
.

Thus, for any y, limn→∞ P(Wn > y) and limn→∞ P(W̃n > y) both exist and are equal to
P(M− > y) where

M− = sup
(
0, ξ

X̃−1

−1 , ξ
X̃−1

−1 + ξ
X̃−2

−2 , . . .
)

.

17



The required result now follows from the application of Theorem 2, 3 or 4 as appropriate,
in each case with B = X , to the time-reversed version of the stationary process {X̃n, ξX̃n

n }.
However, under the conditions of Theorem 3 or Theorem 4, we must also verify the required
condition on τ−

0 , defined to be the time of the first regeneration at or after time 0 in the
reversed process X− = {X−

n }n≥0 given by X−
n = X̃−n. Standard renewal theory shows

that the distribution of τ−
0 is given by

P(τ−
0 ≥ n) =

1

E(τ)

∞∑
k=n+1

P(τ ≥ k), n = 0, 1, . . .

An easy calculation, analogous to that of the derivation of Property 2 of Section 3, now gives
that, if b > 0 is such that P(bτ > y) = o(F (y)) as y → ∞, then P(bτ−

0 > y) = o(F
s
(y))

as y → ∞. Thus, in each case, the required condition on τ−
0 follows from the assumed

condition on τ .

The modifications for the case of general d are again routine.
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