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We consider a stochastic directed graph on the integers whereby a
directed edge between i and a larger integer j exists with probability
pj−i depending solely on the distance between the two integers. Under
broad conditions, we identify a regenerative structure that enables
us to prove limit theorems for the maximal path length in a long
chunk of the graph. The model is an extension of a special case of
graphs studied in [18]. We then consider a similar type of graph but
on the ‘slab’ Z × I , where I is a finite partially ordered set. We
extend the techniques introduced in the in the first part of the paper
to obtain a central limit theorem for the longest path. When I is
linearly ordered, the limiting distribution can be seen to be that of
the largest eigenvalue of a |I | × |I | random matrix in the Gaussian
unitary ensemble (GUE).

1. Introduction. Consider a random directed graph with vertex V =
Z, the integers. A pair of integers (i, j) is declared to be an edge, directed
from i to j, with probability pj−i which depends only on the difference j− i,
and this is done independently from pair to pair. We assume that pk = 0 for
all k ≤ 0, so there are no directed edges from a larger integer to a smaller
one. We are interested in limit theorems (law of large number and central
limit theorem) for the maximum length T [1, n] of all paths from 1 to n, as
n→ ∞. The problem as such is related to last-passage percolation.

Unlike nearest-neighbour graphs [28, 3], the quantity T [1, n] does not have
a direct subadditive property. It turns out that, a related quantity, namely
the maximum L[1, n] of all paths in the restriction of the graph on {1, . . . , n},
has an almost sub-additive property (see (2)) and thus L[1, n]/n → C, al-
most surely, for some deterministic constant C ≤ 1. It is later shown that
any two vertices are almost surely eventually connected by a path, and thus
T [1, n] has the same asymptotic properties as L[1, n]. The minimal condition
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2 D. DENISOV, S. FOSS AND T. KONSTANTOPOULOS

we need to carry out our programme is

∞∑

k=1

(1 − p1) · · · (1 − pk) <∞.

Under this condition, we can identify a random subset S (we call it “skele-
ton”) of Z whose points form a stationary renewal process (see Sections 3
and 4) over which the graph regenerates and has the property that any ele-
ment v of S is connected by a path (directed either towards v or away from
it) to any other vertex in Z. The quantity L[1, n] becomes additive over the
regenerative set S enabling us to prove, under the stronger condition

∞∑

k=1

k(1 − p1) · · · (1 − pk) <∞,

a (functional) central limit theorem. The latter condition implies finiteness
of variance of the longest path between two successive points of S . To prove
the latter assertion, we provide a rather non-trivial algorithmic construction
of the last non-positive element of S . This construction is related to the
so-called coupling-from-the past method for perfect simulation [33, 19] and
is the topic of Section 6 which is based on the properties of two stopping
times studied in Section 5. The central limit theorem is proved in Section 7.

We then consider an extension of the random graph on the vertex set Z×I,
where I is a partially ordered set under some partial order � possessing a
minimum and a maximum element. We let an edge from (x, i) to (y, j) exist
with probability that depends on y − x and on i and j, and only when
y − x > 0 and i � j. We let LN be the length of the longest path in
the restriction of the graph on {0, . . . , N} × i and show that the law of
LN , appropriately normalized, satisfies a functional central limit theorem
such that the limit process (Zt, t ≥ 0) is 1/2–self-similar, non-Gaussian,
continuous process with Z1 having the law of the largest eigenvalue of an a
|I| × |I| random matrix in the Gaussian Unitary Ensemble (GUE) [2].

The case where all the pk are equal to p corresponds to a directed version
of the classical Erdős-Rényi graph [4]. Indeed, let Gn,p be the Erdős-Rényi
graph on the set of vertices {1, . . . , n}. To each {i, j} which is an edge in Gn,p

we give an orientation from i∧j to i∨j. The directed graph thus obtained is
precisely the restriction of our graph on the set {1, . . . , n}. This model was
also studied in [18]. In this paper, we obtained, among other things, sharp
estimates for the C ≡ C(p) as a function of p. Besides purely mathematical
interest, this model is motivated by applications in Mathematical Biology
(community food webs) [31, 14, 30], in Computer Science (parallel process-
ing systems) [22], and in Physics. Allowing the connectivity probability to
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LIMIT THEOREMS FOR A RANDOM DIRECTED SLAB GRAPH 3

depend on the distance between two vertices i and j means larger modelling
flexibility on one hand while making the model more realistic on the other.

In [18] we developed a generalisation of Borovkov’s theory of renovating
events [9, 10, 11, 12, 13] in order to construct a Markov chain in infinite
dimensions describing the “weights” of vertices. As a matter of fact, in [18],
the random graph was a special case of a more general dynamical system
(the “infinite bin model”) with stationary and ergodic input. In this paper,
we follow a different approach, one that is applicable specifically for cases
where there is independence between links. In such a case, the approach has
the advantage that it is more elementary using, essentially, renewal theory
and coupling between renewal processes.

2. The line model. We are given a set of numbers (pj, j ∈ N), such
that

0 ≤ pj < 1, j ∈ N.

and consider (αi,j , i, j ∈ Z, i < j) as a collection of i.i.d. random variables
with common law

P(α0,1 = 1) = 1 − P(α0,1 = −∞) = pj−i.

Based on this collection, we build a directed random graph G on Z with
edges

E = {(i, j) ∈ Z × Z : i < j, αi,j = 1}.
We shall occasionally refer to the restriction G[i, j] of the graph on the vertex
set {i, i+1, . . . , j} (deleting all edges with either of the endpoints not in this
set). We are interested in the behaviour of longest paths. A path π is an
increasing sequence of vertices π = (i0, i1, . . . , iℓ) successively connected by
edges, i.e. αi0,i1 = · · · = αiℓ−1,iℓ = 1. The number ℓ = |π| of edges is the
length of this path.

For any ℓ ≥ 1 and any increasing sequence (i0, i1, . . . , iℓ) of vertices we
conveniently define

(1) |(i0, i1, . . . , iℓ)| = (αi0,i1 + αi1,i2 + · · · + αiℓ−1,iℓ)
+.

Clearly, this quantity is 0 if one of the summands takes value −∞; otherwise,
it equals ℓ. In other words, |(i0, i1, . . . , iℓ)| > 0 if and only if (i0, i1, . . . , iℓ) is
a path.

We say that there is a path from i to j if i0 = i, iℓ = j; we denote this
event by i j and may also express it by saying that i leads to j or that j
is reachable from i.
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4 D. DENISOV, S. FOSS AND T. KONSTANTOPOULOS

We let T [i, j] be the maximum length of all paths from i to j. Unlike
nearest-neighbour directed graph models (see, e.g. [27]), this quantity does
not have a subadditivity property. To remedy this we let L[i, j] be the max-
imum length of all paths from some i′ ≥ i to some j′ ≤ j, i.e.,

L[i, j] = max
i≤i′≤j′≤j

T [i′, j′].

That is, L[i, j] is the longest path of the restricted graph G[i, j]. Clearly,
L[i, j] has the same law as L[0, j−i]. It is also clear that L[i, j] is subadditive
in the sense that

(2) L[i, k] ≤ L[i, j] + L[j, k] + 1, i < j < k.

Indeed, if π is a path of maximal length in G[i, k] then its restriction π′ on
G[i, j] has length at most L[i, j] and its restriction π′′ on G[j, k] has length
at most L[j, k]. Now the length of π is equal to the length of π′ plus the
length of π′′ plus, possibly, 1, if j is not a vertex of π. By the subadditive
ergodic theorem [25, p. 192], there exists a deterministic C ∈ [0, 1] such that

(3) P( lim
j→∞

L[i, j]/j = C) = 1.

Some of the results below do not depend on the independence assumptions
between the random variables αi,j. It is often necessary to define the model
on an appropriate probability space. We do this as follows. Let δ = (δj , j ∈
Z) be a collection of independent {−∞, 1}-valued random variables with

P(δj = 1) =

{
0, if j ≤ 0

pj , if j > 0.

Let δ(i), i ∈ Z be i.i.d. copies of δ. The probability space Ω consists of
ω = (δ(i), i ∈ Z). The random variables αi,j are then defined by

αi,j(ω) = δ
(i)
j−i.

The sigma-field is the standard product sigma-field. A natural shift θ on Ω
is the map defined by

(4) ω = (i 7→ δ
(i)) 7→ θω = (i 7→ δ

(i+1)).

Hence
αi,j(θω) = δ

(i+1)
j−i = δ

(i+1)
(j+1)−(i+1) = αi+1,j+1(ω).
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LIMIT THEOREMS FOR A RANDOM DIRECTED SLAB GRAPH 5

The random variables L[i, j] are all defined explicitly on Ω via L[i, j] =
maxi≤i0<i1<···<iℓ≤j |(i0, . . . , iℓ)| where (i0, . . . , iℓ) is the random variable de-
fined by (1). It is in this sense that the law P of the model is θ-invariant
on Ω. Moreover, θ is ergodic. In fact, the result that the asymptotic limit of
L[1, n]/n exists depends only on this θ-invariance, so it holds for more gen-
eral models where the law of δ is not that of independent random variables.

A word on notation: If (An, n ∈ Z) is a collection of events of Ω and τ
is Z-valued random variable on Ω then Aτ denotes the event containing all
ω ∈ Ω such that ω ∈ Aτ(ω).

3. The skeleton. For the purposes of this section, let Ω be the space
defined above, θ the natural shift (4), and let P be a θ-invariant probability
measure. In addition, assume that θ is ergodic, i.e. that the invariant sigma-
field is trivial. Recall the shorthand {i  j} = {T [i, j] > 0} for the event
that there is a path from i to j. Consider, for each n ∈ Z, the events

A+
n :=

⋂

j>n

{n j} = {any j > n is reachable from n}

A−
n :=

⋂

j<n

{j  n} = {n is reachable from any j > n}.

The following is an immediate consequence of the definitions:

Lemma 1. (i) The sequence
(
(A−

n , A
+
n ), n ∈ Z

)
is stationary and er-

godic. (ii) For each n, the events A−
n and A+

n are independent and P(A+
n ) =

P(A−
n ) = P(A+

0 ).

We are interested in the random set

(5) S (ω) := {n ∈ Z : ω ∈ A+
n ∩A−

n },

and refer to it as the skeleton of the random graph. The terminology is
supposed to be reminiscent of a point of view described next.

Let P(E) ⊂ Z × Z be a partial order (i.e. if (i, j), (j, k) ∈ P(E) then
(i, k) ∈ P(E)) which contains the set of edges E. In fact, take P(E) to
be the smallest such set. Necessarily, P(E) = {(i, j) ∈ Z × Z : i  j}. A
subset U of Z is totally ordered under the partial order if for any distinct
i, j ∈ U we either have i j or j  i. We say that a totally ordered subset
U is special if it has the stronger property that for all distinct i, j with
i ∈ U and j ∈ V , we either have i j or j  i. Clearly, the union of special
totally ordered subsets is special; thus we can speak of the maximal special
totally ordered subset and we refer to it as the skeleton of the partial order.
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6 D. DENISOV, S. FOSS AND T. KONSTANTOPOULOS

Adopting this definition, it is now clear that the set S defined by (5) is the
skeleton of the partial order on Z. In [1] the elements of S are referred to
as posts. In fact, [1] uses S in order to derive limit theorems of the number
Nn of linear extensions of the the random partial order  on {1, . . . , n}.

For a general partially ordered set, a skeleton may not exist. However,
in our case, the condition P(A+

0 ∩ A−
0 ) > 0 is sufficient for S to be almost

surely infinite.

Lemma 2. If λ := P(A+
0 ∩A0−) > 0 then S is an a.s. infinite set.

Proof. Let θ be the shift defined by (4). Then, for all ω, S (ω) = S (θω).
Since P is θ-invariant, the result follows.

Assuming that λ = P(A+
0 ∩A−

0 ) > 0, we may then, equivalently, consider
S as a stationary-ergodic point process on the integers with rate λ because
λ = P(0 ∈ S ). We let Γn, n ∈ Z be an enumeration of the elements of S

according to the following convention:

· · · < Γ−1 < Γ0 ≤ 0 < Γ1 < Γ2 < · · ·

In particular, Γ0 is the largest non-negative element of S .
We can now strengthen the subadditivity property (2) for L:

Lemma 3. For all integers m < n,

L[Γm,Γn] = L[Γm,Γm+1] + · · · + L[Γn−1,Γn].

Proof. To see this, consider the interval [Γ1,Γn] and a path π∗ of length
L[Γ1,Γn]. Then this path must visit all the intermediate skeleton points
Γ1, . . . ,Γn. Indeed, suppose this is not the case and π∗ does not visit, say, Γl,
for some 1 ≤ l ≤ n. Consider an edge (i, j) belonging to π∗, with i ≤ Γl ≤ j.
By the definition of Γl, both (i,Γl) and (Γl, j) are edges of the random graph
G. Therefore we can increase the length of π∗ by 1 if we replace the edge
(i, j) by two edges (i,Γl) and (Γl, j). This leads to the contradiction since
π∗ has length L[Γ1,Γn] which is, by definition, maximal.

4. Regenerative structure. Throughout, we make use of the follow-
ing two conditions:

[C1] 0 < p1 < 1

[C2]
∞∑

k=1

(1 − p1) · · · (1 − pk) <∞.
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LIMIT THEOREMS FOR A RANDOM DIRECTED SLAB GRAPH 7

We also sometimes write qj = 1 − pj . For each j ∈ Z we consider its imme-
diate neighbours:

η(j) := min{k > j : αj,k = 1}
ξ(j) := max{i < j : αi,j = 1}.(6)

See Figure 1. The distances of these vertices from j are denoted as follows:

η(j) := η(j) − j

ξ(j) := j − ξ(j).

Notice that (ξ(j), j ∈ Z) and (η(j), j ∈ Z) are identically distributed se-
quences, and that each one is a sequence of i.i.d. random variables. Further-
more, for each j ∈ Z,

(ξ(j + 1), ξ(j + 2), . . .) ⊥⊥ (η(j − 1), η(j − 2), . . .)

Henceforth, we shall let ξ be a random variable with distribution the common
distribution of ξ(j) and η(j):

P(ξ > n) = P(ξ(0) > n) = P(η(0) > n) = (1 − p1) · · · (1 − pn), n ∈ N.

j j

jηjξ

ξ η(  ) (  )

(  )(  ) j

Fig 1. Notation used: ξ(j) is the first vertex below j that is connected to j; corre-
spondingly, η(j) is the first vertex above j connected to j.

Define next the events

(7) A+
u,v :=

v⋂

j=u+1

{u j}, A−
u,v :=

v−1⋂

j=u

{j  v},

for which, clearly,

A+
u,v ⊃ A+

u,v+1, A−
u,v ⊃ A−

u−1,v

with

(8) lim
v→∞

A+
u,v = A+

u , lim
u→−∞

A−
u,v = A−

v .
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8 D. DENISOV, S. FOSS AND T. KONSTANTOPOULOS

Furthermore,

(9) A+
u,v ∩A+

v,w ⊂ A+
u,w, if u < v < w,

a property we shall use in Section 6. Observe also the following:

Lemma 4. For all integers u < v,

A+
u,v =

v⋂

j=u+1

j−1⋃

i=u

{i j} =
v⋂

j=u+1

{u ≤ ξ(j)}

A−
u,v =

v−1⋂

j=u

v⋃

i=j+1

{j  i} =
v−1⋂

j=u

{η(j) ≤ v}

A+
u =

⋂

j>u

j−1⋃

i=u

{i j} =
⋂

j>u

{u ≤ ξ(j)}

A−
v =

⋂

j<v

v⋃

i=j+1

{j  i} =
⋂

j<v

{η(j) ≤ v}.

Proof. We prove the first equality. That A+
u,v ⊂ ∩v

j=u+1 ∪j−1
i=u {i j} is

immediate from the definition (7). To prove the opposite inclusion, assume
that u > v+1 (otherwise there is nothing to prove) and that for all integers
j ∈ [u+ 1, v] there exists an integer i ∈ [u, j − 1] such that i j. Fix j > u
and pick i1 to be the largest among the vertices between u and j − 1 such
that i1  j; necessarily, αi1,j = 1. Then pick the largest vertex i2 among
the vertices between u and i1 − 1 such that i2  i1, and continue this way.
Since i1 > i2 > · · · ≥ u, it follows that this process terminates with some
ik = u. Since (u = ik, ik+1, . . . , i1, j) is a path, we have that u  j. The
second equality for A+

u,v now follows from the definition (6). The relations
for A−

u,v follow similarly. The third (respectively, fourth) line is obtained by
sending v to +∞ (respectively, u to −∞) in the first (respectively, second)
one.

This lemma tells us that A+
u,v is the intersection of v − u independent

events. Indeed, since ξ(j) = j − ξ(j) we have

(10) A+
u,v = {ξ(u+ 1) ≤ 1, ξ(u+ 2) ≤ 2, . . . , ξ(v) ≤ v − u},

and the random variables ξ(u+ 1), . . . , ξ(v) are i.i.d. Similarly, for A−
u,v,

(11) A−
u,v = {η(u) ≤ v − u, . . . , η(v − 2) ≤ 2, η(v − 1) ≤ 1}.
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LIMIT THEOREMS FOR A RANDOM DIRECTED SLAB GRAPH 9

Moreover, since

(ξ(u+ 1), ξ(u + 2), . . . , ξ(v))
d
= (η(v − 1), η(v − 2), . . . , η(u))

we have that P(A+
u,v) = P(A−

u,v). Similarly, both A+
n and A−

n are intersections
of infinitely many independent events:

A+
n =

⋂

j>n

{ξ(j) ≤ j − n}(12)

A−
n =

⋂

j<n

{η(j) ≤ n− j},(13)

and P(A+
n ) = P(A−

n ). The skeleton (5) can be expressed as follows:

(14) S = {n ∈ Z : sup
i<n

η(i) ≤ n ≤ inf
j>n

ξ(j)}.

Regarding S as a point process, we see that it has rate

λ = P(0 ∈ S ) = P(A+
0 )2 =

( ∞∏

j=1

P(ξ(j) ≤ j)
)2

=
∞∏

j=1

[1 − P(ξ(0) > j)]2.

Since

(15) P(ξ(0) > j) = P(α0,1 = · · · = α0,j = 0) = (1 − p1) · · · (1 − pj),

we have

(16) λ =
∞∏

j=1

[1 − (1 − p1) · · · (1 − pj)]
2

and so
[C2] ⇐⇒ λ > 0 ⇐⇒ E[ξ(0)] <∞.

Consider now two successive skeleton points Γk and Γk+1 and let Ck(ω)
be the restriction of ω on [Γk,Γk+1):

Ck :=
(
δ

(n), Γk ≤ n < Γk+1

)
, k ∈ Z;

we refer to it as the k-th “cycle”. We next show that the sequence of cycles
have a regenerative structure in the following sense:

Lemma 5. The cycles (Ck, k ∈ Z) are independent and (Ck, k ∈ Z−{0})
are identically distributed. In particular, the skeleton vertices (Γk, k ∈ Z)
form a stationary renewal process.
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10 D. DENISOV, S. FOSS AND T. KONSTANTOPOULOS

Intuitively, Lemma 5 is based on the following observation. Suppose that
0 is a skeleton vertex (i.e. condition on the event A−

0 ∩A+
0 ). Then ξ(1) ≥ 0,

ξ(2) ≥ 0, etc. In other words, ξ(1) = 0, ξ(2) ∈ {1, 2}, ξ(3) ∈ {0, 1, 2}, etc.
To determine the location of the next skeleton vertex after 0 we need to find
the first vertex j > 0 such which is connected with every vertex between 0
and j − 1. This means that, conditional on 0 being a skeleton vertex, the
location of the first skeleton vertex larger than 0 does not depend on the
(δ(n), n < 0).
Proof of Lemma 5.
For k ≥ 1, let F

+
k be the sigma-algebra generated by (δ(1), . . . , δ(k)) and

let F
−
k be the sigma-algebra generated by (δ(−1), . . . , δ(−k)). It suffices to

prove that, for any k ≥ −1, l ≥ 1, and any B−
k ∈ F

−
k , B+

l ∈ F
+
l ,

P(Γ−1 = k,B−
k ,Γ1 = l, B+

l | Γ0 = 0) = P(Γ−1 = k,B−
k | Γ0 = 0)P(Γ1 = l, B+

l | Γ0 = 0).

Assume that Γ0 = 0 (i.e. 0 is a skeleton vertex). Then, by (14),

. . . , η(−2), η(−1) ≤ 0 ≤ ξ(1), ξ(2), . . .

In view of the latter inequality, we have

Γ−1 = max{n < 0 : 1A−
n ∩A+

n
= 1}

= max{n < 0 : . . . , η(n− 2), η(n− 1) ≤ n ≤ ξ(n+ 1), ξ(n+ 2), . . .}

= max{n < 0 : . . . , η(n− 2), η(n− 1) ≤ n ≤ ξ(n+ 1), ξ(n+ 2), . . . , ξ(0)} =: Γ̂−1,

where the last serves as a definition of a new random variable Γ̂−1. This ran-
dom variable is F−-measurable, where F− is the sigma-algebra generated
by (δ(k), k < 0). Similarly, we define

Γ̂1 := min{n > 0 : η(0), . . . , η(n− 1) ≤ n ≤ ξ(n + 1), ξ(n+ 2), . . .},

a random variable which is F+-measurable, where F+ is the sigma-algebra
generated by (δ(k), k > 0), and observe that, on {Γ0 = 0}, the random
variables Γ1 and Γ̂1 coincide. Note that F− and F+ are independent. Hence,
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LIMIT THEOREMS FOR A RANDOM DIRECTED SLAB GRAPH 11

for k ≤ −1, ℓ ≥ 1, we have

P(Γ−1 = k,B−
k ,Γ1 = l, B+

l |Γ0 = 0)

=
P(Γ−1 = k,B−

k ,Γ1 = l, B+
l , A

+
0 ∩A−

0 )

P(A+
0 ∩A−

0 )

=
P({Γ̂−1 = k} ∩A−

0 ∩B−
k , {Γ̂1 = l} ∩A+

0 ∩B+
l )

P(A+
0 )P(A−

0 )

=
P({Γ̂−1 = k} ∩A−

0 ∩B−
k ) P({Γ̂1 = l} ∩A+

0 ∩B+
l )

P(A+
0 )P(A−

0 )

= P(Γ̂−1 = k,B−
k | A−

0 ) P(Γ̂1 = l, B+
l | A+

0 ).

Note that

P(Γ̂−1 = k,B−
k | A−

0 ) = P(Γ̂−1 = k,B−
k | A−

0 ∩A+
0 )

= P(Γ−1 = k,B−
k | A−

0 ∩A+
0 ) = P(Γ−1 = k,B−

k |Γ0 = 0).

Similarly,
P{Γ̂1 = 1, B+

l | A+
0 } = P{Γ1 = 1, B+

l |Γ0 = 0}.

Corollary 1. The bivariate random variables

(
Γ1 − Γ0, L[Γ0,Γ1]

)
,

(
Γ2 − Γ1, L[Γ1,Γ2]

)
, . . .

are i.i.d.

5. Two stopping times. In this section, we study properties of the
following two random variables:

µ := inf{i > 0 : 1A−
−i,0

= 0}

ν := inf{i > 0 : 1A+
−i,0

= 1}.

These random variables are important in the algorithmic construction of
Section 6.

Note that −ν is the first vertex < 0 with the property that every vertex
in the interval (−ν, 0] is reachable from −ν:

ν = inf{i > 0 : − ν  0, − ν  −1, . . . , − ν  −ν + 1}.
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12 D. DENISOV, S. FOSS AND T. KONSTANTOPOULOS

Also, −µ is the first vertex < 0 such that 0 is not reachable from −µ:

µ = inf{i > 0 : − i 6 0}.

We will show that µ is a defective random variable, i.e. that P(µ = ∞) > 0,
with conditional tail P(µ > n|µ < ∞) comparable to the integrated tail of
ξ. We will also show that ν is an a.s. finite random variable with the same
number of moments as ξ.

Note first that both µ and ν are stopping times with respect to the filtra-
tion (F−

k , k ≤ 0). Observe that

(17) {µ = ∞} =
⋂

i≥1

A−
−i,0 = A−

0 .

Since condition [C2] is equivalent to P(A−
0 ) > 0, we have

P(µ = ∞) > 0.

On the other hand,

{ν = ∞} =
∞⋂

n=1

(A+
−n,0)

c,

and, as we shall see below, this event has probability zero:

(18) P(ν = ∞) = 0.

Let us first focus on the law of µ, conditional on {µ < ∞}. This can be
computed easily, from the definition of µ, and equations (11), (17), and (15).

P(n < µ <∞) = P(η(−k) ≤ k for all 1 ≤ k ≤ n) P(η(−m) > m for some m > n)

(19)

=
n∏

k=1

P(η(−k) ≤ k)

(
1 −

∞∏

m=n+1

P(η(−m) ≤ m)

)

= (1 − q1)(1 − q1q2) · · · (1 − q1q2 · · · qn)

(
1 −

∞∏

m=n+1

(1 − q1q2 · · · qm)

)

Conditional on {µ < ∞}, the random variable µ has a tail comparable to
the integrated tail of ξ:

Lemma 6. Suppose that [C1] and [C2] hold. There exist constants 0 <
C1 < C2 <∞ such that, for all n ≥ 0,

C1

∞∑

m>n

P(ξ > m) ≤ P(µ > n | µ <∞) ≤ C2

∞∑

m>n

P(ξ > m).

imsart-aap ver. 2010/04/27 file: slabgraph_subm.tex date: May 26, 2010



LIMIT THEOREMS FOR A RANDOM DIRECTED SLAB GRAPH 13

Proof. Since p1 < 1, we have λ < 1 (see (16)) and so

P(µ <∞) = 1 − λ1/2 > 0.

Using (19) we have

P(µ > n | µ <∞) ≤ 1

1 − λ1/2

∞∑

m=n+1

P(η(m) > m) =
1

1 − λ1/2

∞∑

m=n+1

P(ξ > m).

Hence C1 = 1/(1 − λ1/2). To obtain a bound from below note that the first
term on the right of (19) is ≥ P(µ = ∞) and so

P(n < µ <∞) = λ1/2
(

1 −
∞∏

m=n+1

P(η(−m) ≤ m)

)

≥ λ1/2
(

1 − exp
(
−

∞∑

m=n+1

P(ξ > m)
))

≥ λ1/2g(Eξ)
∞∑

m=n+1

P(ξ > m),

where g(x) = (1 − e−x)/x. Hence C2 = g(Eξ)λ1/2/(1 − λ1/2)).
We next prove something stronger than (18), namely that ν has the same

number of moments as ξ.

Lemma 7. If Eξr <∞ for some r ≥ 1 then Eνr <∞.

Proof. By the definition of ν and equation (10) we have

ν = inf{n ≥ 1 : ξ(0) ≤ n, ξ(−1) ≤ n− 1, . . . , ξ(−(n − 1)) ≤ 1}

Define a sequence of non-negative random variables x0, x1, x2, . . . by x0 = 0
and

xn = max{ξ(0) − n, ξ(−1) − (n− 1), . . . , ξ(−(n − 1)) − 1}, n ≥ 1.

Then
ν = inf{n ≥ 1 : xn = 0}.

The xn satisfy
xn+1 = max(xn, ξ(−n)) − 1, n ≥ 0,

and, since the ξ(−n) are i.i.d., (xn, n ≥ 0) is a Markov chain in Z+. We
now make two observations that imply the statement of the lemma. First,
if xn > K > 0 then

xn+1 − xn = (ξ(−n) − xn)+ − 1 ≤ (ξ(−n) −K)+ − 1.
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14 D. DENISOV, S. FOSS AND T. KONSTANTOPOULOS

But E[(ξ − K)+] < 1 for sufficiently large K. Therefore, after the Markov
chain leaves the interval [0,K] (for sufficiently large K) it is majorized from
above by a random walk with increments distributed like (ξ−K)+−1 whose
mean is negative. By standard properties of random walks this implies that
the return time TK to the set [0,K] satisfies ET r

K <∞ if E((ξ−K)+−1)r <
∞; and the latter is equivalent to Eξr <∞. The second observation is that
the Markov chain (xn) returning to the set [0,K] eventually hits point 0
after a geometric number of trials.

Corollary 2. If [C2] holds then Eν <∞.

6. Algorithmic construction of Γ0. In this section we give a method
for constructing a specific skeleton point, e.g., the first one which is to the
left of the origin. This is the point Γ0. Besides the theoretical interest, such
a construction will be used later for proving a central limit theorem; it can
also be used in connection to a perfect simulation algorithm for estimating
the value of C = limn→∞L[1, n]/n (see remarks at the end of the section).

The idea for the construction of Γ0 is this: recall that −ν which is the
first vertex < 0 which is connected to every point between −ν and 0. We
check whether −ν is also reachable from every point from the left. If it is,
we declare that −ν is a silver point and stop the procedure. If not, there is
a first vertex before −ν which fails to be connected to −ν. Using the shift
operator θ defined in (4), this vertex is at distance µ◦θ−ν from −ν; in other
words, this distance is the functional µ applied to the shifted ω, when the
origin is placed at −ν. We then set µ[1] = ν + µ◦θ−ν, which is the location
of the previous vertex, and ν[1] = ν and this finishes the first step of the
procedure.

The second step of the algorithm is similar to the first one: we search
for the first vertex −ν[2] before −µ[1] which is connected to every vertex
between −ν[2] and −ν[1]. We know that we can find such a vertex with
probability one. If it also happens that −ν[2] is reachable from any point
from the left, we stop and declare −ν[2] as our silver point. Otherwise, there
will be a first vertex, −µ[2] < −ν[2] which fails to be connected to −ν[2].

The procedure continues in the same way, until the first silver point is
found, and it will be found with probability one. This first silver point will
have the property that it is reachable from every point from the left and
is connected to every point up until the origin; see Lemma 10 below. The
distribution of this first silver point is well-understood and this is the content
of Lemma 9. In fact, we will show that there are infinitely many silver points
which form a (delayed) renewal process backwards; see Lemma 12. Finally,
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LIMIT THEOREMS FOR A RANDOM DIRECTED SLAB GRAPH 15

in Theorem 1 we show that among the infinitude of silver points we can pick
a gold one, namely the point Γ0.

To define the algorithm explicitly, we consider a sequence of N ∪ {+∞}-
valued stopping times relative to the filtration (Fk, k ≥ 1), defined as fol-
lows. Let

ν[1] := ν

µ[1] := ν + µ◦θ−ν = inf{j > ν : 1A−
−j,−ν

= 0},(20)

and, recursively, for k ≥ 2,

ν[k] := inf{j > µ[k − 1] : 1A+
−j,−ν[k−1]

= 1}

µ[k] := ν[k] + µ◦θ−ν[k] = inf{j > ν[k] : 1A−
−j,−ν[k]

= 0},(21)

where θ is the natural shift (4). It is understood that if for some k we have
µ[k] = ∞ then ν[j] = µ[j] = ∞ for all j ≥ k + 1. We thus obtain an
increasing sequence of stopping times

ν = ν[1] < µ[1] < ν[2] < µ[2] < ν[3] < µ[3] < · · ·
which (since P(µ = ∞) > 0) is eventually equal to infinity. It is convenient
to think of these stopping times as the points of an alternating point process
(the µ-points and the ν-points). In words, the sequence of these stopping
times is defined by first laying a ν-point in location ν[1]. Then, as long as
η(−(ν[1] + i)) ≤ i for i = 1, 2, . . ., we place no point in location ν[1] + i.
At the first instance i at which η(−(ν[1] + i)) > i, we place a µ-point in
location ν[1]+ i and call it µ[1]. The random variables (η(−(ν[1]+ i)), i ≥ 1)
are independent of ν[1], and so the event that we place a µ-point in a finite
location is independent of ν[1] and has probability P(µ <∞) = 1−λ1/2. The
procedure continues in the same way: having placed ν[k] < ∞, we decide,
independently of the past (i.e. F

−
ν[k]) whether to create a new µ-point or not

(i.e. place it at infinity). If we do create a new µ-point µ[k] then, clearly,
ν[k+1] is also finite and ν[k+1]−ν[k] has the same distribution as ν[2]−ν[1]
conditional on µ[1] <∞. Thus for each ω, the recursion stops at the index

(22) K := inf{k ≥ 1 : µ[k] = ∞}.
From the discussion above we immediately obtain:

Lemma 8. Assume that [C1] and [C2] hold. Then K is a geometric ran-
dom variable with

P(K > k) = (1 − λ1/2)k, k ≥ 0.
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16 D. DENISOV, S. FOSS AND T. KONSTANTOPOULOS

By definition, µ[K] = ∞ but µ[K − 1] <∞. Hence

ν[K] <∞, a.s.

Note 1. We stop for a minute to point out that the whole purpose of
the construction of these random variables is the random variable ν[K]. In
other words, for each ω ∈ Ω, we apply recursion (20)-(21) to obtain the
alternating sequence of ν and µ- points, through them we define that index
K as in (22) and, finally, ν[K]. Thus, ν[K] is a well-defined (measurable)
function of ω. We refer to −ν[K] as the first silver point before 0.

Although K depends on the whole alternating process (ν[k], µ[k]), k ≥ 1),
we can identify the law of ν[K] as follows:

Lemma 9. On a new probability space, let K,ψ1, ψ2, ψ3, . . . be indepen-
dent random variables with distributions

P (K > k) = (1 − λ1/2)k, k ≥ 0

ψ1
d
= ν

ψi
d
=

(
ν[2] − ν[1] | µ[1] <∞)

d
=

(
inf{j > µ : 1A+

−j,0
= 1} | µ <∞

)
, i ≥ 2.

Then, assuming [C1] and [C2],

(23) ν[K]
d
= ψ1 +

K−1∑

i=1

ψi+1.

Proof. It follows from

ν[K] = ν[1] +
K−1∑

i=1

(ν[i+ 1] − ν[i]).

using a simple probabilistic argument as described above.
The reason we are interested in the random variable ν[K] is the following:

Lemma 10. Assume [C1] and [C2] hold. Then for P-a.e. ω

(24) ω ∈ A−
−ν[K] ∩A

+
−ν[K],0.

Note that replacing the index n in a sequence of events An by a random in-
dexN amounts to defining the event AN = {ω ∈ Ω : there exists n such that n =
N(ω) and ω ∈ An}.
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LIMIT THEOREMS FOR A RANDOM DIRECTED SLAB GRAPH 17

The meaning of (24) is that the vertex ν[K] of the random graph has the
property that there is a path from every j < ν[K] to ν[K] and there is a
path from ν[K] to every i such that ν[K] < i ≤ 0. Our goal is to identify
a skeleton point. Whereas ν[K] is not a skeleton point for sure, there is a
positive probability that it is.
Proof of Lemma 10. If K = k, for some k ≥ 1, then µ[k] = ∞ but µ[k−1] <
∞, so ν[k] <∞ and 1A−

−j,−ν[k]
= 0 for all j > ν[k]. Hence

{K = k} ⊂
⋂

j>ν[k]

A−
−j,−ν[k] = A−

−ν[k],

by (8). Also, if K = k, then ν[k], ν[k − 1], . . . , ν[1] <∞ and so

{K = k} ⊂ A+
−ν[k],−ν[k−1] ∩A

+
−ν[k−1],−ν[k−2] ∩ · · · ∩A+

−ν[1],0 ⊂ A+
−ν[k],0,

by (9). But K is a geometric random variable and hence K <∞, a.s.
We also have the following result concerning moments of ν[K]:

Lemma 11. Assume [C1] and [C2] hold. If, in addition, there exists r ≥ 1
such that Eξr+1 <∞, then Eν[K]r <∞.

Proof. We have that Eν[K]r < ∞ if Eνr < ∞ and E(µr|µ < ∞) < ∞.
The latter holds if Eξr+1 < ∞, and this is a simple consequence of Lemma
6. On the other hand, Eνr < ∞ holds if Eξr < ∞, as proved in Lemma
7.

Whereas [C1] and [C2] imply P(ν[K] < ∞), we need finite variance for ξ
in order that we have finite expectation for ν[K].

We next construct a further sequence of stopping times.

σ[1] < σ[2] < · · ·

as follows. Assume that [C1] and [C2] hold. Recall that the random variable
ν[K] is a.s. finite; it maps Ω into N. Hence we can define ν[K]◦θn for any
n ∈ Z and also ν[K]◦θJ for any measurable J : Ω → Z. We define σ[j],
j ≥ 1, recursively:

σ[1] = ν[K]

σ[j + 1] = σ[j] + ν[K]◦θ−σ[j], j ≥ 1.(25)

Intuitively, given ω, we first construct ν[K] by (20)-(21) and place a point
σ[1] at ν[K]. We then shift the origin to −ν[K] and repeat the recursion
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18 D. DENISOV, S. FOSS AND T. KONSTANTOPOULOS

with ω′ = θ−ν[K](ω) in place 1 of ω, thus obtaining a new random variable,
ν[K]◦θ−ν[K]. We place another point σ[2] at distance 2 ν[K]◦θ−ν[K] from
σ[1]. The procedure continues in the same way. We refer to −σ[1],−σ[2], . . .
as the sequence of silver points.

Lemma 12. Assume that [C1] and [C2] hold. Define the point process
with points σ[j], j ≥ 1, as in (25). This is a renewal process on N, i.e. the
random variables σ[1], σ[2] − σ[1], σ[3] − σ[2], . . . are i.i.d. with common
distribution (23).

We are now ready to construct the first gold point Γ0.

Theorem 1. Assume that [C1] and [C2] hold. Define the sequence (ν[k], µ[k], k ≥
1) through (20)-(21) which is used to define the random variable ν[K]. Based
on this, define the sequence (σ[j], j ≥ 1), through (25). In addition, let

M := sup
i≥1

{ξ(i) − i},

J := inf{j ≥ 1 : σ[j] ≥M}.

Then
Γ0 = −σ[J ].

Before proving the theorem, let us observe that the random variables
defined in the theorem statement are a.s.-finite. By [C2], i.e. that Eξ < ∞,
implies M <∞, a.s.

P(M ≥ m) = P(ξ(i) − i ≥ m, for some i ≥ 1)

≤
∞∑

i=1

P(ξ(i) ≥ i+m)(26)

≤
∞∑

i=m+1

P(ξ(i) ≥ i) ≤ Eξ.(27)

By standard renewal theory, it is easy to see that J , the first exceedance of
M by the random walk (σ[j], j ≥ 1), is also a.s.-finite and hence σ[J ] is an
a.s.-finite random variable.
Proof of Theorem 1. Owing to Lemma 10, we have that

(28) for all j ∈ N, ω ∈ A−
−σ[j] ∩A

+
−σ[j],0, P − a.e. ω ∈ Ω.

1ω′ = θ−ν[K(ω)](ω)(ω)
2ν[K]◦θ−ν[K](ω) = ν[K(ω′)](ω′) = ν[K(θ−ν[K(ω)](ω)(ω))](θ−ν[K(ω)](ω)(ω))
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LIMIT THEOREMS FOR A RANDOM DIRECTED SLAB GRAPH 19

Also,

(29) {M ≤ σ[J ]} = {ξ(1) ≤ σ[J ] + 1, ξ(2) ≤ σ[J ] + 2, . . .}.

Fix n ∈ N and observe that, from the definition of M and the expressions
(10), (12) for A+

−n,0 and A+
−n, respectively,

A−
−n ∩A+

−n,0 ∩ {M ≤ n} = A−
−n ∩A+

−n,0 ∩ {ξ(1) ≤ 1, ξ(2) ≤ 2, · · · }
= A−

−n ∩ {ξ(−n + 1) ≤ 1, . . . , ξ(0) ≤ n, ξ(1) ≤ 1, ξ(2) ≤ 2, · · · }
= A−

−n ∩A+
−n

= {n ∈ S }.

Combining this with (28) and (29) we obtain

−σ[J ] ∈ S , a.s.

It is clear, from the algorithmic construction (20)-(21) of the sequence (ν[k], µ[k], k ≥
1), from the algorithmic construction (25) of the (σ[j], j ≥ 1), and the defi-
nition of J , that there can be no point of S between −σ[J ] and 0. Therefore
−σ[J ] is the largest negative point of S .

Remark 1. Possible extensions: The algorithmic construction proposed
above may be used in a general stationary ergodic framework. In particular,
one can easily generalise first-order results (the functional strong law of large
numbers). Under reasonable assumptions, one can again prove the finiteness
of ξ(0). This will imply the finiteness of η(0) and, in turn, the existence of
the stationary skeleton. Then the functional strong law of large numbers will
follow using well-known tools.

Remark 2. Simulation and perfect (exact) simulation of the value of the
limit C: This depends in a complex way on an infinite number of variables,
and one cannot expect an analytic closed form expression. But one can
estimate it by running a MCMC algorithm. One can also use the regenerative
structure of the model to run the simulation in backward time using the idea
of “cycle-truncation” that leads to a simple implementation scheme; c.f. [20]
for more details However, each such an algorithm gives a biased estimator
of the unknown parameter, in general.

In [18], we considered the homogeneous case (pj = p, for all j). In partic-
ular, in [18, §10] (see also [18, §4] for theoretical background), we obtained
a stronger result by proposing an algorithm for the perfect simulation of
a random sample from an unknown distribution whose mean is the limit
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20 D. DENISOV, S. FOSS AND T. KONSTANTOPOULOS

C under consideration. The standard MCMC scheme provides an unbiased
estimator for this limit.

The ideas behind that algorithm may be efficiently implemented in a num-
ber of similar models, e.g. in models with long memory ( see, for example,
[15]). In fact, in [18], we developed the algorithm for a more general model
(we called it “infinite-bin model”) and under general stochastic ergodic as-
sumptions.

7. Central limit theorem for the maximum length. Assume now
that [C1] holds and

[C3]
∞∑

k=1

k(1 − p1) · · · (1 − pk) <∞.

From (15) we see that this is equivalent to

[C3′] Eξ2 <∞.

Lemma 13. If [C1] and [C3] hold then E|Γ0| <∞.

Proof. By Theorem 1, |Γ0| = σ[J ] = min{σ[j] : j ≥ 1, σ[j] ≥ M}.
Recall that σ[1] < σ[2] < · · · are points of a renewal process. This renewal
process is clearly independent of M = supi≥1{ξ(i)− i}. By standard renewal
theory, Eσ[J ] <∞ if EM <∞. But the tail of M was estimated in (27). The
same inequalities now show that Eξ2 <∞ is sufficient for EM <∞.

The maximum length Ln of all paths from some i ≥ 0 to some j ≤ n
satisfies the following central limit theorem.

Theorem 2. Suppose [C1] and [C3] hold. Let

σ2 := var
(
L(Γ1,Γ2] − C(Γ2 − Γ1)

)
.

Define

ℓn(t) :=
L[nt] − Cnt

λ1/2σ
√
n
, t ≥ 0, n ∈ N.

Then the sequence of processes ℓn, in the Skorokhod space D[0,∞) equipped
with the topology of uniform convergence on compacta [7], converges weakly
to a standard Brownian motion.

Proof. By Lemma 13 we have E|Γ0| < ∞. Hence EΓ1 < ∞. But the
Γn form a stationary renewal process. Therefore, EΓ1 <∞ implies that the
variance of Γ2 − Γ1 is finite. Since L(Γ1,Γ2] ≤ Γ2 − Γ1, we have σ2 < ∞.
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The constant C, defined as the a.s.-limit of Ln/n–see (3), is also finite and
nonzero. Lemma 3 shows that (Ln, n ≥ 0) is a (stationary) regenerative pro-
cess. The result then is then obtained by reducing it to Donsker’s theorem.
This is standard, but we sketch the reduction here for completeness. Let Φn

be the cardinality of S ∩ [0, n] (the number of Γj in the interval [0, n]):

Φn := |S ∩ [0, n]| =
∑

j∈Z

1(0 ≤ Γj ≤ n).

So ΓΦn ≤ n < ΓΦn+1. Write

L[nt] = {L[nt] − LΓΦ[nt]
} + LΓΦ[nt]

nt = {nt− ΓΦ[nt]
} + ΓΦ[nt]

.

The quantities in brackets on both lines are tight and so they are negligible
when divided by

√
n. So instead of ℓn(t), we consider

(30)

ℓ̂n(t) :=
LΓΦ[nt]

− CΓΦ[nt]

λ1/2σ
√
n

=
LΓ1 − CΓ1

λ1/2σ
√
n

+
1

λ1/2σ
√
n

Φ[nt]∑

i=2

{L(Γi−1,Γi]−C(Γi−Γi−1)}

The last term is the one responsible for the weak limit of ℓ̂n (and hence of
ℓn). To save some space, put

χi := L(Γi−1,Γi] − C(Γi − Γi−1).

Donsker’s theorem says that

(
1

σ
√
n

nu∑

i=2

χi, u ≥ 0

)
⇒ (Bu, u ≥ 0),

weakly in D[0,∞), as n→ ∞, where B is a standard Brownian motion. Let

ϕn(t) :=
Φ[nt]

n
, t ≥ 0.

Since ϕn converges weakly, as n→ ∞, to the deterministic function
(
λt, t ≥

0) and since composition is a continuous operation, the continuous mapping
theorem tells us that

(
1

σ
√
n

nϕn(t)∑

i=2

χi, u ≥ 0

)
⇒ (Bλu, u ≥ 0)

d
= λ1/2B,

imsart-aap ver. 2010/04/27 file: slabgraph_subm.tex date: May 26, 2010



22 D. DENISOV, S. FOSS AND T. KONSTANTOPOULOS

and this readily implies that the last term in (30) converges weakly to a
Brownian motion.

It is now easy to see how the quantity T [i, j], the maximum length of all
paths from i to j, behaves. A sufficient condition for T [i, j] to be positive is
that there is a skeleton point between i and j. Therefore, keeping i fixed, the
probability that eventually for all j sufficiently large T [i, j] > 0 is at least
equal to the probability that eventually there is a skeleton point in [i, j], and
this is certainly equal to one. So, eventually, any two points are connected,
a.s.

Moreover,
T [Γi,Γj ] = L[Γi,Γj].

Indeed, Γi is connected to every larger vertex and any vertex smaller than
Γj is connected to Γj . Thus, if a path from some u ≥ Γi to some v ≤ Γj has
length L[Γi,Γj ] we necessarily have u = Γi and v = Γj and this shows the
equality of the last display.

If n is large enough so that there is at least one skeleton point in [0, n],
we have that 0 n and

L[Γ1,ΓΦn ] ≤ T [0, n] ≤ L[Γ0,ΓΦn+1],

where Φn is the number of skeleton points in [0, n]. Therefore we immediately
obtain:

Theorem 3. If [C1] and [C2] hold then T [0, n]/n → C, as n→ ∞, a.s.

Same rationale shows:

Theorem 4. Suppose [C1] and [C3] hold. Then Theorem 2 holds with T
in place of L.

8. Directed slab graph. Recall that we started with vertex set V = Z

and introduced a random partial order  by means of a random directed
graph:
(31)
i j if i < j and ∃ i = i0 < i1 < · · · < iℓ = j such that αi0,i1 = · · · = αiℓ−1,j = 1.

A natural generalisation is to replace the total order < on the vertex set V by
a partial order ≺ and substitute the i < j requirement in (31) above by the
requirement that i ≺ j. We here provide an example of such a generalisation.
A major role in our analysis has been played by the assumption that the
underlying probability measure is invariant by some shift θ. Our example
will also satisfy this assumption.
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Let (I,�) be a finite partially ordered set. We assume that I has a min-
imum and a maximum, denoted by 0 and M , respectively. In other words,
for all i, j, k ∈ I,

(a) 0 � i � i �M,

(b) if i � j � i then i = j,

(c) if i � j � k then i � k.

Consider V = Z × I. We call this vertex set a cylinder. In the case I =
{0, 1, . . . ,M}, with the usual ordering, we call V a slab. Elements of V will
be denoted by (x, i), (y, j), etc. We introduce the component-wise partial
ordering << on V by

(x, i) << (y, j) ⇐⇒ (x, i) 6= (y, j) and x ≤ y, i � j,

and write (y, j) >> (x, i) for the same thing. Next, we assign an edge(
(x, i), (y, j)

)
to each pair of vertices such that (x, i) << (y, j) with prob-

ability ry−x,i,j, independently from pair to pair. This is done by means of
random variables α(x,i),(y,j):

P(α(x,i),(y,j) = 0) = 1 − P(α(x,i),(y,j) = −∞)ry−x,i,j.

We shall make this more formal in the sequel. The problem is, again, the
behaviour of a longest path from (x, i) to (y, j). This length is denoted by
T [(x, i), (y, j)]. We also define L[(x, i), (y, j)] to be the maximum length of all
paths starting from some (x′, i′) >> (x, i) and ending at some (y′, j′) >> (y, j).

An appropriate probability space for the model is now described. Let
δ = (δx,i,j, x ∈ Z, i, j ∈ I) be a collection of independent {−∞, 1}-valued
random variables with

P(δx,i,j = 1) = rx,i,j,

assuming that rx,i,j = 0 if x ≤ 0 or if i ≻ j. Next, let δ(x), x ∈ Z be a
collection of i.i.d. copies of δ. The probability space Ω is defined to contain
infinite vectors ω = (δ(x), x ∈ Z). In other words, Ω = ({−∞, 1}Z×I×I)Z

with {−∞, 1}Z×I×I be the space of values of each δ(x), and with P being a
product measure. A shift θ on Ω is taken to be the natural map

(32) ω = (x 7→ δ
(x)) 7→ θω = (x 7→ δ

(x+1)).

Clearly, P is preserved by θ. The random variables α(x,i),(y,j) are now given
by

α(x,i),(y,j)(ω) = δ
(x)
y−x,i,j
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and it is easy to check their θ-compatibility: α(x,i),(y,j)(θω) = α(x+1,i),(y+1,j)(ω).
We introduce the following assumptions on the probabilities rx,i,j.

[D0] rx,i,i =: px for all i ∈ I

[D1] 0 < p1 < 1

[D2]
∞∑

x=1

(1 − p1) · · · (1 − px) <∞

[D2′]
∞∑

x=1

x(1 − p1) · · · (1 − px) <∞

[D3] For all i, j ∈ I with i ≺ j, we have r0,i,j > 0.
Of these, the last one is not an essential condition. It is only introduced

for convenience. We will comment on it later. Of course, [D2′] is stronger
than [D2] and it will be used for the proof of the CLT.

8.1. The random graph G[x, y]. The random directed graph G = (V,E)
with V = Z×I and E consisting of all

(
(x, i), (y, j)

)
such that α(x,i),(y,j) = 1

is now a well-defined object. Let G[x, y] be the restriction of G on the vertex
set [x, y] × I where x ≤ y are two integers. Let

L[x, y] := max
x≤x′≤y′≤y

i,j∈I

L[(x′, i), (y′, j)]

be the maximum length of all paths in G[x, y]. We have θ-compatibility

L[x, y]◦θ = L[x+ 1, y + 1],

and, by an argument analogous to the one used to obtain (2), we have the
subadditivity property

L[x, z] ≤ L[x, y] + L[y, z] + 1, x ≤ y ≤ z.

Therefore,
LN/N := L[0, N ]/N → C, as n→ ∞, a.s.,

for some deterministic constant C which, under the assumption [D2], is
positive.
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8.2. The random graph G(i). Let G(i) be the restriction of G on the
vertex set V ×{i}, i ∈ I. It is clear that each G(i) is a line model as studied
earlier. In fact, the G(i), i ∈ I are i.i.d. We denote by L(i)[x, y] the maximum
length of all paths of G(i) from some vertex x′ ≥ x to some vertex y′ ≤ y.
We shall let S (i) be the skeleton of G(i). Then, assuming [D1] and [D2], each
S (i) forms a stationary renewal process with nontrivial rate. Moreover, [D1]
implies that this renewal process is aperiodic.

9. Central limit theorem for the directed cylinder graph. We
first describe the limiting process. To do this, we need the following. First,
let (B(i)(t), t ≥ 0), i ∈ I, be i.i.d. standard Brownian motions, all starting
from 0. Second, let H(I,�) be the Hasse diagram [16] corresponding to the
partially ordered set I. This is a directed graph with vertex set I and an
edge from i to j if there is no k, distinct from i and j, such that i � k � j.
Let ι = (ι0, ι1, . . . , ιr) be a path in H(I,�) starting from ι0 = 0 and ending
at ιr = M . The length of the path is r = |ι|. For each such path ι, define
the stochastic process (Z(ι)t, t ≥ 0) by:
(33)
Z(ι)t : sup

0≤t0≤t1≤···≤t|ι|=t

{
B(ι0)(t0)+[B(ι1)(t1)−B(ι1)(t0)]+· · ·+[B(ι|ι|)(t|ι|)−B(ι|ι|)(t|ι|−1)]

}

and then let

(34) Zt := max
ι
B(ι)t,

where the maximum is taken over all paths ι from the minimum to the
maximum element in the Hasse diagram.

The main theorem of this section is as follows:

Theorem 5. Let G be a directed cylinder graph and assume that [D0],
[D1], [D2′], [D3] hold. Let Ln be the maximum length of all paths in G[0, n].
There exists a constant κ > 0 such that

ℓn(t) :=
L[nt] − Cnt

κ
√
n

, t ≥ 0, n ∈ N

converges weakly, as n→ ∞, in the Skorokhod space D[0,∞) equipped with
the topology of uniform convergence on compacta, to the stochastic process
Z defined in (33)-(34).

Proof. Since the S (i), i ∈ I are independent aperiodic renewal pro-
cesses, we have that

S := {x ∈ Z : x ∈ ∩i∈IS
(i), α(x,i),(x,j) = 1 for all i, j ∈ I with i ≺ j}
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is also a renewal process. Indeed, Lindvall [26] shows that ∩iS
(i) is a sta-

tionary renewal process. Now S is obtained from ∩i∈IS
(i) by a further

independent thinning with positive probability due to the convenient as-
sumption [D3]. Condition [D2] implies that the rate of each S (i) is positive
and this implies that the rate of ∩i∈IS

(i) is positive. Hence the rate of S is
also positive. Call this rate λ. We have 0 < λ ≤ 1. Moreover, S is stationary:
S ◦θ = S . Enumerate now the points of S by

· · · < Γ−1 < Γ0 < 0 ≤ Γ1 < Γ2 < · · ·

We have E(Γ2 − Γ1) = 1/λ. If

Φn := |S ∩ [0, n]|,

we have limn→∞ Φn/n = λ, a.s. Furthermore, C = λEL[Γ1,Γ2] ≤ 1. Condi-
tion [D2′] implies that E(Γ2 −Γ1)

2 <∞ and hence EL(i)[Γ2 −Γ1]
2 <∞. By

Corollary 1, the random variables

(
Γ2 − Γ1, L

(i)[Γ1,Γ2]
)
,

(
Γ3 − Γ2, L

(i)[Γ3,Γ2]
)
, . . .

are i.i.d., and since S is obtained by independent thinning of ∩i∈IS
(i), we

further have that the rows of the last display are also independent when i
ranges in I.

Consider next a path ι = (ι0, ι1, . . . , ιr), of length |ι| = r in the Hasse
diagram H(I,�) and define the quantities

L∗(ι)n := max
1≤j0≤j1≤···≤jr=n

{L(ι0)[Γ1,Γj0 ] + L(ι1)[Γj0,Γj1] + · · · + L(ιr)[Γjr−1,Γjr ]}

L∗
n := max

ι
L∗(ι)n,

Γ1

Γ
2

3Γ

ΓΦΝ

[0,0]

[Ν,Μ]

Fig 2. The skeleton for the slab graph and a longest path.
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where the last maximum is taken over all paths ι from the minimum to the
maximum element of the Hasse diagram.

We now argue that the quantity of interest Ln is of order L∗
n +od(1) when

n is large by providing an upper and a lower bound. The key observation is
that when n is large, the number of points Γj ≤ n grows at a positive rate
(and hence to infinity). At each of these points, say Γj, the graph G[Γj ,Γj ]
(being a vertical slice of G–see Figure 2) is precisely the Hasse diagram:

G[Γj ,Γj ] = H(I,�), j ∈ Z.

Fix ι′ ≺ ι′′ in I. Since Γj is a point in the skeleton of G(ι′), any x ≤ Γj is
connected to Γj in G(ι′). Similarly, Γj is connected to any y in G(ι′′). Since
ι′ is connected to ι′′ in G[Γj ,Γj ], it follows that, almost surely, there is path
in G from any (x, ι′) to any (y, ι′′), if x ≤ Γj ≤ y for some Γj ∈ S and if
ι′ ≺ ι′′.

Assume that Φn ≥ 2. Let ι = (ι0, ι1, . . . , ιr) be a path in H(I,�) with
ι0 = 0, ιr = M and consider integers

(35) 1 ≤ j0 ≤ j1 ≤ · · · ≤ jr−1 ≤ jr = Φn.

Keep in mind that
ΓΦn ≤ n.

By the construction of the set S , the following is true:

(Γ1, 0) = (Γ1, ι0) (Γj0, ι0) (Γj0, ι1) (Γj1 , ι1) · · · (Γjr−1, ιr) (Γjr , ιr) = (ΓΦn ,M),

where (x, ι′) (y, ι′′) means that there is a path from (x, ι′) to (y, ι′′) in G.
Therefore

Ln ≥ L(ι0)[Γ1,Γj0] + L(ι1)[Γj0,Γj1 ] + · · · + L(ιr)[Γjr−1,Γjr ],

because the right-hand side is a lower bound on the length of the specific
path chosen in the last display. By keeping ι fixed and maximising over the
j0, . . . , jr satisfying (35) we obtain Ln ≥ L∗(ι)n, and by maximising over ι
we obtain the lower bound

Ln ≥ L∗
Φn
.

To obtain an upper bound, let π∗ be a path that achieves the maximum
in Ln. Assume that Φn ≥ 1 so that, by the key observation above, (0, 0) is
connected to (n,M) in G. See Figure 3. Hence π∗ is necessarily a path from
(0, 0) to (n,M).

Let
0 = ι0 ≺ ι1 ≺ · · · ≺ ιs = M
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be the distinct values of the I-components of the elements of π∗ in order of
appearance in π∗. (The sequence (ι0, ι1, . . . , ιs) is not necessarily a path in
H(I,�).) So for each k = 0, . . . , s − 1, there are vertices (xk, ιk), (yk, ιk+1)
which are consecutive in the path π∗. Hence

ΓΦx
k

ΓΦ
+1k

x

+1k
yx

k +1k
x

+1kι

kι

y
k

Fig 3. Construction used in obtaining the upper bound.

xk ≤ yk ≤ xk+1, for all k = 0, 1, . . . , s− 1,

where, by convention, we set xs = n. The point of S prior to xk is ΓΦxk

and, since π∗ has maximum length, (ΓΦxk
, ιk) is an element of π∗. By the

maximality of π∗ again, we have that xk and yk are contained between two
successive points of S (otherwise we would be able to strictly increase the
length of the path). Hence

(36) ΓΦxk
≤ xk ≤ yk ≤ Γ1+Φxk

≤ xk+1, for all k = 0, 1, . . . , s− 1.

We thus have

Ln = |π∗| = L(ι0)[0,Γ1]+L
(ι0)[Γ1,ΓΦx0

]+
s−1∑

k=0

{
L(ιk)[ΓΦxk

, xk]+1+L(ιk+1)[yk,ΓΦxk+1
]

}
+L(ιs)[ΓΦn , n].

Due to (36), we have

L(ιk)[ΓΦxk
, xk] ≤ L(ιk)[ΓΦxk

,Γ1+Φxk
],(37)

L(ιk+1)[yk,ΓΦxk+1
] ≤ L(ιk+1)[ΓΦxk

,ΓΦxk+1
], k = 0, . . . , s− 1.(38)

Moreover,

L(ι0)[0,Γ1] ≤ L(ι0)[Γ0,Γ1](39)

L(ιs)[ΓΦn , n] ≤ L(ιs)[ΓΦn ,Γ1+Φn ].(40)
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Each of the right-hand sides of (37), (39) and (40) is bounded above by
max0≤j≤Φn L

(ι)[Γj,Γ1+j ]. If we then define

ζn :=
∑

ι∈I

max
0≤j≤Φn

L(ι)[Γj ,Γ1+j]

and use (38), we obtain

Ln ≤ ζn +M +
s−1∑

k=0

L(ιk+1)[ΓΦxk
,ΓΦxk+1

].

Since for each sequence 0 = ι0 ≺ ι1 ≺ · · · ≺ ιs = M of distinct ordered
elements of I we can find a path in the Hasse diagram containing these
elements, it follows easily that

Ln ≤ ζn +M + L∗
Φn
,

which gives the upper bound. The upper bound is close to Ln in the sense
that the sequence the ζn are of order 1 in distribution, i.e. that (ζn) is tight
random sequence. On the other hand, nt = ΓΦ[nt]

− Γ1 + od(1). It is thus
clear that the weak limit of ℓn and that of

ℓ∗n(t) :=
L∗

Φ[nt]
−C(ΓΦ[nt]

− Γ1)

κ
√
n

, t ≥ 0,

if it exists, will be identical. Setting

ℓ∗∗n (t) :=
L∗

[nt] − C(Γ[nt] − Γ1)

κ
√
n

, ϕn(t) :=
Φ[nt]

n
,

we have

(41) ℓ∗n(t) = ℓ∗∗n (ϕn(t)),

and so the weak limit of ℓ∗n is equal to that of ℓ∗∗n (if this exists) composed
by the function {λt}.

To show that the weak limit of ℓ∗n exists and find it, define the function
ψ : D[0,∞)I → D[0,∞) by

ψ(β(i), i ∈ I)(t) : max
ι

sup
0≤t0≤t1≤···≤tr=t

|ι|=r

{
β(ι0)(t0)+

[
β(ι1)(t1)−β(ι1)(t0)

]
+· · ·

· · · +
[
β(ιr)(tr) − β(ιr)(tr−1)

]}
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where the maximum is taken over all paths ι from the minimum to the max-
imum element in the Hasse diagram H(I,�). The function ψ is continuous
(with respect to the topology of uniform convergence). Let

s(i)n (t) :=
L(i)[Γ1,Γ[nt]] − C(Γ[nt] − Γ1)

σ
√
n

, t ≥ 0, i ∈ I,

where
σ2 := var{L(i)[Γ1,Γ2] − C(Γ2 − Γ1)}

Since L(i)[Γj ,Γj+1], j ≥ 1, i ∈ I are i.i.d. with common variance σ2 we have
(Theorem 2) that

(42)
(
s(i)n , i ∈ I

)
⇒

(
B(i), i ∈ I

)

where B(i), i ∈ I are i.i.d. standard Brownian motions. Let

κ := λ1/2σ

and observe that
ℓ∗∗n (t) = λ−1/2 · ψ(s(i)n , i ∈ I)(t).

By (42) and the invariance principle,

ℓ∗∗n ⇒ λ−1/2 · ψ(B(i), i ∈ I).

By the relation (41) and the remark following it, we have

ℓ∗n ⇒ ψ(B(i), i ∈ I),

and the right-hand side is equal in distribution to Z (defined by (33)-(34)).

The remarks at the end of Section 7 also apply in the current case. We
can easily conclude that Tn, the maximum length of all paths from (0, 0) to
(n,M), has the same asymptotics as Ln. In particular, Theorem 5 holds if
we replace Ln by Tn.

10. Connection to last passage percolation. Consider now the case

I = {0, 1, . . . ,M}

with the usual ordering. Assumption [D3] can be substituted by

[D3’] For all 1 ≤ i ≤M we have r0,i−1,i > 0.
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Let GM be the corresponding random directed cylinder graph, referred to
as slab graph here. In particular, we can think of GM as the restriction of a
graph G∞ on the vertex set Z×Z+ where two vertices (x, i) and (y, j), with
(x, i) << (y, j), are connected with probability py−x,j−i that depends on the
relative position of the two vertices on the 2-dimensional lattice.

The problem here becomes that of a last passage percolation , although the
model is not the standard nearest-neighbour one. Physically, we can think
of tunnels which run upwards (or in directions southwest to northeast) and
fluid moving in tunnels. It takes one unit of time to cross a specific tunnel.
We are interested in the particle that starts from (0, 0) and reaches (n,M) in
the largest possible time. Since the Hasse diagram of the set {0, 1, . . . ,M}
with the natural ordering is the linear graph with edges from i − 1 to i,
1 ≤ i ≤M , the limit process Z is given by the simplified expression

Zt = max
0≤t0≤···≤tM =t

{
B(0)(t0)+[B(1)(t1)−B(1)(t0)]+· · ·+[B(M)(tM )−B(M)(tM−1)]

}
, t ≥ 0.

The latter process is a Brownian last passage percolation process. As was
shown in [6, 21, 32] it is a non-Gaussian process with marginal distribution

Zt
d
=

√
t · λM ,

for each t ≥ 0, where λM is the largest eigenvalue of a random (M + 1) ×
(M + 1) Gaussian Unitary Ensemble (GUE) [29].

Tracy and Widom [34, 35] showed that, as M → ∞, the following weak
limit holds:

M1/6(λM − 2
√
M) ⇒ FTW,

with FTW being the Tracy-Widom distribution whose hazard rate equals∫ ∞
t q(x)2dx, where q(x) satisfies a Painlevé II equation; see [2, eq. (3.1.7)].

For an account on the universality of this distribution, see, e.g., [17]. A num-
ber of interesting results have been proved relating this limiting distribution
with certain stochastic models. These models include longest increasing sub-
sequence [5], last passage percolation, non-colliding particles, tandem queues
[6, 21], and random tilings [24]. For the last passage percolation, in partic-
ular, this limit is known to appear in two cases. The first is the Brownian
last passage percolation. The second is the last passage percolation model
with exponential (or geometric) weights. In this model one puts independent
and identically distributed exponential random variables in the vertices of
Z

2
+ and considers the maximum L(M,N) of the sums of the weights over

all directed paths from (0, 0) to (M,N). It was shown in [23] the random
variable L(N,N), properly normalized, converges to the Tracy-Widom dis-
tribution as N goes to infinity. In [8], more general weights were considered
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and an analogous result for the random variable L(N,Na) (for an appropri-
ate a depending on moment conditions) was obtained. It is then natural to
conjecture that a similar phenomenon occurs in our slab graph too.
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