Integro-local limit theorem for a supercritical branching process in a random

environment

Overview

A branching process in a random environment (BPRE) is a natural and important
generalization of the Galton-Watson process, where the reproduction law varies according
to a random environment indexed by time.

The random environment is represented by a sequence ¢ = (&, &, ...) of i.i.d. random
variables taking values in an abstract space =.

The random variable &, represents the random environment at time n; to each realization of
&n corresponds a probability law {p;i(¢,) : i€ N} on N ={0,1,2,...}.

Define the process (Z,),~0 by the relations

Zn
Zo=1,Zn1= ) Npiw forn>0

i=1
where N, ; is the number of children of the ith individual of the generation n. Conditionally
on the environment & , the r.v)s N,; (i = 1, 2,...) are independent of each other with
common probability distribution, and also independent of Z,.
Set m, = my(&) = X2, ip; (&,) - the average number of children of an individual of
generation n when the environment & is given.
An important tool in the study of a BPRE is the associated random walk

n
Sn=logE:Z, = ZXi, n>=1
i=1
where the r.v's X; = log m;_1(i > 1) are i.i.d. depending only on the environment &. The
behavior of the process (Z,) is mainly determined by the associated random walk which is
seen from the decomposition :

log Z, = S, + log W,

where W, = Z,/E¢Z,. The sequence (Wp,),>o is well known to be a positive martingale with
respect to the natural filtration F, = o (f, Nein0<k<n-1,i=1,2.. ) .
Then the limit W = lim W, exists P-a.s. and EW < 1.

Assumptions

We assume that each individual has at least one child, which means that
po=0 P-as.

This implies that the associated random walk has non negative increments increments,

Z, — oo asn— o and W > 0 P-a.s.

Let X = log mg, p = EX and % = E(X — p)*.

We shall also assume that the BPRE is supercritical with u € (0, ), i.e the population size
tends to infinity with positive probability.

Denote A[x) := [x, x + A) (Ap[x) has the same meaning but A, is a function of n).

Our main goal

Theorem (Integro-local limit theorem, ILT)

Assume [Cy| and the associated random walk (S,,) >0 of BPRE (Z,),>0 to be non-trivial and
non-lattice. Let a € (a_, a,).
Then for a = x/n we have as A\,, — 0 sufficiently slow as n — oo,

P(logZ, € Ay[x)) = %@6_’“\(‘”(1 + 0(1)),
n

where C(a) is a continuous function and
o(1) uniformly goes to 0 for x/n in any compact from (a-, a.).

Corollary (Large deviations)

Let ag € (i, @y). Then for any {x,} such as a := x,/n — oy as n — oo holds

Clag) A(a)
P(logZ, > x,) = e "MY(1 + o(1)).
A (arp)Vn
Similarly, for oy € (a—, p1), we have
Clay) _ Aa)
P(logZ, < x,) = e "1 + o(1)).
A (ap)Vn

Visual representation of the model

Rate function

A function A : R = R™, defined for all x € R as
A(a) = sup(aA — Iny(A)).
A

is called a rate function (where /(1) := Ee’X is the Laplace transform of r.v. X at A).

Under the followinE assumption:
There is a number A, > 0, such that Ee*¥ < oo

there exist two constants a_ and a., such that y € (a_, a;), A(a) is analytical for all

a € (a—, ay) and satisfies the following properties (see [2] for details):
min A(a) = A(p) =0

Ap) =AN() =0, A'(p) =
A(t) can be associated with a Cramér series defined by

2 2 3
EI Yay2 — 3Y3 - Y5y, — 10yaysyas + 15ys5

cg€(t)::: A S
6y.> 24y, 120y;"?
which converges for |t| small enough, where
d*y
=—2(0
Ve = —%0)

are the cumulants of order k of the random variable X (see [6]).

Here are some known results, related to the topic.
Theorem (Large deviation principle, LDP [3], [4], [5] )

Under some additional assumptions, a sequence (log Zn/ n) of r.v.’s from R¢ satisfies the
n>1

large deviation principle with a rate function A(a), i.e for any Borel set B C R? two
inequalities hold:

1 log Z,
limsup—logP( %8 4n ¢ B) < -A([B]),
oo M n
1 log Z,
liminf—lnP( o8 EB) > —-A((B)),
n—oo n n

where A(B) := ing A(a), A(Q) := oo and [B], (B) are the closure and the interior of the set B
ae

respectively.

The following results can be obtained from ILT and LDP.
Theorem (Moderate-large deviations [1])

For any y = y(n) such that0 < y = o(+/n), as n — oo,
3

log Z, — nu _B(nexnil 2|2
P( — >y)—<1>(y) p{\/ﬁoi”(ﬁ)}(lﬂ(l)),

where

— 1 2
CIJ():—/ e z du
7 ex )y

is the tail of standard normal distribution.

Corollary (Normal deviation )

For any y = y(n) > 0,y = o(n'/®) holds

log Z, — _
p( ngﬁ s y) = @ (y) (1 + o(1))
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