
Integro-local limit theorem for a supercritical branching process in a random
environment

Overview

A branching process in a random environment (BPRE) is a natural and important
generalization of the Galton–Watson process, where the reproduction law varies according
to a random environment indexed by time.
The random environment is represented by a sequence ξ = (ξ0, ξ1, . . . ) of i.i.d. random
variables taking values in an abstract space Ξ.
The random variable ξn represents the random environment at time n; to each realization of
ξn corresponds a probability law {pi(ξn) : i ∈ N} on N = {0, 1, 2, . . . }.
Define the process (Zn)n>0 by the relations

Z0 = 1,Zn+1 =
Zn∑
i=1

Nn,i, for n > 0

where Nn,i is the number of children of the ith individual of the generation n. Conditionally
on the environment ξ , the r.v.’s Nn,i (i = 1, 2, . . . ) are independent of each other with
common probability distribution, and also independent of Zn.
Set mn = mn(ξ ) =

∑∞
i=0 ipi (ξn) - the average number of children of an individual of

generation n when the environment ξ is given.
An important tool in the study of a BPRE is the associated random walk

Sn = logEξZn =
n∑
i=1

Xi, n > 1

where the r.v.’s Xi = logmi−1(i > 1) are i.i.d. depending only on the environment ξ . The
behavior of the process (Zn) is mainly determined by the associated random walk which is
seen from the decomposition :

logZn = Sn + logWn,

where Wn = Zn/EξZn. The sequence (Wn)n>0 is well known to be a positive martingale with
respect to the natural filtration Fn = σ

(
ξ ,Nk,i, 0 6 k 6 n − 1, i = 1, 2 . . .

)
.

Then the limit W = limWn exists P-a.s. and EW 6 1.

Assumptions

We assume that each individual has at least one child, which means that

p0 = 0 P-a.s.

This implies that the associated random walk has non negative increments increments,
Zn→∞ as n→∞ and W > 0 P-a.s.
Let X = logm0, µ = EX and σ 2 = E(X − µ)2.
We shall also assume that the BPRE is supercritical with µ ∈ (0,∞), i.e the population size
tends to infinity with positive probability.
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Rate function

A function Λ : R→ R+, defined for all x ∈ R as

Λ(α) = sup
λ
(αλ − lnψ (λ)).

is called a rate function (whereψ (λ) := EeλX is the Laplace transform of r.v. X at λ).
Under the following assumption:
[C0] There is a number λ+ > 0, such that Eeλ+X < ∞

there exist two constants α− and α+, such that µ ∈ (α−,α+), Λ(α) is analytical for all
α ∈ (α−,α+) and satisfies the following properties (see [2] for details):
I min

α
Λ(α) = Λ(µ) = 0

I Λ(µ) = Λ′(µ) = 0, Λ′′(µ) = 1
σ

I Λ(t) can be associated with a Cramér series defined by

L (t) := γ3

6γ 3/22

+
γ4γ2 − 3γ 23

24γ 32
t +

γ5γ
2
2 − 10γ4γ3γ2 + 15γ 33

120γ 9/22

t2 + · · ·

which converges for |t | small enough, where

γk =
dkψ
dλk
(0)

are the cumulants of order k of the random variable X (see [6]).

Denote ∆[x) := [x, x + ∆) (∆n[x) has the same meaning but ∆n is a function of n).

Our main goal

Theorem (Integro-local limit theorem, ILT)

Assume [C0] and the associated random walk (Sn)n≥0 of BPRE (Zn)n≥0 to be non-trivial and
non-la�ice. Let α ∈ (α−,α+).
Then for α = x/n we have as ∆n→ 0 su�iciently slow as n→∞,

P ( logZn ∈ ∆n[x) ) =
∆nC(α)√

2πn
e−nΛ(α)(1 + o(1)),

where C(α) is a continuous function and
o(1) uniformly goes to 0 for x/n in any compact from (α−,α+).

Corollary (Large deviations)

Let α0 ∈ (µ,α+). Then for any {xn} such as α := xn/n→ α0 as n→∞ holds

P ( logZn ≥ xn ) =
C(α0)

Λ′(α0)
√
n
e−nΛ(α)(1 + o(1)).

Similarly, for α0 ∈ (α−, µ), we have

P ( logZn ≤ xn ) =
C(α0)

Λ′(α0)
√
n
e−nΛ(α)(1 + o(1)).

Here are some known results, related to the topic.

Theorem (Large deviation principle, LDP [3], [4], [5] )

Under some additional assumptions, a sequence
(
logZn/n

)
n≥1

of r.v.’s from Rd satisfies the

large deviation principle with a rate function Λ(α), i.e for any Borel set B ⊂ Rd two
inequalities hold:

lim sup
n→∞

1
n
logP

(
logZn
n
∈ B

)
≤ −Λ ([B]) ,

lim inf
n→∞

1
n
lnP

(
logZn
n
∈ B

)
≥ −Λ ((B)) ,

where Λ(B) := inf
α∈B

Λ(α),Λ (∅) := ∞ and [B], (B) are the closure and the interior of the set B

respectively.

The following results can be obtained from ILT and LDP.

Theorem (Moderate-large deviations [1])

For any y = y(n) such that 0 < y = o(
√
n), as n→∞,

P

(
logZn − nµ

σ
√
n

> y
)
= Φ (y) exp

{
y3
√
n
L

(
y
√
n

)}
(1 + o(1)),

where

Φ(y) = 1
√
2π

∫ ∞

y
e−

u2
2 du

is the tail of standard normal distribution.

Corollary (Normal deviation )

For any y = y(n) > 0, y = o(n1/6) holds

P

(
logZn − nµ

σ
√
n

≥ y
)
= Φ (y) (1 + o(1))
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