On the asymptotics for the minimal distance between extreme vertices in a generalised Barak-Erdos graph Pavel Tesemnikov
 Departament of Mechanics and Mathematics, Novosibirsk State University, Russia

Introduction

The classical Erdös-Rényi graph is an undirected graph with a fixed non-random set of vertices and a random set of edges. Each edge exists independently of the others with a given probability $p \in[0,1]$.

By numbering the vertices of the Erdös-Rényi graph and directing all the edges from the smaller vertices to the larger ones, we obtain the Barack-Erdös random graph.

We deal with a generalization of the Barack-Erdös graph. We assume that an edge between two arbitrary vertices i and $j(i<j)$ exists with a probability p_{j-i}, depending only on the difference $j-i$.

If an edge exists, its length is assumed to be equal to one.
The path $\pi=\pi_{i, j}$ from vertex i to vertex j is an ordered set of edges $\left(i \rightarrow i_{1}, i_{1} \rightarrow i_{2}, \ldots, i_{k-1} \rightarrow j\right)$. The path π exists if all edges in it exist. The length of the path is the number k, that is, the sum of the lengths of its edges.
Let $m_{i, j}$ be the minimum path length between the vertices i and j. If such paths do not exist, then by definition $m_{i, j}=\infty$.

Our main goal is to explore the asymptotic behavior for the distribution of the random variable $m_{0, n}$ when $n \rightarrow \infty$.

Background

The generalized Barak-Erdös graph was first considered in [1]. The authors studied the asymptotic behavior of the maximum length of all paths from 1 to n as $n \rightarrow \infty$ and proved the Strong Law of Large Numbers and the Central Limit Theorem for this object.
For classical Barak - Erdös graphs, similar results were proved by Foss and Konstantopoulos in [2]. In [3] Mallein and Ramassamy obtained an analytical expression for the growth rate of the maximum path length, using the natural correspondence between such graphs and the Infinite Bin Model introduced in [2].
There are other options for generalizing the Barak-Erdös model. For example, we can assume that each edge in graph has a random length. In [4], the authors investigated the asymptotic behavior of the maximum path length among all paths from 0 to n in such graph when $n \rightarrow \infty$. In this setting, the studied problem is the Last-passage percolation problem.

Main results

First, we give the results related to the asymptotic behavior of the distribution of the sequence $m_{0, n}$.
Theorem 1. Let $p_{n} \rightarrow p$ as $n \rightarrow \infty$.

1. If $p>0$, then $m_{0, n} \xrightarrow{d} \xi$, where

$$
\mathbb{P}(\xi=1)=1-\mathbb{P}(\xi=2)=p
$$

2. If $p=0$ and $p_{n} \sqrt{n} \rightarrow \infty$ as $n \rightarrow \infty$, then $m_{0, n} \xrightarrow{p} 2$;
3. If $p=0$ and $\limsup _{n \rightarrow \infty} n^{\alpha} p_{n}<\infty$ for some $\alpha \in(0,1)$, then

$$
\mathbb{P}\left(m_{0, n}<\frac{1}{1-\alpha}\right) \rightarrow 0
$$

Theorem 1 implies
Corollary 1. If $\limsup _{n \rightarrow \infty} \frac{\ln p_{n}}{\ln n} \leq-1$, then $m_{0, n} \xrightarrow{p} \infty$.
Having imposed slightly stronger conditions on the sequence p_{n}, we obtain
Proposition 1. If the series $\sum_{n>0} p_{n}$ converges, then $m_{0 n} \rightarrow \infty$ with probability one.
The final set of results is devoted to the study of the connectedness of the vertices 0 and n in the graph as $n \rightarrow \infty$. The following theorem holds.
Theorem 2. Suppose that:

1. $\sum_{n>0} n p_{n}<\infty$;
2. $p_{n} \neq 1$ for all $n \in \mathbb{N}$.

Then $\mathbb{P}\left(m_{0, n}=\infty\right) \rightarrow 1$ as $n \rightarrow \infty$, i.e the set of all paths from 0 to n is empty with high probabilty.
Finally, we provide sufficient conditions for the connectedness of the vertices 0 and n in the graph as $n \rightarrow \infty$.
Theorem 3. Let $p_{1}>0$ and at least one of the following:

1. $\liminf _{n \rightarrow \infty} n p_{n}>1$;
2. There exists a number k such that $p_{k}=1$.

Then $\mathbb{P}\left(m_{0, n}=\infty\right) \rightarrow 0$ as $n \rightarrow \infty$.

Acknowledgements

This research was supported by the RSF under grant 17-11-01173.

References

[1] Denisov, D., Foss, S. and Konstantopoulos, T., Limit theorems for a random directed slab graph, The Annals of Applied Probability, 22(2), 2012, 702-733.
[2] Foss, S. and Konstantopoulos, T., Extended renovation theory and limit theorems for stochastic ordered graphs, Markov Processes and Related Fields, 9(3),2003, 413-468.
[3] Mallein, B. and Ramassamy, S., Barak-Erdös graphs and the infinite-bin model, https://arxiv.org/abs/1610.04043, 2017.
[4] Foss, S., Martin, J. and Schmidt, P., Long-range last-passage percolation on the line, The Annals of Applied Probability, 24(1), 2014, 198-234.

Novosibirsk
Novosibib
State

