On the asymptotics for the minimal distance between extreme vertices in a generalised Barak—Erdos graph Pavel Tesemnikov

Departament of Mechanics and Mathematics, Novosibirsk State University, Russia

Introduction

The classical $Erd\ddot{o}s$ — $R\acute{e}nyi\ graph$ is an undirected graph with a fixed non-random set of vertices and a random set of edges. Each edge exists independently of the others with a given probability $p \in [0, 1].$

By numbering the vertices of the Erdös—Rényi graph and directing all the edges from the smaller vertices to the larger ones, we obtain the Barack—Erdös random graph.

Main results

First, we give the results related to the asymptotic behavior of the distribution of the sequence $m_{0,n}$.

Theorem 1. Let
$$p_n \to p$$
 as $n \to \infty$.
1. If $p > 0$, then $m_{0,n} \stackrel{d}{\to} \xi$, where
 $\mathbb{P}(\xi = 1) = 1 - \mathbb{P}(\xi = 2) = p;$
2. If $p = 0$ and $p_n \sqrt{n} \to \infty$ as $n \to \infty$, then $m_{0,n} \stackrel{p}{\to} 2;$
3. If $p = 0$ and $\limsup_{n \to \infty} n^{\alpha} p_n < \infty$ for some $\alpha \in (0, 1)$, then

$$\mathbb{P}\left(m_{0,n} < \frac{1}{1-\alpha}\right) \to 0.$$

Theorem 1 implies

We deal with a generalization of the Barack—Erdös graph. We assume that an edge between two arbitrary vertices i and j (i < j) exists with a probability p_{j-i} , depending only on the difference j-i.

If an edge exists, its length is assumed to be equal to one.

The path $\pi = \pi_{i,j}$ from vertex *i* to vertex *j* is an ordered set of edges $(i \to i_1, i_1 \to i_2, \ldots, i_{k-1} \to j)$. The path π exists if all edges in it exist. The length of the path is the number k, that is, the sum of the lengths of its edges.

Let $m_{i,j}$ be the minimum path length between the vertices i and j. If such paths do not exist, then by definition $m_{i,j} = \infty$.

Our *main goal* is to explore the asymptotic behavior for the distribution of the random variable $m_{0,n}$ when $n \to \infty$.

Background

The generalized Barak–Erdös graph was first considered in [1]. The authors studied the asymptotic behavior of the maximum length of all paths from 1 to n as $n \to \infty$ and proved the Strong Law of Large Numbers and the Central Limit Theorem for this object.

Corollary 1. If $\limsup_{n\to\infty} \frac{\ln p_n}{\ln n} \leq -1$, then $m_{0,n} \stackrel{p}{\to} \infty$.

Having imposed slightly stronger conditions on the sequence p_n , we obtain

Proposition 1. If the series $\sum_{n>0} p_n$ converges, then $m_{0n} \to \infty$ with probability one.

The final set of results is devoted to the study of the connectedness of the vertices 0 and n in the graph as $n \to \infty$. The following theorem holds.

Theorem 2. Suppose that:

1. $\sum_{n>0} np_n < \infty;$ 2. $p_n \neq 1$ for all $n \in \mathbb{N}$.

Then $\mathbb{P}(m_{0,n} = \infty) \to 1$ as $n \to \infty$, i.e the set of all paths from 0 to n is empty with high probability.

Finally, we provide sufficient conditions for the connectedness of the vertices 0 and n in the graph as $n \to \infty$.

Theorem 3. Let $p_1 > 0$ and at least one of the following:

1. $\liminf_{n \to \infty} np_n > 1;$

2. There exists a number k such that $p_k = 1$.

Then $\mathbb{P}(m_{0,n} = \infty) \to 0 \text{ as } n \to \infty$.

Acknowledgements

This research was supported by the RSF under grant 17-11-01173.

For classical Barak—Erdös graphs, similar results were proved by Foss and Konstantopoulos in [2]. In [3] Mallein and Ramassamy obtained an analytical expression for the growth rate of the maximum path length, using the natural correspondence between such graphs and the Infinite Bin Model introduced in [2].

There are other options for generalizing the Barak—Erdös model. For example, we can assume that each edge in graph has a random length. In [4], the authors investigated the asymptotic behavior of the maximum path length among all paths from 0 to n in such graph when $n \to \infty$. In this setting, the studied problem is the Last-passage percolation problem.

References

- Denisov, D., Foss, S. and Konstantopoulos, T., Limit theorems for a random directed slab graph, The Annals of Applied Probability, 22(2), 2012, 702–733.
- [2]Foss, S. and Konstantopoulos, T., Extended renovation theory and limit theorems for stochastic ordered graphs, Markov Processes and Related Fields, 9(3),2003, 413–468.
- Mallein, B. and Ramassamy, S., Barak-Erdös graphs and the infinite-bin model, |3| https://arxiv.org/abs/1610.04043, 2017.
- [4]Foss, S., Martin, J. and Schmidt, P., Long-range last-passage percolation on the line, The Annals of Applied Probability, 24(1), 2014, 198-234.

