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Introduction
The classical Erdös—Rényi graph is an undirected graph with a
fixed non-random set of vertices and a random set of edges. Each
edge exists independently of the others with a given probability
p ∈ [0, 1].

By numbering the vertices of the Erdös—Rényi graph and direct-
ing all the edges from the smaller vertices to the larger ones, we
obtain the Barack—Erdös random graph.

We deal with a generalization of the Barack—Erdös graph. We
assume that an edge between two arbitrary vertices i and j (i < j)
exists with a probability pj−i, depending only on the difference
j − i.

If an edge exists, its length is assumed to be equal to one.
The path π = πi,j from vertex i to vertex j is an ordered set of
edges (i → i1, i1 → i2, . . . , ik−1 → j). The path π exists if all
edges in it exist. The length of the path is the number k, that is,
the sum of the lengths of its edges.
Let mi,j be the minimum path length between the vertices i and
j. If such paths do not exist, then by definition mi,j =∞.

Our main goal is to explore the asymptotic behavior for the dis-
tribution of the random variable m0,n when n→∞.

Background

The generalized Barak–Erdös graph was first considered in [1]. The
authors studied the asymptotic behavior of the maximum length of
all paths from 1 to n as n→∞ and proved the Strong Law of Large
Numbers and the Central Limit Theorem for this object.
For classical Barak—Erdös graphs, similar results were proved by
Foss and Konstantopoulos in [2]. In [3] Mallein and Ramassamy ob-
tained an analytical expression for the growth rate of the maximum
path length, using the natural correspondence between such graphs
and the Infinite Bin Model introduced in [2].
There are other options for generalizing the Barak—Erdös model.
For example, we can assume that each edge in graph has a random
length. In [4], the authors investigated the asymptotic behavior of
the maximum path length among all paths from 0 to n in such
graph when n → ∞. In this setting, the studied problem is the
Last-passage percolation problem.

Main results
First, we give the results related to the asymptotic behavior of the
distribution of the sequence m0,n.
Theorem 1. Let pn→ p as n→∞.

1. If p > 0, then m0,n
d→ ξ, where

P(ξ = 1) = 1− P(ξ = 2) = p;
2. If p = 0 and pn

√
n→∞ as n→∞, then m0,n

p→ 2;
3. If p = 0 and lim sup

n→∞
nαpn <∞ for some α ∈ (0, 1), then

P
m0,n <

1
1− α

 → 0.

Theorem 1 implies

Corollary 1. If lim sup
n→∞

ln pn
lnn
≤ −1, then m0,n

p→∞.

Having imposed slightly stronger conditions on the sequence pn,
we obtain
Proposition 1. If the series Σ

n>0
pn converges, then m0n→∞

with probability one.
The final set of results is devoted to the study of the connectedness
of the vertices 0 and n in the graph as n → ∞. The following
theorem holds.
Theorem 2. Suppose that:

1. Σ
n>0

npn <∞;
2. pn 6= 1 for all n ∈ N.

Then P (m0,n =∞) → 1 as n → ∞, i.e the set of all paths
from 0 to n is empty with high probabilty.
Finally, we provide sufficient conditions for the connectedness of
the vertices 0 and n in the graph as n→∞.
Theorem 3. Let p1 > 0 and at least one of the following:

1. lim inf
n→∞

npn > 1;

2. There exists a number k such that pk = 1.
Then P (m0,n =∞)→ 0 as n→∞.
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