Shadows Under the Word-Subword Relation

R. Ahlswede

Department of Mathematics, University of Bielefeld

V. Lebedev

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute))

1 Preliminaries

For an alphabet $\mathcal{X} = \{0, 1, \dots, q-1\}$ we consider the set \mathcal{X}^n of words $x = (x_1, x_2 \cdots, x_n)$ of length n.

 $x = (x_1, x_2, \dots, x_n)$ is n-subword of $y = (y_1, y_2, \dots, y_k)$ if there is $i, i \in \{0, 1, \dots, k-n\}$ such that

$$y_{i+1} = x_1, y_{i+1} = x_1, \dots, y_{i+n} = x_n.$$

x is n-subword of y if there are l and r such that y = lxr where $|l| = i i \in \{0, 1, \dots, k-n\}$.

The shadow of y is the set of all n-subwords:

shad
$$(y) = \{x : x \text{ is } n - subword \text{ of } y\}.$$

Now for any subset $A \subset \mathcal{X}^k$ we define the shadow

$$\operatorname{shad}(A) = \bigcup_{a \in A} \operatorname{shad}(a).$$

For fixed n and k we are interested in

 $\nabla(N) = \min\{|\operatorname{shad}(A)| : A \subset \mathcal{X}^k, |A| = N\}.$

The shadow-up of x is the following set:

$$up(x) = \{y : x \text{ is } n - subword \text{ of } y\}.$$

Now for any subset $B \subset \mathcal{X}^n$ we define the shadow-up

$$up(B) = \bigcup_{b \in B} up(b).$$

For fixed n and k we are interested in

 $\Delta(M) = \min\{|up(B)| : B \subset \mathcal{X}^n, |B| = M\}.$

For an alphabet $\mathcal{X} = \{0, 1, \dots, q-1\}$ we consider the set \mathcal{X}^k of words $x^k = x_1 x_2 \cdots x_k$ of length k. For a word $a^k = a_1 a_2 \cdots a_k \in \mathcal{X}^k$ we define the left shadow

shad^{$$L$$} $(a^k) = a_2 \cdots a_k,$

that is, the subword resulting from the omission of the first letter a_1 from a^k , and the right shadow

shad^{$$R$$} $(a^k) = a_1 \cdots a_{k-1},$

that is, the subword resulting from the omission of the last letter from a^k .

We define the shadow of a^k by

$$\operatorname{shad}(a^k) = \operatorname{shad}^L(a^k) \cup \operatorname{shad}^R(a^k).$$
 (1)

Now for any subset $A \subset \mathcal{X}^k$ we define the shadow

$$\operatorname{shad}(A) = \bigcup_{a^k \in A} \operatorname{shad}(a^k).$$
 (2)

We are interested in finding optimal or at least asymptotically optimal lower bounds on the cardinality of N-sets $A \subset \mathcal{X}^k$, that is, the function

 $\nabla_k(q, N) = \min\{|\operatorname{shad}(A)| : A \subset \mathcal{X}^k, |A| = N\}.$

We write in short $\nabla_k(N)$, if q is fixed, and $\nabla(N)$, if also k is fixed.

Example 1. For any $q_1 \leq q$ we have $\nabla_k(q_1^k) \leq q_1^{k-1}$.

In particular, for $q_1 = 2$, k = 4 we have $\nabla_4(16) \leq 8$.

Example 2. In $\mathcal{X}B\mathcal{X} q$ words $xby, y \in \mathcal{X}$, have the same right shadow and, analogously, for left shadow.

shad $(\mathcal{X}0^{k-2}\mathcal{X}) = \mathcal{X}0^{k-2} \cup 0^{k-2}\mathcal{X}.$

So we have $\nabla_k(q^2) \leq 2q - 1, \ k \geq 3.$

In particular, $\nabla_4(16) \leq 7$ that is better then in Example 1. Clearly that

$$|\operatorname{shad}(A)| \ge \frac{1}{q}|A|.$$
 (3)

2 The Concept of Basic Sets

We *improve* the structure to building sets

$$\mathcal{X}^l 0^m \mathcal{X}^r \tag{4}$$

and by taking unions of such sets involving a strong symmetry property. We define now our main concept.

Definition 1. For non-negative integers l(left), m, (middle), and r (right) satisfying $l \ge r$ and k = l + m + r, we define the basic set $\mathcal{B}(k, l, r)$ in \mathcal{X}^k as follows:

$$\mathcal{B}(k,l,r) = \bigcup_{s=0}^{l-r} \mathcal{X}^{l-s} 0^m \mathcal{X}^{r+s}.$$
 (5)

$$\mathcal{B}(k,l,r) = \bigcup_{s=0}^{l-r} \mathcal{X}^{l-s} 0^m \mathcal{X}^{r+s}.$$

For example $\mathcal{B}(7,3,1)$ is the union of the rows in the matrix

 $\begin{array}{l} \mathcal{X} \ \mathcal{X} \ \mathcal{X} \ 0 \ 0 \ 0 \ \mathcal{X} \\ \mathcal{X} \ \mathcal{X} \ 0 \ 0 \ 0 \ \mathcal{X} \ \mathcal{X} \\ \mathcal{X} \ 0 \ 0 \ 0 \ \mathcal{X} \ \mathcal{X} \\ \mathcal{X} \ 0 \ 0 \ 0 \ \mathcal{X} \ \mathcal{X} \ \mathcal{X} \end{array}$ for q = 2 $|\mathcal{B}(7,3,1)| = 16 + 8 + 8 = 32$ shad $\mathcal{B}(7,3,1) = \mathcal{B}(6,3,0)$ $\begin{array}{l} \mathcal{X} \ \mathcal{X} \ \mathcal{X} \ 0 \ 0 \ 0 \\ \mathcal{X} \ \mathcal{X} \ 0 \ 0 \ 0 \ \mathcal{X} \\ \mathcal{X} \ 0 \ 0 \ 0 \ \mathcal{X} \ \mathcal{X} \\ 0 \ 0 \ 0 \ \mathcal{X} \ \mathcal{X} \ \mathcal{X} \end{aligned}$ $|\text{shad } \mathcal{B}(7,3,1)| = 8 + 4 + 4 + 4 = 20$

Lemma For every
$$l \ge r \ge 1$$
, $m + r > l$,
that is, $k = l + m + r > 2l$ we have
(i) $|\mathcal{B}(k, l, r)| = 2^{l+r} + 2^{l+r-1}(l-r) = 2^{l+r-1}(l-r)(r+2)$ for $q = 2$
(i') $|\mathcal{B}(k, l, r)| = q^{l+r} + q^{l+r-1}(l-r)(q-1)$
(ii) shad $\mathcal{B}(k, l, r) = \mathcal{B}(k-1, l, r-1)$
(iii) $|shad \mathcal{B}(k, l, r)| = 2^{l+r-2}(l-r+3)$ for $q = 2$
(iii') $|shad \mathcal{B}(k, l, r)| = \frac{N}{q} + q^{l+r-2}(q-1)$

So we have the

Theorem 1. For $N = q^{l+r} + q^{l+r-1}(l - r)(q-1)$ and $k = l + m + r > 2l \ge 2r \ge 2$

$$\frac{1}{q}N \le \nabla_k(q,N) \le \frac{1}{q}\left(1 + \frac{1}{l-r+1}\right)N.$$

Actually, the lower bound holds for all N.

Definition 2. Consider a set C of sequences of length n with cardinality M (|C| = M). Then $s_n(C, M)$ is the number of pairs (a, x), $a \in \mathcal{X}, x = (x_1, x_2, \dots, x_n) \in C$ such that we have $(a, x_1, x_2, \dots, x_{n-1}) \in C$ also. Denote by

$$s_n(M) = max_C s_n(C, M).$$
(6)

Theorem 2. For any q and k

$$\nabla_k(s_{k-1}(M)) = M.$$

We have also

Theorem 3. For any q and k

$$\triangle(M) = 2qM - s(M).$$

Theorem 4. For any q and k

$$s_k(q^k - M) = q^{k+1} - 2qM + s_k(M).$$

References

- [1] R. Ahlswede and N. Cai, Shadows and isoperimetry under the sequencesubsequence relation, Combinatorica 17 (1), 11-29, 1997.
- [2] G. Katona, A theorem on finite sets, in: Theory of Graphs, Proc. Colloq. Tihany 1966, Akadémiai Kiadó, 187-207, 1968.
- [3] J.B. Kruskal, The number of simplices in a complex, in: Mathematical optimization Techniques, Berkeley and Los Angeles, 251-278, 1963.
- [4] B.A. Lindström and H.O. Zetterström, A combinatorial problem in the k-adic number systems, Proc. Amer. Math. Soc., Vol. 18, 166-170, 1967.
- [5] B. Patkos and A. Chowdhury, Shadows and intersections in vector spaces, JCT A, to appear.