On completely regular codes in Johnson graphs J(2w+1,w) with covering radius 1

Sergey V. Avgustinovich, Ivan Yu. Mogilnykh

Sobolev Institute of Mathematics Novosibirsk State University e-mails: avgust@math.nsc.ru, ivmog84@gmail.com

Presented at ACCT '10, 7 September 2010

・ 同 ト ・ ヨ ト ・ ヨ ト

Code in graph

Code C in a graph G is a collection of vertices of G.

Distance d(x,y) between two vertices x, y is the number of edges is the shortest path, connecting x and y.

Covering radius ρ of code *C* in graph *G* is a maximum distance from a vertex of graph to the code *C*:

 $\rho = max\{d(x, C) : x \in V(G)\}.$

・ 同 ト ・ ヨ ト ・ ヨ

Code in graph

Code C in a graph G is a collection of vertices of G.

Distance d(x,y) between two vertices x, y is the number of edges is the shortest path, connecting x and y.

Covering radius ρ of code *C* in graph *G* is a maximum distance from a vertex of graph to the code *C*:

 $\rho = max\{d(x, C) : x \in V(G)\}.$

(人間) (人) (人) (人) (人) (人)

Code in graph

Code C in a graph G is a collection of vertices of G.

Distance d(x,y) between two vertices x, y is the number of edges is the shortest path, connecting x and y.

Covering radius ρ of code *C* in graph *G* is a maximum distance from a vertex of graph to the code *C*:

$$\rho = \max\{d(x, C) : x \in V(G)\}.$$

Completely regular code

$C_i = \{x \in V(G) : d(x, C) = i\}, 0 \le i \le \rho.$

For x from C_i denote with $d_i^+(x), d_i^0(x), d_i^-(x)$ the number of vertices from C_{i+1}, C_i and C_{i-1} that are adjacent with x.

A code *C* is called *completely regular*, if for any fixed $i, 0 \le i \le \rho(C)$ the numbers $d_i^+(x), d_i^0(x), d_i^-(x)$ does not depend on choice of *x* from C_i .

Intersection array of completely regular code *C*: $\{d_1^-, \ldots, d_{\rho}^-, d_0^+, \ldots, d_{\rho-1}^+\}.$

Completely regular code

$C_i = \{x \in V(G) : d(x, C) = i\}, 0 \le i \le \rho.$

For x from C_i denote with $d_i^+(x), d_i^0(x), d_i^-(x)$ the number of vertices from C_{i+1}, C_i and C_{i-1} that are adjacent with x.

A code *C* is called *completely regular*, if for any fixed $i, 0 \le i \le \rho(C)$ the numbers $d_i^+(x), d_i^0(x), d_i^-(x)$ does not depend on choice of *x* from C_i .

Intersection array of completely regular code *C*: $\{d_1^-, \ldots, d_{\rho}^-, d_0^+, \ldots, d_{\rho-1}^+\}.$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 戸

Completely regular code

$C_i = \{x \in V(G) : d(x, C) = i\}, 0 \le i \le \rho.$

For x from C_i denote with $d_i^+(x), d_i^0(x), d_i^-(x)$ the number of vertices from C_{i+1}, C_i and C_{i-1} that are adjacent with x.

A code *C* is called *completely regular*, if for any fixed $i, 0 \le i \le \rho(C)$ the numbers $d_i^+(x), d_i^0(x), d_i^-(x)$ does not depend on choice of *x* from C_i .

Intersection array of completely regular code C: $\{d_1^-, \ldots, d_{\rho}^-, d_0^+, \ldots, d_{\rho-1}^+\}.$

Completely regular code

 $C_i = \{x \in V(G) : d(x, C) = i\}, 0 \le i \le \rho.$

For x from C_i denote with $d_i^+(x)$, $d_i^0(x)$, $d_i^-(x)$ the number of vertices from C_{i+1} , C_i and C_{i-1} that are adjacent with x.

A code *C* is called *completely regular*, if for any fixed $i, 0 \le i \le \rho(C)$ the numbers $d_i^+(x), d_i^0(x), d_i^-(x)$ does not depend on choice of *x* from C_i .

Intersection array of completely regular code C: $\{d_1^-, \ldots, d_{\rho}^-, d_0^+, \ldots, d_{\rho-1}^+\}.$

・ロト ・同ト ・ヨト ・ヨト

Johnson and Kneser graphs

Johnson graph J(n,w)

$$V = \{x \subset \{1, \dots, n\} : |x| = w\}.$$

$$E = \{(x, y) : |x \cap y| = w - 1\}.$$

Kneser graph K(n,w)

$$V = \{x \subset \{1, \dots, n\} : |x| = w\}.$$

$$E = \{(x, y) : |x \cap y| = 0\}.$$

(日) (同) (三) (三)

э

Johnson and Kneser graphs

Johnson graph J(n,w)

$$V = \{x \subset \{1, \dots, n\} : |x| = w\}.$$

$$E = \{(x, y) : |x \cap y| = w - 1\}.$$

Kneser graph K(n,w)

$$V = \{x \subset \{1, \dots, n\} : |x| = w\}.$$

$$E = \{(x, y) : |x \cap y| = 0\}.$$

- 4 同 6 4 日 6 4 日 6

э

Subject of inquiry

Completely regular codes in J(2w + 1, w) with covering radius 1

Sergey V. Avgustinovich, Ivan Yu. Mogilnykh On completely regular codes in Johnson graphs J(2w+1,w) with

伺 ト イ ヨ ト イ ヨ ト

Completely regular codes in Johnson and Kneser graphs with $\rho = 1$ One sporadic construction Completely regular codes with $\rho = 1$ from (w-1)-(n, w, 1)-desig Completely regular codes in J(9,4) with $\rho = 1$ Alltoo's extension constructions

Completely regular codes in J(2w + 1, w) and K(2w + 1, w)

From work by Neumaier ¹ we get:

Statement

A code C in J(2w + 1, w) with $\rho = 1$ is completely regular iff C is completely regular code with $\rho = 1$ in K(2w + 1, w).

¹Neumaier A. Completely regular codes. Discrete Mathematics. 1992. V. 106/107. P. 353-360.

Sergey V. Avgustinovich, Ivan Yu. Mogilnykh On completely regular codes in Johnson graphs J(2w+1,w) with

Completely regular codes in Johnson and Kneser graphs with $\rho = 1$ One sporadic construction Completely regular codes with $\rho = 1$ from (w-1)-(n, w, 1)-desig Completely regular codes in J(9,4) with $\rho = 1$ Alltop's extension constructions

(日)

Completely regular code in J(9, 4) with array $\{d_1^- = 15, d_0^+ = 6\}$

Completely regular code in J(9,4) with array $\{d_1^- = 15, d_0^+ = 6\}$ exists iff exists completely regular code in K(9,4) with array $\{d_1^- = 5, d_0^+ = 2\}$.

Completely regular codes in Johnson and Kneser graphs with $\rho=1$ One sporadic construction Completely regular codes with $\rho=1$ from (w-1)-(n,w,1)-desig Completely regular codes in J(9,4) with $\rho=1$

э

Alltop's extension constructions

CRC in K(9, 4) with array $\{d_1^- = 5, d_0^+ = 2\}$

Sergey V. Avgustinovich, Ivan Yu. Mogilnykh On completely regular codes in Johnson graphs J(2w+1,w) with

Completely regular codes in Johnson and Kneser graphs with $\rho = 1$ One sporadic construction Completely regular codes with $\rho = 1$ from (w-1)-(n, w, 1)-desi Completely regular codes in J(9,4) with $\rho = 1$

Alltop's extension constructions

CRC in K(9, 4) with array $\{d_1^- = 5, d_0^+ = 2\}$

Sergey V. Avgustinovich, Ivan Yu. Mogilnykh

Completely regular codes in Johnson and Kneser graphs with $\rho=1$ One sporadic construction Completely regular codes with $\rho=1$ from (w-1)-(n,w,1)-design Completely regular codes in J(9,4) with $\rho=1$

Alltop's extension construction

CRC in K(9, 4) with array $\{d_1^- = 5, d_0^+ = 2\}$

•		L	/	\wedge				<	/	/				\rangle				
C_1			0	C	3		634				С	5						
	1-	C_1	C3	C5 \		(1	2	3	4	5	6	7	8	9	10	11	_)
		0	0	4		1	*	*	*	*	*	*	*	1	1	0	0	
	2	1	0	5		2	*	*	*	*	*	*	*	0	2	0	0	
11000 SRC 1020 1	3	0	1	3		3	*	*	*	*	*	*	*	0	0	0	2	
Orbite	4	1	1	20		4	*	*	*	*	*	*	*	0	0	2	0	1
Orbits.	5	U	2	20		5	*	*	*	*	*	*	*	0	0	1	1	
	6	0	2	2		6	*	*	*	*	*	40	*	0	0	0	2	÷
	7	1	2	1		7	*	*	*	*	*	*	*	0	0	2	0	
	8	1	3	0		8	*	*	*	*	*	*	*	0	0	0	0	
	9	0	3	1		9	*	*	*	*	*	*	*	0	0	0	0	
	10	0	1	3c	5	10	*	*	*	*	*	*	*	0	0	0	0	
	\ 11	1	1	2')	8	\ 11	*	*	*	*	*	*	*	0	0	0	0	1

Sergey V. Avgustinovich, Ivan Yu. Mogilnykh

Completely regular codes in Johnson and Kneser graphs with $\rho=1$ One sporadic construction Completely regular codes with $\rho=1$ from (w-1)-(n,w,1)-desig Completely regular codes in J(9,4) with $\rho=1$

Alltop's extension construction

Sergey V. Avgustinovich, Ivan Yu. Mogilnykh

Completely regular codes in Johnson and Kneser graphs with $\rho = 1$ One sporadic construction Completely regular codes with $\rho = 1$ from (w-1)-(n, w, 1)-design Completely regular codes in J(9,4) with $\rho = 1$

CRC in K(9, 4) with array $\{d_1^- = 5, d_0^+ = 2\}$

Completely regular code in Kneser graph K(9,4) with intersection array:

С,

$$\left\{ \mathbf{d}_{1}^{-}=5 \ , \ \mathbf{d}_{0}^{+}=2 \right\}$$

Sergey V. Avgustinovich, Ivan Yu. Mogilnykh

Completely regular codes in Johnson and Kneser graphs with $\rho = 1$ One sporadic construction Completely regular codes with $\rho = 1$ from (w-1)-(n, w, 1)-desig Completely regular codes in J(9,4) with $\rho = 1$

CRC in K(9, 4) with array $\{d_1^- = 5, d_0^+ = 2\}$

Completely regular code in Johnson graph J(9,4) with intersection array:

С,

$$\left\{ \mathbf{d}_{1}^{-}=15 \ \mathbf{d}_{0}^{+}=6 \right\}$$

Sergey V. Avgustinovich, Ivan Yu. Mogilnykh

Completely regular codes in Johnson and Kneser graphs with $\rho = 1$ One sporadic construction Completely regular codes with $\rho = 1$ from (w-1)-(n, w, 1)-desig Completely regular codes in J(9,4) with $\rho = 1$

(日)

Completely regular codes from (w - 1) - (n, w, 1)-designs

Theorem (Martin '98)

Any simple $(w - 1) - (n, w, \lambda)$ -design is completely regular in J(n, w) with $\rho = 1$.

|--|

Theorem

Let C be a
$$(w-1) - (n, w, 1)$$
-design. Then code
 $\widetilde{C} = \{x : x \subset \{1, \dots, n\}, |x| = w + 1, \exists y \in C : y \subset x\}$ is
completely regular in $J(n, w + 1)$ with $\rho = 1$.

・ロン ・部 と ・ ヨ と ・ ヨ と …

э.

Completely regular codes in Johnson and Kneser graphs with $\rho = 1$ One sporadic construction Completely regular codes with $\rho = 1$ from (w-1)-(n, w, 1)-desig Completely regular codes in J(9,4) with $\rho = 1$ Alltop's extension constructions

(日) (同) (三) (三)

Eigenvector of a graph

Let G be a graph. Define *adjacency matrix* of graph G as matrix M: $M_{xy} = 1$, if $(x, y) \in E$, $M_{xy} = 0$, otherwise.

Eigenvector u of graph G is an eigenvector of adjacency matrix of G.

Completely regular codes in Johnson and Kneser graphs with $\rho = 1$ One sporadic construction Completely regular codes with $\rho = 1$ from (w-1)-(n, w, 1)-desig Completely regular codes in J(9,4) with $\rho = 1$ Alltop's extension constructions

(日) (同) (三) (三)

Eigenvector of a graph

Let G be a graph. Define *adjacency matrix* of graph G as matrix M: $M_{xy} = 1$, if $(x, y) \in E$, $M_{xy} = 0$, otherwise.

Eigenvector u of graph G is an eigenvector of adjacency matrix of G.

Completely regular codes in Johnson and Kneser graphs with $\rho = 1$ One sporadic construction Completely regular codes with $\rho = 1$ from (w-1)-(n, w, 1)-desig Completely regular codes in J(9,4) with $\rho = 1$ Alltop's extension constructions

Eigenvectors of Johnson graphs

Let u be an eigenvector of J(n, w). Define the vector \hat{u} , such that for any vertex x of graph J(n, w'), w < w'

$$\widehat{u}_x := \sum_{y \subset x} u_y$$

Theorem, Godsil, "Association schemes'

If u is eigenvector of J(n, w) then \hat{u} is eigenvector of J(n, w').

Completely regular codes in Johnson and Kneser graphs with $\rho = 1$ One sporadic construction Completely regular codes with $\rho = 1$ from (w-1)-(n, w, 1)-desig Completely regular codes in J(9,4) with $\rho = 1$ Alltop's extension constructions

(日) (同) (三) (三)

Eigenvectors of Johnson graphs

Let u be an eigenvector of J(n, w). Define the vector \hat{u} , such that for any vertex x of graph J(n, w'), w < w'

$$\widehat{u}_x := \sum_{y \subset x} u_y$$

Theorem, Godsil, "Association schemes"

If u is eigenvector of J(n, w) then \hat{u} is eigenvector of J(n, w').

Completely regular codes in Johnson and Kneser graphs with $\rho = 1$ One sporadic construction **Completely regular codes with** $\rho = 1$ from (w-1)-(n, w, 1)-desig Completely regular codes in J(9,4) with $\rho = 1$ Alltop's extension constructions

Eigenvectors of graphs and completely regular codes with covering radius 1

Lemma (Folklore)

Any completely regular code in G with covering radius 1 is eigenvector of graph G, which coordinates takes two different values per se.

Completely regular codes in Johnson and Kneser graphs with $\rho = 1$ One sporadic construction Completely regular codes with $\rho = 1$ from (w-1)-(n, w, 1)-desin Completely regular codes in J(9,4) with $\rho = 1$ Alltop's extension constructions

イロト イポト イヨト イヨト 二日

Completely regular codes in J(9,4) with $\rho = 1$

Theorem

The only completely regular codes with $\rho = 1$ to exist in J(9, 4) are codes with the following intersection arrays: $\{d_1^- = 4, d_0^+ = 5\}$, Code is $\{x : i \in x\}$, $i \in \{1, ..., 9\}$ $\{d_1^- = 15, d_0^+ = 6\}$, "Sporadic" code, $\{d_1^- = 12, d_0^+ = 9\}$, Code from STS(9).

Completely regular codes in Johnson and Kneser graphs with $\rho = 1$ One sporadic construction Completely regular codes with $\rho = 1$ from (w-1)-(n, w, 1)-desin Completely regular codes in J(9,4) with $\rho = 1$ Alltop's extension constructions

Alltop's extension constructions

Let C be a $t - (2w + 1, w, \lambda)$ -design.

$$C' = \{x \cup 2w + 2 : x \in C\},\$$

$$C'' = \{\{1,\ldots,2w+1\} \setminus x : x \in C\},\$$

Theorem (Alltop, 1975)

Let C be a $t - (2w + 1, w, \lambda)$ -design with $t \equiv 0 \pmod{2}$. Then $C' \cup C''$ is a $t + 1 - (2w + 2, w + 1, \lambda)$ -design.

Proposition

Let C be a completely regular code in J(2w + 1, w) with $\rho = 1$. Then code $C' \cup C''$ is completely regular in J(2w + 2, w + 1) with $\rho = 1$.

Completely regular codes in Johnson and Kneser graphs with $\rho = 1$ One sporadic construction Completely regular codes with $\rho = 1$ from (w-1)-(n, w, 1)-desin Completely regular codes in J(9,4) with $\rho = 1$ Alltop's extension constructions

Alltop's extension constructions

Let C be a $t - (2w + 1, w, \lambda)$ -design.

$$C' = \{x \cup 2w + 2 : x \in C\},\$$

$$C'' = \{\{1,\ldots,2w+1\} \setminus x : x \in C\},\$$

Theorem (Alltop, 1975)

Let C be a $t - (2w + 1, w, \lambda)$ -design with $t \equiv 0 \pmod{2}$. Then $C' \cup C''$ is a $t + 1 - (2w + 2, w + 1, \lambda)$ -design.

Proposition

Let C be a completely regular code in J(2w + 1, w) with $\rho = 1$. Then code $C' \cup C''$ is completely regular in J(2w + 2, w + 1) with $\rho = 1$.

Completely regular codes in Johnson and Kneser graphs with $\rho = 1$ One sporadic construction Completely regular codes with $\rho = 1$ from (w-1)-(n, w, 1)-desig Completely regular codes in J(9,4) with $\rho = 1$ Alltop's extension constructions

Alltop's extension constructions

Let C be a $t - (2w + 1, w, \lambda)$ -design.

$$C' = \{x \cup 2w + 2 : x \in C\},\$$
$$C'' = \{\{1, \dots, 2w + 1\} \setminus x : x \in C\},\$$
$$\overline{C} = \{x \subset \{1, \dots, 2w + 1\} : |x| = w, x \notin C\}.$$

Theorem (Alltop, 1975)

Let C be a
$$t - (2w + 1, w, \lambda)$$
-design with $t \equiv 1 \pmod{2}$,
 $|C| = \binom{2w+1}{w}/2$. Then $C' \cup \overline{C}''$ is a $t + 1 - (2w, w, \lambda)$ -design

Proposition

Let *C* be a completely regular code in J(2w + 1, w) with $\rho = 1$ such that $|C| = \binom{2w+1}{w}/2$. Then code $C' \cup \overline{C}''$ is completely regular in J(2w + 2, w + 1) with $\rho = 1$.

Sergey V. Avgustinovich, Ivan Yu. Mogilnykh

Completely regular codes in Johnson and Kneser graphs with $\rho = 1$ One sporadic construction Completely regular codes with $\rho = 1$ from (w-1)-(n, w, 1)-desig Completely regular codes in J(9,4) with $\rho = 1$ Alltop's extension constructions

Alltop's extension constructions

Let C be a $t - (2w + 1, w, \lambda)$ -design.

$$C' = \{x \cup 2w + 2 : x \in C\},\$$
$$C'' = \{\{1, \dots, 2w + 1\} \setminus x : x \in C\},\$$
$$\overline{C} = \{x \subset \{1, \dots, 2w + 1\} : |x| = w, x \notin C\}.$$

Theorem (Alltop, 1975)

Let C be a
$$t - (2w + 1, w, \lambda)$$
-design with $t \equiv 1 \pmod{2}$,
 $|C| = \binom{2w+1}{w}/2$. Then $C' \cup \overline{C}''$ is a $t + 1 - (2w, w, \lambda)$ -design

Proposition

Let *C* be a completely regular code in J(2w + 1, w) with $\rho = 1$ such that $|C| = \binom{2w+1}{w}/2$. Then code $C' \cup \overline{C}''$ is completely regular in J(2w + 2, w + 1) with $\rho = 1$.

Completely regular codes in Johnson and Kneser graphs with $\rho=1$ One sporadic construction Completely regular codes with $\rho=1$ from (w-1)-(n,w,1)-desig Completely regular codes in J(9,4) with $\rho=1$ Alltop's extension constructions

Extension of completely regular codes in J(9, 4)

Completely regular code in J(9, 4) with intersection array $\{d_1^- = 15, d_0^+ = 6\}$ is extended to completely regular code in J(10, 5) with intersection array $\{d_1^- = 20, d_0^+ = 8\}$.

Completely regular code in J(9, 4) with intersection array $\{d_1^- = 12, d_0^+ = 9\}$ is extended to completely regular code in J(10, 5) with intersection array $\{d_1^- = 16, d_0^+ = 12\}$.

Completely regular codes in Johnson and Kneser graphs with $\rho=1$ One sporadic construction Completely regular codes with $\rho=1$ from (w-1)-(n,w,1)-desig Completely regular codes in J(9.4) with $\rho=1$ Alltop's extension constructions

イロト イポト イヨト イヨト

Extension of completely regular codes in J(9, 4)

Completely regular code in J(9, 4) with intersection array $\{d_1^- = 15, d_0^+ = 6\}$ is extended to completely regular code in J(10, 5) with intersection array $\{d_1^- = 20, d_0^+ = 8\}$.

Completely regular code in J(9,4) with intersection array $\{d_1^- = 12, d_0^+ = 9\}$ is extended to completely regular code in J(10,5) with intersection array $\{d_1^- = 16, d_0^+ = 12\}$.

Studied completely regular codes with $\rho = 1$ in J(2w + 1, w)

Enumerated intersection arrays of completely regular codes in Johnson graph J(9,4) with $\rho = 1$

New construction of completely regular codes from (w-1) - (n, w, 1)-designs

Alltop's extension constructions applied to completely regular codes in J(2w + 1, w) with $\rho = 1$ give completely regular codes with $\rho = 1$ in J(2w + 2, w + 1)

< ロ > < 同 > < 三 > < 三

Studied completely regular codes with ho = 1 in J(2w + 1, w)

Enumerated intersection arrays of completely regular codes in Johnson graph J(9,4) with $\rho = 1$

New construction of completely regular codes from (w-1) - (n, w, 1)-designs

Alltop's extension constructions applied to completely regular codes in J(2w + 1, w) with $\rho = 1$ give completely regular codes with $\rho = 1$ in J(2w + 2, w + 1)

Studied completely regular codes with ho = 1 in J(2w + 1, w)

Enumerated intersection arrays of completely regular codes in Johnson graph J(9,4) with $\rho = 1$

New construction of completely regular codes from (w - 1) - (n, w, 1)-designs

Alltop's extension constructions applied to completely regular codes in J(2w + 1, w) with $\rho = 1$ give completely regular codes with $\rho = 1$ in J(2w + 2, w + 1)

Studied completely regular codes with ho = 1 in J(2w + 1, w)

Enumerated intersection arrays of completely regular codes in Johnson graph J(9,4) with $\rho = 1$

New construction of completely regular codes from (w - 1) - (n, w, 1)-designs

Alltop's extension constructions applied to completely regular codes in J(2w + 1, w) with $\rho = 1$ give completely regular codes with $\rho = 1$ in J(2w + 2, w + 1)

イロト イポト イラト イラト

Thank you for your attention

Sergey V. Avgustinovich, Ivan Yu. Mogilnykh On completely regular codes in Johnson graphs J(2w+1,w) with

/□ ▶ < 글 ▶ < 글