Classification of optimal (v, 4, 1) optical orthogonal codes with $v \le 76$

Tsonka Baicheva Svetlana Topalova

Institute of Mathematics and Informatics Bulgarian Academy of Sciences

> September, 2010 Novosibirsk, Russia

Introduction I

- F.R.K. Chung, J.A. Salehi and V.K. Wei, Optical orthogonal codes: design, analysis and applications, *IEEE Trans. Inform. Theory* 35, 595–604, 1989.
 - Optical code-division multiple-access communication systems
 - Mobile radio
 - Frequence-hopping spread spectrum communications
 - Constructing protocol-sequence sets for the M-active-out-of-T users collision channel without feedback
 - Radar and sonar signal design
 - Public key algorithm for optical communication based on lattice cryptography

Optical orthogonal codes with specific parameters are closely related to

- Constant-weight error-correcting codes
- Difference sets
- Cyclic partial designs
- Well-correlated binary sequences

• Z_v the ring of integers modulo v

Definition

A ($v, k, \lambda_a, \lambda_c$) optical orthogonal code (OOC) can be defined as a collection $C = \{C_1, ..., C_s\}$ of *k*-subsets (*codeword-sets*) of Z_v such that any two distinct translates of a codeword-set share at most λ_a elements while any two translates of two distinct codeword-sets share at most λ_c elements:

$$|Ci \cap (Ci+t)| \le \lambda_a, \ 1 \le i \le s, \ 1 \le t \le v-1$$
(1)

 $|Ci \cap (Cj+t)| \le \lambda_c, \ 1 \le i < j \le s, \ 0 \le t \le v-1$ (2)

- (1) is called the auto-correlation property
- (2) is called the cross-correlation property

Basic definitions II

- The size of C is the number s of its codeword-sets.
- A (v, k, λ, λ) OOC is also denoted by (v, k, λ) OOC.

 $C = \{c_1, c_2, ..., c_k\}$ is a codeword-set $\triangle'C$ is the multiset of the values of the differences $c_i - c_j, i \neq j, i, j = 1, 2, ..., k$ $\triangle C$ is the underlying set of $\triangle'C$

- Autocorrelation property ⇒ at most λ_a differences are the same
- Cross-correlation property \Rightarrow if $\lambda_c = 1$ then $\Delta C_1 \bigcap \Delta C_2 = \emptyset$ for two codeword-sets C_1 and C_2 of the $(v, k, \lambda_a, 1)$ OOC

Definition

Two $(v, k, \lambda_a, \lambda_c)$ optical orthogonal codes are equivalent if they can be mapped to one another by an automorphism of Z_v and (or) replacement of codeword-sets by some of their translates.

Bound for the size of (v, k, 1) OOC

$$s \leq \left\lfloor \frac{(\nu-1)}{k(k-1)} \right\rfloor$$

- (v, k, 1) OOCs for which s = \[\frac{(v-1)}{k(k-1)} \] are called optimal
 If s = \frac{(v-1)}{k(k-1)} the (v, k, 1) OOC is called perfect
- A perfect (v, k, 1) OOC corresponds to
 - a cyclic 2-(v,k,1) design
 - a cyclic (v,k,1) difference family

Investigations about (v, k, 1) OOC I

- K. Chen and L. Zhu, Existence of (q, k, 1) difference families with q a prime power and k = 4, 5. *Combin. Des.* **7**, 21–30, 1999.
- M. Buratti, Cyclic designs with block size 4 and related optimal optical orthogonal codes, *Des. Codes Cryptogr.* **26**, 111–125, 2002.
- Y. Chang, R. Fuji-Hara and Y. Miao, Combinatorial constructions of optimal optical orthogonal codes with weight 4, *IEEE Trans. Inform. Theory*, **49**, 1283–1292, 2003.
- R.Julian, R. Abel and M. Buratti, Some progress on (v, 4, 1) difference families and optical orthogonal codes, *J. Combin. Theory*, Ser. A 106, 59–75, 2004.
- X. Wang and Y. Chang, Further results on (v,4,1)-perfect difference families, *Discrete Math.*, **310**, Issues 13-14, 1995–2006, 2010.
- M. Buratti and A. Pasotti, Further progress on difference families with block size 4 or 5, *Des. Codes Cryptogr.* Published online, doi:10.1007/s10623-009-9335-6.

Investigations about (v, k, 1) OOC II

- An optimal (v, 4, 1) OOC exists for all $v \leq 1212, v \neq 25$
- Classification results for small v are only known for cyclic 2 (v, 4, 1) designs, namely for the perfect (v, 4, 1) OOCs for v = 37, 49 and 61.

- W. Chu and C.J. Colbourn, Optimal (n, 4, 2)- OOC of small order, *Discrete Math.* **279**, 163–172, 2004.
 - A table of optimal (v, 4, 2) OOCs with v ≤ 44 (with 3 possible exceptions) is presented.
 - Construction by an algorithm based on the maximum clique search problem.

We classify up to equivalence optimal (v, 4, 1) OOCs with v < 76

Our approach:

ordering all possibilities for codeword-sets with respect to the action of the automorphisms of the cyclic group of order v, and then applying the well-known techniques of back-track search with minimality test on the partial solutions

P.Kaski and P.Östergård, Classification algorithms for codes and designs, Springer, Berlin, 2006.

Classification algorithm I

- We relate to each codeword-set $C = \{c_1, c_2, c_3, c_4\}$ a codeword-set vector $\vec{C} = (c_1, c_2, c_3, c_4)$ such that $c_1 < c_2 < c_3 < c_4$
- If we replace a codeword-set C ∈ C with a translate C + t ∈ C, we obtain an equivalent OOC

w.l.o.g. we assume that each codeword-set vector of the optimal (v, 4, 1) OOC is lexicographically smaller than the codeword-set vectors of its translates

• This means that $c_1 = 0$

We create an array *L* of all 4-dimensional vectors over Z_v which might become codeword-set vectors

- We construct the vectors of L in lexicographic order
- To each vector we apply the automorphisms
 φ_i, i = 1, 2, ...m 1 of Z_v and if some of them maps it to a smaller vector, we do not add this vector since it is already somewhere in the array
- If we add the current vector *C* to the list, we also add after it the *m* - 1 vectors to which *C* is mapped by φ_i, *i* = 1, 2, ...*m* - 1.

This way we obtain the array *L* whose elements L_x , x = 0, 1, ..., f are all the possible codeword-set vectors

Classification algorithm III

Codewordsets with suitable autocorrelation Lo $L_1 = \varphi_1 L_0$ $L_2 = \varphi_2 L_0$ $L_{m-1} = \varphi_{m-1}L_0$ Lm $L_{m+1} = \varphi_1 L_m$ $L_{m+2} = \varphi_2 L_m$ $L_{2m-1} = \varphi_{m-1}L_m$ Lim $L_{im+1} = \varphi_1 L_m$ $L_{im+2} = \varphi_2 L_m$ $L_{(i+1)m-1} = \varphi_{m-1}L_m$

It is possible for two different automorphisms to map a codeword-set vector to one and the same codeword-set vector.

Example

The automorphism group of Z_{30} is of order 8 $\varphi_0(a) = a, \varphi_1(a) = 7a, \varphi_2(a) = 11a, \varphi_3(a) = 13a, \varphi_4(a) = 17a,$ $\varphi_5(a) = 19a, \varphi_6(a) = 23a, \varphi_7(a) = 29a, \text{ where } a \in Z_{30}.$ $\vec{C_1} = (0, 1, 3, 22) \xrightarrow{\varphi_1} (0, 7, 21, 4) \xrightarrow{+26} (26, 3, 17, 0) \rightarrow$ $(0, 3, 17, 26) = \vec{C_2}$ $\vec{C_1} = (0, 1, 3, 22) \xrightarrow{\varphi_3} (0, 13, 9, 16) \xrightarrow{+17} (17, 0, 26, 3) \rightarrow$ $(0, 3, 17, 26) = \vec{C_2}$

- We keep for each possible codeword-set vector L_x the smallest number a, such that L_x = L_y and y = a (mod m)
- We keep this *a* in place of the first codeword-set element *c*₁, which is always 0

This way for each *x* we can directly obtain the smallest *y*, such that L_y is obtained by applying on L_x a given automorphism of Z_y .

Classification algorithm VI

We construct the OOC choosing the codeword-sets among the elements of L by backtrack search until we find the s codeword-sets

 $L_{x_1}, L_{x_2}, \ldots, L_{x_s}$

- We choose the r + 1-st element L_{x_{r+1}} (x_{r+1} > x_r) of the codeword-set to have no common differences with the previous r ones
- When we add the r + 1-st codeword-set number x_{r+1}, we also find the r + 1 numbers obtained by applying φ_i, i = 1, 2, ..., m to the current partial solution and sort them
- If the obtained array is lexicographically smaller than the current one, it means that an equivalent sub-code with r + 1 codeword-sets has already been considered, and we look for the next possibility for the r + 1-st codeword-set.

Classification results

V	S	OOCs	V	S	OOCs	V	S	OOCs
26	2	1	43	3	1772	60	4	7585950
27	2	4	44	3	3208	61p	5	18132
28	2	4	45	3	12428	62	5	20736
29	2	11	46	3	9999	63	5	529996
30	2	41	47	3	20692	64	5	409632
31	2	42	48	3	51510	65	5	3774498
32	2	64	49p	4	224	66	5	6512840
33	2	196	50	4	336	67	5	18814608
34	2	181	51	4	5530	68	5	27675160
35	2	378	52	4	6382	69	5	153524880
36	2	731	53	4	28672	70	5	204850952
37p	3	2	54	4	56064	71	5	425759570
38	3	12	55	4	213662	72	5	979134632
39	3	96	56	4	263102	73p	6	1426986
40	3	86	57	4	1105056	74	6	2140556
41	3	338	58	4	1011104	75	6	59992260
42	3	998	59	4	2575944	76	6	42145856

Table: Inequivalent optimal (v,4,1) OOCs

Tsonka Baicheva, Svetlana Topalova

Classification of optimal (v, 4, 1) OOCs with $v \leq 76$

Classification results

v	S	OOCs	V	S	OOCs	V	S	OOCs		
26	2	1	43	3	1772	60	4	7585950		
27	2	4	44	3	3208	61p	5	18132		
28	2	4	45	3	12428	62	5	20736		
29	2	11	46	3	9999	63	5	529996		
30	2	41	47	3	20692	64	5	409632		
31	2	42	48	3	51510	65	5	3774498		
32	2	64	49p	4	224	66	5	6512840		
33	2	196	50	4	336	67	5	18814608		
34	2	181	51	4	5530	68	5	27675160		
35	2	378	52	4	6382	69	5	153524880		
36	2	731	53	4	28672	70	5	204850952		
37p	3	2	54	4	56064	71	5	425759570		
38	3	12	55	4	213662	72	5	979134632		
39	3	96	56	4	263102	73p	6	1426986		
40	3	86	57	4	1105056	74	6	2140556		
41	3	338	58	4	1011104	75	6	59992260		
42	3	998	59	4	2575944	76	6	42145856		

Table: Inequivalent optimal (v,4,1) OOCs

Tsonka Baicheva, Svetlana Topalova

Classification of optimal (v, 4, 1) OOCs with $v \leq 76$