THE GENERALIZATION OF SOME CONSTRUCTIONS BY MÉGYESI TO HJELMSLEV PLANES

Stoyan Boev

New Bulgarian University

Ivan Landjev

Institute of Mathematics and Informatics, BAS

Finite chain rings

Definition. A ring (associative, $1 \neq 0$, ring homomorphisms preserving 1) is called a **left (right) chain ring** if the lattice of its left (right) ideals forms a chain.

Theorem. For a finite ring R with radical $N \neq 0$ the following conditions are equivalent.

- (i) R is a left chain ring;
- (ii) the principal ideals form a chain;
- (iii) R is a local ring and $N=R\theta$ for any $\theta\in N\setminus N^2$;
- (iv) R is a right chain ring.

Moreover, if R satisfies the above conditions, every proper left (right) ideal of R has the form $N^i=R\theta^i=\theta^iR$, for some $i\in\mathbb{N}$.

W.E. Clark, D.A. Drake, Abh. aus dem Math. Sem. der Univ. Hamburg 39(1974), 147–153.

B. McDonald, Finite rings with identity, 1974.

A. Nechaev, Mat. Sbornik 20(1973), 364-382.

Example. Chain Rings with q^2 Elements

$$R \colon |R| = q^2, \ R/\operatorname{rad} R \cong \mathbb{F}_q$$

$$R > \operatorname{rad} R > (0)$$

- R. Raghavendran, Compositio Mathematica 21 (1969), 195-229.
- A. Cronheim, Geom. Dedicata 7(1978), 287–302.

If $q = p^r$ there exist r + 1 isomorphism classes of such rings:

ullet σ -dual numbers over \mathbb{F}_q , $\forall \sigma \in \operatorname{Aut} \mathbb{F}_q$: $R_\sigma = \mathbb{F}_q \oplus \mathbb{F}_q t$; addition – componentwise, multiplication –

$$(x_0 + x_1 t)(y_0 + y_1 t) = x_0 y_0 + (x_0 y_1 + x_1 \sigma(y_0))t;$$

 $R_{\sigma} = \mathbb{F}_q[t; \sigma]/(t^2).$

• the Galois ring $GR(q^2, p^2) = \mathbb{Z}_{p^2}[X]/(f(X))$, f(X) is monic of degree r, basic irreducible (irreducible mod p).

Projective and affine Hjelmslev planes

- $\bullet \ M = R_R^3; \quad M^* = M \setminus M\theta;$
- $\bullet \ \mathcal{P} = \{xR \mid x \in M^*\};$
- $\mathcal{L} = \{xR + yR \mid x, y \text{ linearly independent}\};$
- $I \subseteq \mathcal{P} \times \mathcal{L}$ incidence relation;
- \bigcirc neighbour relation:

(N1)
$$X \bigcirc Y$$
 if $\exists s, t \in \mathcal{L} \colon X, YIs, X, YIt$;

(N2)
$$s \bigcirc t$$
 if $\exists X, Y \in \mathcal{P} \colon X, YIs, X, YIt$.

Definition. The incidence structure $\Pi = (\mathcal{P}, \mathcal{L}, I)$ with neighbour relation \bigcirc is called the (right) projective Hjelmslev plane over the chain ring R.

Notation: $\mathrm{PHG}(R_R^3)$

A. Kreuzer, Resultate der Mathematik, 12 (1987), 148–156.

A. Kreuzer, *Projektive Hjelmslev-Räume*, PhD Thesis, Technische Universität München, 1988.

F.D. Veldkamp, Handbook of Incidence Geometry, 1995, 1033–1084.

$\mathrm{PHG}(\mathbb{Z}_9^3)$

$AHG(R_R^2)$

Points: $(x,y), x,y \in R$

Lines: Y = aX + b, X = cY + d, $a, b, d \in R$, $c \in \operatorname{rad} R$

The line Y = aX + b has slope a;

the line X=cY+d has slope ∞_j if $c=\theta\gamma_j$, $\gamma_j\in\Gamma$

 $\Gamma(R)$ – a set of q elements of R no two of which are congruent modulo $\operatorname{rad} R$

Multisets of points

Definition. A multiset in $\Pi=(\mathcal{P},\mathcal{L},I)=\mathrm{PHG}(R_R^3)$ is defined as a mapping

$$\mathfrak{K}:\mathcal{P} \to \mathbb{N}_0.$$

• $\mathcal{Q} \subset \mathcal{P}$: $\mathfrak{K}(\mathcal{Q}) = \sum_{x \in \mathcal{Q}} \mathfrak{K}(x)$.

Definition. (n, w)-blocking multiset in Π is a multiset $\mathfrak R$ with

- 1) $\mathfrak{K}(\mathcal{P}) = n$;
- 2) for every plane $H: \mathfrak{K}(H) \geq w$;
- 3) there exists a plane H_0 : $\mathfrak{K}(H_0) = w$;

Blocking Sets in $PHG(R_R^3)$

Theorem. R finite chain ring with $|R| = q^m$, $R/\operatorname{rad} R \cong \mathbb{F}_q$. The minimal size of a (n,w)-blocking set in $\operatorname{PHG}(R_R^3)$ is $wq^{m-1}(q+1)$.

Corollary. The minimal size of a (n,1)-blocking set is $q^{m-1}(q+1)$. In case of equality, it consists of the points of a line.

Blocking Sets with $n = q^2 + q + 1$

- (1) a subplane $\cong PG(2,q)$
- (2) Lines: ℓ_0 , ℓ_1 with $\ell_0 \bigcirc \ell_1$; $x \in \ell_0 \setminus \ell_1$.

$$\mathfrak{K}(P) = \left\{ \begin{array}{ll} 1 & \text{if } P \in (\ell_0 \setminus [x]) \cup \{x\} \text{ or } P \in \ell_1 \cap [x] \\ 0 & \text{otherwise.} \end{array} \right.$$

Theorem. Let \mathfrak{K} be an irreducible $(q^2+q+1,1)$ -blocking set in $\mathrm{PHG}(R_R^3)$, $|R|=q^2$, $R/\operatorname{rad} R\cong \mathbb{F}_q$. Then either $\mathrm{Supp}\,\mathfrak{K}$ is a projective plane of order q or else \mathfrak{K} is a blocking set of the type (2). If $R=\mathrm{GR}(q^2,p^2)$, then \mathfrak{K} is of the type (2).

Rédei-type Blocking Sets in $PHG(R_R^3)$

Definition. Let U be a set of q^2 points in $AHG(R_R^2)$. We say that the infinite point (a) is determined by U if there exist different points $P,Q \in U$ such that P,Q and (a) are collinear in $PHG(R_R^3)$.

Theorem. Let U be a set of q^2 points in $\mathrm{AHG}(R_R^2)$. Denote by D the set of infinite points determined by U and by $D^{(1)}$ the set of neighbour classes in the infinite line class containing points from D. If $|D| < q^2 + q$ then there exists an irreducible blocking set in $\mathrm{PHG}(R_R^3)$ of size $q^2 + q + 1 + |D| - |D^{(1)}|$ that contains U. In particular, if D contains representatives from all neighbour classes on the infinite line, then $B = U \cup D$ is an irreducible blocking set of size $q^2 + |D|$ in $\mathrm{PHG}(R_R^3)$.

Definition. A blocking set of size q^2+u is said to be of Rédei type if there exists a line ℓ with $|B\cap\ell|=u$ and $|B\cap[\ell]|=u$.

We are interested in sets U that are obtained in the form

$$U = \{(x, f(x)) \mid x \in R\}$$

for some suitably chosen function $f\colon R\to R$. Let P=(x,f(x)) and Q=(y,f(y)) be two different points from U. We have the following possibilities:

Let $x, y \in R$, $x \neq y$. We have the following possibilities:

1) If $x-y \notin \operatorname{rad} R$ then (x, f(x)) and (y, f(y)) determine the point (a), where

$$(a) = (f(x) - f(y))(x - y)^{-1}.$$

2) If $x-y\in \operatorname{rad} R\setminus\{0\}$, and $f(x)-f(y)\not\in\operatorname{rad} R$ the points (x,f(x)) and (y,f(y)) determine the point (∞_i) if

$$(x-y)(f(x)-f(y))^{-1}=\theta\gamma_i,\gamma_i\in\Gamma.$$

- 3) If $x-y=\theta a\in \operatorname{rad} R\setminus\{0\}$, and $f(x)-f(y)=\theta b\in \operatorname{rad} R$, $a,b\in\Gamma$
- a) if $b \neq 0$, (x, f(x)) and (y, f(y)) determine all points (c) with $c \in ab^{-1} + \operatorname{rad} R$;
 - b) if b=0, (x,f(x)) and (y,f(y)) determine the points $(\infty_0),\ldots,(\infty_{q-1})$.

Theorem A. Let R be a chain ring with $|R| = q^2$, $R/\operatorname{rad} R \cong \mathbb{F}_q$. Let G be a subgroup of R^* with $q-1 < |G| < q^2 - q$. Define the pointset U by

$$U = \{(a\theta, 0) \mid a \in \Gamma\} \cup \{(a, 0) \mid a \in G\} \cup \{(0, b) \mid b \in R^* \setminus G\}.$$
 (1)

The number of directions determined by U is $q^2+q-|G|$. There exists a blocking set of Rédei type of size at most

$$2q^2 + q - |G| + |H|,$$

where $H = \nu(G)$ is the homomorphic image of G under the natural homomorphism $\nu: R \to R/\operatorname{rad} R$.

In the case of Galois rings $R=\mathrm{GR}(q^2,p^2)$, $q=p^r$,

$$R^* = G_1 \times C_p \times \ldots \times C_p,$$

where G_1 is a cyclic group of order q-1 and r cyclic groups of order p.

If we take G to be a subgroup of R^st containing G_1 then $|D^{(1)}|=q+1$.

For example, if $|G|=(q^2-q)/p$ then we get a blocking set B of size

$$|B| = (2 - \frac{1}{p})q^2 + (1 + \frac{1}{p})q.$$

In the case of p=2, we get $|B|=3/2(q^2+q)$.

Theorem B. Let G be a proper subgroup of (R,+) with $q<|G|< q^2$. Define

$$U = \{(a,0) \mid a \in G\} \cup \{(b,1) \mid b \notin G\}. \tag{2}$$

The number of directions determined by U is $q^2 + 2q - |G|$. Consequently, there exist blocking sets of Rédei type of size at most $2q^2 + 2q - |G|$.

If G is a group of order q^2/p with $R=\langle G\cup \operatorname{rad} R\rangle$ then $\mathbb{G}/G\cap \operatorname{rad} R\cong R/\operatorname{rad} R$ and the blocking set in question has size

$$(2-\frac{1}{p})q^2+2q,$$

which in case of p=2 gives size

$$\frac{3}{2}q^2 + 2q.$$