Classification of Binary Linear Codes with Minimum distance 8

Iliya Bouyukliev¹ Erik Jacobsson²

¹Institute of Mathematics and Informatics Bulgarian Academy of Sciences

²Department of Mathematical Sciences University of Gothenburg/Chalmers University of Technology

Twelfth International Workshop on Algebraic and Combinatorial Coding Theory, ACCT 2010

Objectives

First, we classify all binary linear codes with minimum distance 8 and codimension up to 14.

n/k	1	2	3	4	5	6	7	8	9	10	11	12	13	14
11	11	7	6	5	4	4	3	2	2	2	1			
12	12	8	6	6	4	4	4	3	2	2	2	1		
13	13	8	7	6	5	4	4	4	3	2	2	2	1	
14	14	9	8	7	6	5	4	4	4	3	2	2	2	1
15	15	10	8	8	7	6	5	4	4	4	3	2	2	2
16	16	10	8	8	8	6	6	5	4	4	4	2	2	2
17	17	11	9	8	8	7	6	6	5	4	4	3	2	2
18	18	12	10	8	8	8	7	6	6	4	4	4	3	2
19	19	12	10	9	8	8	8	7	6	5	4	4	4	3
20	20	13	11	10	9	8	8	8	7	6	5	4	4	4
21	21	14	12	10	10	8	8	8	8	7	6	5	4	4
22	22	14	12	11	10	9	8	8	8	8	7	6	5	4
23	23	15	12	12	11	10	9	8	8	8	8	7	6	5
24	24	16	13	12	12	10	10	8	8	8	8	8	6	6
25	25	16	14	12	12	11	10	9	8	8	8	8	6	6
26	26	17	14	13	12	12	11	10	9	8	8	8	7	6
27	27	18	15	14	13	12	12	10	10	9	8	8	8	7
28	28	18	16	14	14	12	12	11	10	10	8	8	8	8

э

Second, we prove the non-existence a [33, 18, 8] code.

n/k	14	15	16	17	18	19	20	21	22	23	24	25	26	27
32	8- <mark>9</mark>	8	8	8	6-7	6	6	6	5	4	4	4	4	2
33	9- 10	8- <mark>9</mark>	8	8	7- <mark>8</mark>	6-7	6	6	6	5	4	4	4	3
34	10	9- 10	8- <mark>9</mark>	8	8	7- <mark>8</mark>	6-7	6	6	6	4	4	4	4
35	10	10	9- 10	8	8	8	7- <mark>8</mark>	6-7	6	6	5	4	4	4
36	11	10	10	8-9	8	8	8	7-8	6-7	6	6	5	4	4
37	12	10-11	10	9-10	8-9	8	8	8	7- <mark>8</mark>	6- <mark>7</mark>	6	6	5	4
38	12	11-12	10-11	10	9-10	8-9	8	8	8	6- <mark>8</mark>	6- 7	6	6	5
39	12	12	11-12	10-11	10	9-10	8-9	8	8	7-8	6- <mark>8</mark>	6-7	6	6
40	12-13	12	12	11-12	10-11	10	9-10	8-9	8	8	7-8	6- <mark>8</mark>	6- 7	6
41	12-14	12-13	12	12	11-12	10-11	10	9-10	8-9	8	8	7-8	6- <mark>8</mark>	6
42	13-14	12-14	12-13	12	12	11-12	10	10	8-10	8-9	8	8	7-8	6-7

< 🗗 🕨

э

Notation

 $[n, k, d]^{d^{\perp}}$ is an [n, k, d] code with dual distance d^{\perp} .

Definition

 $n_2(k,d) =$ the minimum length such that there exists a binary [n, k, d] code.

Definition

 $d_2(n,k) =$ the largest value of d such that there exists a binary [n,k,d] code.

Codes with parameters $[n_2(k, d), k, d]$ or $[n, k, d_2(n, k)]$ are called optimal.

Definition

 $L_2(k, d^{\perp}) =$ The maximum length n such that there exists a binary $[n, k]^{d^{\perp}}$ code.

Proposition

Let C be a binary $[n, k, d]^{d^{\perp}}$ code. Then $d \ge n - L(k - 1, d^{\perp})$.

In effect this means that we sometimes have a lower bound on the length of the possible residual codes we try to extend.

Definition

A code C is called even if all its codewords have even weight.

Lemma

If the minimum distance of a linear code is even, then there is an even [n, k, d] code.

Lemma

The parity check matrix of an even code has only odd weight columns.

Definition (Residual Code)

Let G be a generator matrix of a linear binary [n, k, d] code C and $c \in C$. Then the residual code $\operatorname{Res}(C, c)$ of C with respect to c is the code generated by the restriction of G to the columns where c has a zero entry. If c has weight ω we write $\operatorname{Res}_{\omega}(C)$.

Lemma (Minimum distance of Residual Code)

Suppose C is a binary [n, k, d] code and suppose $c \in C$ has weight ω , where $d > \omega/2$. Then $\operatorname{Res}_{\omega}(C)$ is an $[n - \omega, k - 1, d']$ code with $d' \ge d - \omega + \lceil \omega/2 \rceil$.

Lemma (Dual distance of Residual Code)

Suppose C is a binary [n, k, d] code with dual distance d^{\perp} , $c \in C$, and the dimension of Res(C, c) is k - 1. Then the dual distance of Res(C, c) is at least d^{\perp} .

Proposition

A linear code has minimum weight d if and only if its parity check matrix has a set of d linearly dependent columns but no set of d - 1 linearly dependent columns.

In the case of fixed minimum distance, it is therefore quite natural to instead consider extension of the parity check matrices. For example, the extension

$$[n-1, k-1, d] \implies [n, k, d]$$

can then be viewed as the one coordinate extension

$$[n-1,k]^d \implies [n,k]^d$$

with fixed dual distance.

Algorithm

INPUT: $C_{inp} :=$ the set of all inequivalent $[n, k]^{d^{\perp}}$ codes represented by their generator matrices. OUTPUT: $C_{out} :=$ the set of all inequivalent $[n + 1, k]^{d^{\perp}}$ codes. Variable: A := array of all $2^k - 1$ nonzero k-dimensional column vectors.

For any code C in C_{inp} with generator matrix G do the following:

- **O** Delete all linear combinations of $d^{\perp} 2$ vectors from G from A.
- For all vectors remaining in A, extend G with one coordinate to G'. If there are no codes in C_{out} equivalent to C' (generated by G'), add C' to C_{out}.

Classification results

With the algorithm BRUTEFORCE we construct all codes with length $n \le 28$, dimension $k \le 14$ and dual distance at least 8.

TABLE 1 - Classification results for $[n, k]^{d^{\perp} \ge 8}$ codes

$n \setminus k$	14	13	12	11	10	n \ k	14	13	12	11	10
10	0	0	0	0	1*	19	450	30	1	0	0
11	0	0	0	1*	4*	20	1863	27	1	0	0
12	0	0	1*	5*	1	21	11497	13	1	0	0
13	0	1*	6*	3	0	22	46701	10	1	0	0
14	1*	7*	7*	1	0	23	40289	9	1	0	0
15	8*	14*	4	1	0	24	5177	10	1	0	0
16	24*	16	5	1	0	25	536	8	0	0	0
17	50*	23	5	0	0	26	274	0	0	0	0
18	131	39	2	0	0	27	1	0	0	0	0
19	450	30	1	0	0	28	1	0	0	0	0

Suppose there exists a [33, 18, 8] code (WLOG we may assume it is even).

Then there exist even [32, 17, 8] codes.

The duals are then $[32, 15, d]^8$ codes, for some d, whose generator matrices contain only odd weight columns.

Since L(14, 8) = 28 we have that $d \ge 32 - 28 = 4$ and from any table of the $d_2(n, k)$ function, $d_2(32, 15) = 8$, so $4 \le d \le 8$.

So a $[32, 15]^8$ code will have a residual code with parameters

$$[28, 14, 8]^8$$
 or $[27, 14, 7]^8$ or ... or $[24, 14, d \ge 4]^8$.

From the previous classification results, we know all these.

$$G = \begin{bmatrix} 00\dots0 & 1 & | & 11\dots1 \\ & 0 & | & \\ Res_d(C) & \vdots & X \\ & 0 & | & \end{bmatrix} = \begin{bmatrix} Residual & | \hat{X} \\ part & | \hat{X} \end{bmatrix}$$
(1)

For each inequivalent residual code $Res_d(C)$, find all possible solutions for \hat{X} , such that all sets of 7 (or less) columns from G are linearly independent.

Algorithm EXTEND

Example of EXTEND in the case $[28, 14]^8 \implies [32, 15, 4]^8$

Definition

We call a set of columns \hat{X} proper (relative the residual code [28, 14, 8]⁸) if all sets of 7 (or less) columns from G (constructed as above) are linearly independent.

I.e., we want to find a proper set of d - 1 = 3 columns on the form $(1, x_2, ..., x_{15})^T$.

Let $V^* = \{(1, x_2, ... x_{15})^T : x_i \in \mathbb{F}_2\}$ and delete from V^* all even vectors and all linear combinations of $d^{\perp} - 2 = 6$ vectors (or less) from the residual part of G to obtain the searchspace

$$V = \{v_1, v_2, ..., v_{N-1}, v_N\}.$$

The main idea for the algorithm EXTEND is similar to the strategy for finding the maximum clique in a graph, suggested by Patric Östergård.

Define the vector

$$a = (a_1, a_2, ..., a_{N-1}, a_N)$$

where a_i is the size of the largest proper set in $V_i = \{v_i, ..., v_N\}$.

Observe that $a_N = 1$ and that

$$a_i = \left\{egin{array}{cc} a_{i+1}+1 & ext{ if there is a proper set in } V_i ext{ containing } v_i \ a_{i+1} & ext{ otherwise} \end{array}
ight.$$

Starting with $a_N = 1$ and going backwards through the indices, we look for proper sets in V_i containing v_i .

In the step i, add v_i to the residual part

$$G = \begin{bmatrix} 00...0 & 1 & | & 11 \\ & 0 & | \\ Res_d(C) & \vdots & v_i \\ & 0 & | \end{bmatrix} = \begin{bmatrix} Residual & | \hat{X} \end{bmatrix}$$
(2)

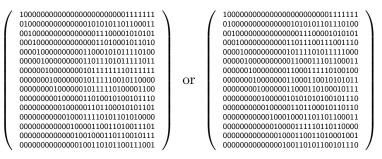
Delete from V_{i+1} all linear combinations of 7 columns from this new residual part, to get a set of possible additional extensions

$$U_i = \{v_{i+k_1}, v_{i+k_2}, ...\}$$
 for some positive $k_1 < k_2 < ...$ (3)

Note that, if $a_{i+k_1} < 2$, we can parse the search here and set $a_i = a_{i+1}$. If $a_{i+k_1} = 2$ we must investigate further and add, a_{i+k_1} to the residual part, and so on.

When we have gone through all the indices, the size of the largest proper set will be recorded in a_1 .

There are exactly two inequivalent even codes with parameters $[32, 15]^8$.



None of these can be extended to code with parameters $[33, 15]^8$.

Theorem

Codes with parameters [33, 18, 8] do not exist and $n_2(18, 8) = 34$

Thank you for your attention!

< A