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Introduction

I Linear Cryptanalysis: powerful tool in the analysis of block ciphers
(Matsui, 1993)

I Step 1: �nding linear relations involving key, plaintext and
ciphertext bits with probability 1/2 + ε

I Step 2: using these relations and a sample of plaintext-ciphertext
pairs to recover some key bits.

I data complexity: O(1/ε2)

I reducing this data-complexity:
I multiple linear relations: Kaliski-Robshaw (1994), Biryukov-De

Cannière-Quisquater (2004), Gérard-Tillich (2007),
Fourquet-Loidreau-Tavernier (2009)

I non-linear relations: Knudsen-Robshaw (1996), Shimoyama-Kaneko
(1998), Tokareva (2008)



Proposed Algorithm: given non-linear (low order) relations between
plaintext, ciphertext and key bits, reconstruct the key bits (Step 2).

I this reconstruction is translated to a soft decoding problem in the
Reed-Muller (RM) codes, with repeated symbols .

I these codes can be decoded with quasi-linear complexity

I it is a general purpose algorithm

I it is hard to �nd non-linear approximations satisfying the
error-probability threshold allowed by this algorithm.

I any decoding algorithm may be used (e.g. in RM codes of order 2)



Block Ciphers

I A block cipher is a vectorial Boolean function:

E : Fu2 × Fv2 −→ Fw2
(X , K ) 7−→ Y = E (X ,K )

X = (X1, . . . ,Xu): plaintext
K = (K1, . . . ,Kv ): key
Y = (Y1, . . . ,Yw ): ciphertext

I A relation between X , K and Y = E (X ,K ) with bias 0 < ε ≤ 1/2 is
given by a Boolean function F : Fu+v+w

2 → F2 such that:

F (X ,K ,Y ) = 0 with probability 1/2 + ε

I Linear cryptanalysis: F is a linear function

I for clarity, we consider F : Fu+v
2 → F2 and G : Fw2 → F2 such that

F (X ,K ) = G (E (X ,K )) with probability 1/2 + ε
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Reconstruction of the key

Notation: for i = (i1, . . . , iu) ∈ Fu2 and j = (j1, . . . , jv ) ∈ Fv2 :

X i := X i1
1 X

i2
2 · · ·X iu

u and K j := K
j1
1 K

j2
2 · · ·K jv

v

Let F have the following polynomial representation:

F (X ,K ) =
∑
i,j

ai,jX
iK j ∈ F2[X ,K ]

FK (X ) =
∑
i

(
∑
j

ai,jK
j)X i ∈ F2[X ] when K is �xed

with ai,j ∈ F2.

Using a sample of plaintext-ciphertext pairs associated with a �xed key
K̄ , we will reconstruct the polynomial FK̄ (X ) = F (X , K̄ )

−→ this gives the coe�cients of the form
∑

j ai,jK
j .



RM codes with repeated symbols

For complexity reasons, we will assume that:

I FK (X ) depends on a small number u′ � u of variables, say
X1, . . . ,Xu′ .
For X ∈ Fu2 , let X ′ = (X1, . . . ,Xu′).

I The degree h of FK (X ) is small.

FK (X ) = FK (X ′) ∈ RM(h, u′).

Moreover, we assume that, when K is �xed, the relation between FK (X )
and EK (X ) = E (X ,K ) still holds:

Pr
X

[G (EK (X )) = FK (X ′)] =
1

2
+ ε



Pr
X

[G (EK (X )) = FK (X ′)] =
1

2
+ ε

Let S be a sample of size L of plaintext-ciphertext pairs (X ,Y = EK (X ))
associated with the key K .

For x ∈ Fu′

2 , let
Sx = {(X ,Y ) ∈ S |X ′ = x},

of size Lx (
∑

x∈Fu′
2

Lx = L).

I FK (X ′) ∈ RM(h, u′) is transmitted Lx times at position x ∈ Fu′

2

over a channel with error probability 1/2− ε,

with received symbols (G (Y ))(X ,Y )∈Sx :

position x of FK (X ′)
p=1/2−ε−→ (G (Y ))(X ,Y )∈Sx



Recovering the key bits

Let sx be the Hamming weight of (G (Y ))(X ,Y )∈Sx . We form the vector:

(s1, s2, . . . , s2u′ )

We construct the received vector y of length 2u
′
with �hard decoding�:

at position x , we set

yx =

{
0 if sx < Lx/2
1 otherwise

Then, the vector y is decoded into the codeword FK (X ′) ∈ RM(h, u′)
−→ we obtain the coe�cients

∑
j ai,jK

j .



An example

Let
F (X ,K ) = X1K2 + X2K4 + X3K1K5 + K1

be an approximation of G (E (X ,K )), with X ,K ,Y = E (X ,Y ) ∈ F64
2 .

Here u′ = 3, X ′ = (X1,X2,X3), deg(FK (X )) = 1⇒ FK (X ) ∈ RM(1, 3).
Using a sample S of plaintext-ciphertext pairs, we construct the
�received� vector y as above:

y = (y1, . . . , y8)

To reconstruct FK (X ), we decode y into the nearest a�ne function

A(X ′) = a0 + a1X1 + a2X2 + a3X3 ∈ RM(1, 3)

which maximizes the quantity
∑

x(−1)y(x)+A(x) (FFT).
Then we obtain:

K1 = a0,K2 = a1,K4 = a2 and K1K5 = a3.



Example of the DES
The DES is a block-cipher with plaintext, ciphertext and key of size 64
bits. We found 20 quadratic approximations of the 8-round DES, with
biases ε ≈ 0.001. They all imply 6 bits of the key, and are of the form:
K9+K4K13+K15+K4K15+K13K30+K31+K33+K41+K44+K4K47+K30K47+K52+

K54+K15K54+K47K54+X47+X0+K15X0+K47X0+X7+X18+X24+K4X27+K30X27+

K54X27+X0X27+X28+K4X28+K54X28+X0X28+X29+K13X29+K15X29+K47X29+

X27X29+X28X29+K13X30+K47X30+X27X30+K4X31+K30X31+X29X31+X30X31 =

Y12 + Y16 + Y39 + Y50 + Y56.

−→ results similar to using multiple linear relations.
Success rate (all 6 key bits are recovered) of the cryptanalysis:
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Decoding of RM codes with repeated symbols

Recall the results of I. Dumer (�Soft decision decoding of Reed-Muller
codes: a simpli�ed algorithm�, IEEE 2006):

Theorem

Consider long codes RM(r ,m) such that
(m−r)
lnm

→∞ as m→∞. Then
these codes can be decoded on a BSCp with complexity of order

(3n log2 n)/2, and have a vanishing output block error probability if

p ≤ 1/2− ε1, where

ε1 = 2

(
4m

d

)1/2r

. (1)

Now, every codeword is transmitted L times over the same binary
symmetric channel BSCp with an error probability p = 1/2− ε.
In the case of hard decoding, the above theorem gives the following
improved threshold:

εL = 2

√
2

L

(
4m

d

)1/2r

. (2)



A soft-decision version

Instead of the hard decoding, we use a soft version approach. Each
symbol cx of a code RM(r ,m) is transmitted L times and is received as
some vector gx of length L and Hamming weight sx .
For all s, we have:

Q(s) := Pr[sx = s|cx = 0] =

(
L

s

)
psqL−s ,

P(s) := Pr[sx = s|cx = 1] =

(
L

s

)
qspL−s ,

Then using the Bayes formula:

Pr[cx = 0|sx ] =
Q(sx)

P(sx) + Q(sx)

Pr[cx = 1|sx ] =
P(sx)

P(sx) + Q(sx)



The received soft-vector y ∈ R2
u
′

will be constructed at position x as
follows:

yx = Pr[cx = 0|sx ]− Pr[cx = 1|sx ] =
Q(sx)− P(sx)

P(sx) + Q(sx)

With this setting, the decoding threshold is further improved:

Theorem

Consider long codes RM(r ,m) such that
(m−r)
lnm

→∞ as m→∞. Then
an L-repeated RM code can be decoded on a BSCp with a vanishing

output error probability if p ≤ 1/2− εL, where

εL =
2√
L

(
4m

d

)1/2r

=
ε1√
L
. (3)
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