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‘ Basic Definitions

= The Johnson space V', 0 <w < n, consists of all
w-subsets of a fixed n-set N=1{1, 2,...,n}.

= with the Johnson space we associate
the Johnson graph J(n, w):
0 Vertex set: V'

o Edges set: Two vertices v and v are adjacent if and only if

lunNuv|=w-1
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‘ Basic Definitions

= The Johnson space V', 0 <w < n, consists of all
w-subsets of a fixed n-set N=1{1, 2,...,n}.

= with the Johnson space we associate
the Johnson graph J(n, w):

o Vertex set: va

o Edges set: Two vertices v and v are adjacent if and only if

lunNuv|=w-1

/ Example: J(4,2)
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‘ Basic Definitions

= Acode C in J(n,w)i1s asubsetof V|

= Acode C in J(n,w) can be described as a binary code
of length n and constant weight w

o From w-subset Se V" construct a characteristic binary vector
of length n and weight w with ones in the positions of S and
zeroes 1n the positions of N\ S

s The Johnson distance between two w-subsets 1s half of
the number of coordinates where their characteristic
vectors differ.
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| Perfect Codes in o (n,w)

= A code Cin J(n, w) 1s called an e-perfect code 1f the
e-spheres with centers at the codewords of C form a
partition of V. .

m The trivial perfect codes in J(n, w) are:
a V' 1s 0 - perfect.
0 Any {v},veV", w <n-w,1sw - perfect.

o If n=2w, wodd, any pair of disjoint w - subsets 1s
e - perfect with e = (w-1)/2.

» Delsarte (1973) conjectured that there are no perfect
codes in J(n, w), except for trivial perfect codes.
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| Perfect Codes in o (n,w)

= [Roos1983] If there exists an e-perfect code 1n J(n, w)

then n<(w-1) 2et] :

€

s [Etzion,Schwartz2004] There are no nontrivial

2-perfect codes in J(n, w) for all n < 40000;
3-perfect, 7-perfect, 8-perfect codes 1n J(n, w).

s [Etzion,Schwartz2004] There are no perfect codes in :
o J@wHp',w), pisaprimeandi>1
0 J@wtpqg ,w), p and g primes, g <p, and p # 2q-1

s [Gordon2006] There are no 1- perfect codes in J(n, w)

for all n < 2259,
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| Codes in o (n,w) and Block Designs

Let ¢, n, w, A be integers withn >w>1¢, and A >0

= A t—(n, w, L) design is a collection C of w-subsets,
called blocks, of N, such that each t-subset of IV 1s
contained in exactly A blocks of C.

= Such C1is a code in J(n, w).
s The largest ¢t for which a code C in J(n, w) 1s a t-design
1s called the strength of the code.

= A necessary condition for a ¢ — (n, w, 1) design to exist is that the

numbers ,1[" B i)/[w B i] must be integers, 0 <i<t.
r—1 r—1
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| Codes in o (n,w) and Block Designs

s The complement of an e-perfect code in J(n, w) 1s an
e-perfect code in J(n,n-w).
s Then we assume that n > 2w or n = 2w+a.

= If the code C has strength ¢, then for each ¢, 0 <t < ¢,

- : 2w+a—t
1t 1s a t-(2w+a, w, A, ) design, where 4, =( t j/ D, (w,a)
W_

and @, (w,a)= Z( ](W.Jraj 1s the size of an e-sphere.

i=0 l

w

l
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| Codes in o (n,w) and Block Designs

= Define the polynomial
e ([t (w—i1\\w+a—1t+1i
o,(w,a,t)= (—1)’0 ( . ]( o ]
; ljzz(; J L+ ]

s Theorem [Etzion, Schwartz, 2004] If there 1s an e-perfect

code C in J(2w+a, w) with strength @, then @ 1s
the smallest positive integer for which o, (w, a, p+1)=0.
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| Codes in o (n,w) and Steiner Systems

a t-(n,w A design with A =1 1s called Steiner
system S(¢, w, n).
0 [Etzion, 1996] If an e-perfect code exists in J(n, w),
then the following Steiner systems must exist:
s S22, et2, wt2)
= S(2, et2, n-wt2)
= S(2, et2, w-etl)
s S2, et2, n-w-et+l)
. S(etl, 2e+1, w)
. S(etl, 2e+1, n-w)
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‘ 1-perfect codes in J(n,w).
New results

m Theorem 1. Assume there exists an 1-perfect code
Cin J(2w + a, w) with strength ¢ =w - d for
some d > 0. Then

o d>1,d=0or 1(mod 3),
w—d>+d -1

H a = ’

d—1
= ong L vd—@+id~1))
d-DI(d-D)""d(w- d+1)

e/
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‘ 1-perfect codes in J(n,w)
Improvement of Roos’ bound

= Roos’ bound for 1-perfect codes:

n=2w+ta<3w-1) — a<w-3.

we 1mprove this bound:

s Theorem 2. If an 1-perfect code exists in J2w + a, w),

then a<ﬁ.

11
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‘ Proof of Theorem 2: a < w/11

s Let C be an 1-perfect code in J(2w+a, w) with strength w-d.
Then by Theorem 1 we have d > 1, d =0 or 1(mod 3), and

Lowmdrd-1 [1.. (wd —(d +i(d - 1))

P s (%)
d—1 (d-D!(d-1)""d(w—d+1)

(w=D(@Bw-5) .
S(w—2)
since ged(w-1, w-2) = ged(3w-5, w-2) = 1. Hence d > 3.

s Assume d = 3. Then by (*¥) Z  which 1s impossible

4w-1)(Aw—-T7)2(2w-5
« Assume d = 4. Then by (**) )3(,3!;(W33()W \e z

Since gcd(w -3, w-1) € {1, 2}, ged(w - 3, 4w -7) € {1, 5}, and
gcd(w -3, 2w -b5) = 1, 1t follows that w - 3 < 2-5.
But by (*),a =(w-13)/3, hencew > 13. Thus d > 4.
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‘ Proof of Theorem 2: a < w/11

= Similarly we obtain contradiction ford =6,d =7,d =9, and d = 10.
Since d =0, 1(mod 3) then d > 12, and thus by (*)

w—122+12-1 B w—133 - w
11 11 11 o

a=<

= As the value of d 1s growing, considering the divisibility

condition becomes more complicated.

s The same method can be used for further improving the

Roos’ bound.
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‘ 2-perfect codes 1n J(2w,w)

Theorem 3. If a 2 — perfect code C exists in J(2w, w),

then there 1s an integer m > 0 such that
- (1+\/§)2m+1+(1_\/§)2m+1+6

o (c.l) w= , and
4

0 (€.2) ¥=v2(1+v2)* —=(1-~/2)*")+1 is a square of some integer

m  Proof: We find the roots of the polynomial
: (Y& (w—i\w+a—t+i
e v
; ljZO J 1+

for e = 2 and a = 0 and by this obtain the strength of C:
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‘ 2-perfect codes 1n J(2w,w)
Proof of Theorem 3.

s The strength of a 2-perfect code in J(2w, w) 1s

%(—1+2w—\/8w—11i4\/5—6w+2w2)

m We have two constraints:

Q \/5—6w+2w2 el

Q \/8w—1lJ_r4\/5—6w+2w2 YA

ACCT 2010
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‘ 2-perfect codes 1n J(2w,w).
Proof. of Theorem 3.

s The first constraint is \/ 5—-6w+2w’ €Z , then

dyeZ .y’ =5-6w+2w’ = 2w-3)" -2y’ =-1.

Let x = 2w - 3. Then we get Pell equation x?- 2y? =-1
with a family of solutions:

B (1+\/§)2m+1 +(1_\/§)2m+1 B (1+\/§)2m+1 _(1_\/5)2,”_,_1
X = and y =
2 242

for some 1integer m > 0.

(1+\/5)2m+1+(1_\/5)2m+1+6
4

Then w= (c.1)
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‘ 2-perfect codes 1n J(2w,w).
Proot. of Theorem 3.

= The second constraint is \/ 8w—11+4v/5—6w+2w? e Z
+: daeZ.,a’=8w—-11+4y=4(x+y)+1.
—: APeZ B =8w—-11-4y=4(x—y)+1

. (1+\/§)2m+1 +(1_\/§)2m+1 (1+\/§)2m+1 _(1_\/5)2m+1
since x = and y =
2 242

we obtain  » _ J2(042)72 —(1=~2)"2) 11,
B =N2(1+2)" ~(1-12)"") +1

that proves (c.2). O
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‘ 2-perfect codes 1n J(2w,w)

We examine the conditions of Theorem 3 for 1 <m < 10000.
The only values of m which satisfy (c.2) are 0, 1, and 2, where
the corresponding values of w are 2, 5, 22, respectively.

It was proved by Etzion and Schwartz (2004) that there are
no 2-perfect codes in J(n, w) for all n < 40000.

Thus for w<1.97 x 1075°° (considering m = 10000), there 1s
no 2-perfect code in J(2w, w).
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‘ Conclusion

s 1-perfect codes in J(n,w)
s 2-perfect codes 1in J(2w,w)
= Another techniques:
o Regularity of perfect codes

[W.J. Martin, “Completely regular subsets”, Ph.D. dissertation, 1992;

T. Etzion and M. Schwartz,”Perfect Constant-Weight Codes”, IEEE Trans.on Inform.
Theory, 2004]

o Configuration distribution

[T. Etzion, “ Configuration Distribution and Designs of Codes in the Johnson Scheme”,
Journal of Combinatorial Designs, 2006]

o Moments

[T. Etzion, “ Configuration Distribution and Designs of Codes in the Johnson Scheme”,
Journal of Combinatorial Designs, 2006;

N.Silberstein, “Properties of Codes in the Johnson Scheme,” M.Sc. Thesis, 2007]
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Thank you!
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