
Task statement Code structure Decoding algorithm Numerical results Results

Insertion of erasures as a method of q-ry

LDPC codes decoding

Alexey Frolov, Victor Zyablov

Inst. for Information Transmission Problems
Russian Academy of Sciences

Email: {alexey.frolov, zyablov}@iitp.ru

September 8, 2010

Task statement Code structure Decoding algorithm Numerical results Results

Outline

1 Task statement

2 Code structure

3 Decoding algorithm

4 Numerical results

5 Results

Task statement Code structure Decoding algorithm Numerical results Results

Task statement

To develop a decoding algorithm for q-ry LDPC codes capable of
correcting both errors and erasures and research its realized
correcting capabilities.

Task statement Code structure Decoding algorithm Numerical results Results

Gallager’s LDPC codes

Parity-check matrix of Gallager’s LDPC-code

H =

π1(Hb)
π2(Hb)

...
π`(Hb)

`b×bn0

where

Hb =

11 . . .1 0 · · · 0

0 11 . . .1 . . . 0
...

...
. . .

...
0 0 . . . 11 . . .1

b×bn0

1 (n0, n0 − 1) single parity-check (SPC) codes are constituent codes

2 ` random column permutations of Hb form layers of H

3 Code rate is R > 1 − `b
bn0

Task statement Code structure Decoding algorithm Numerical results Results

Bipartite Tanner graph of LDPC codes

…

… … …

…

(2,1)

0 H
(,1)

0

b
H

(1,1)

0 H

Layer 1 Layer 2

…

l Layer

(,2)

0

b
H

(1,2)

0 H
(2,2)

0 H

… …

(,)

0

b
H

l (2,)

0 H
l (1,)

0 H
l

1 v 2 v
0 n

v
n

v …

l

0 n

1 Constraint nodes have degree n0 and represent constituent
codes.

2 Variable nodes have degree ` and represent codesymbols.
Each variable node is connected to exactly one constraint
node in each layer.

Task statement Code structure Decoding algorithm Numerical results Results

Generalized LDPC codes

Parity-check matrix of generalized LDPC-code

H =

π1(Hb)
π2(Hb)

...
π`(Hb)

`b(n0−k0)×bn0

where

Hb =

H0 0 . . . 0

0 H0 . . . 0
...

...
. . .

...
0 0 . . . H0

b(n0−k0)×bn0

1 (n0, k0) codes are constituent codes

2 Code rate is R > 1 − `b(n0−k0)
bn0

⇒ k0

n0
> 1 − 1

`

Task statement Code structure Decoding algorithm Numerical results Results

q-ry LDPC code obtained from generalized LDPC code structure

Constituent code parity-check matrix:

H0 =
(

1 α . . . αn0−1
)

︸ ︷︷ ︸

n0

, α ∈ GF (q) \ {0}

so

Hb =

1 α . . . αn0−1 0 · · · 0

0 1 α . . . αn0−1 . . . 0
...

...
. . .

...
0 0 . . . 1 α . . . αn0−1

b×bn0

Task statement Code structure Decoding algorithm Numerical results Results

Generalized syndrome

Received vector is r = v + e. The syndrome vector is the
`bm-tuple:

S = rHT

The generalized syndrome is the `b-tuple:

S = (s1s2 . . . s`) = (s1,1s2,1 . . . sb,1 . . . s1,`s2,l . . . sb,`)

where si ,j is an m-tuple.

Task statement Code structure Decoding algorithm Numerical results Results

Decoding algorithm block-scheme

The decoding algorithm is required to correct both errors and
erasures. In each iteration we will replace error-suspicious symbols
with erasures and then perform only the erasure correcting within
the iteration.

1 Initialization

2 Error-suspicious symbols
erasing

3 Correcting of erasures

4 Stop criteria

Task statement Code structure Decoding algorithm Numerical results Results

Initialization

The syndrome of the received vector is calculated. It consists of
syndromes of constituent-codes. If a constituent code contains
erased symbols then its syndrome is not calculated and considered
to be erased.

Task statement Code structure Decoding algorithm Numerical results Results

Error-suspicious symbols erasing

.

* * 0 00≠0≠.0≠. . .

l

a
ce

equal non zero decisionserased decisions zero decisions

decision - value that should be added to the observed symbol to
zero the constituent code syndrome.
c - number of null decisions.
e - number of erased decisions.
a - the subset of maximal cardinality containing equal neither zero
nor erased decisions.
If a > c + e than the symbol is replaced with erasure.

Task statement Code structure Decoding algorithm Numerical results Results

Correcting of erasures

For each symbol from the list of erased symbols the subset of
constituent codes containing the symbol is considered. Only the
codes containing one erasure belong to the subset. For each code
from this subset we can correct the erasure and form a list of
possible symbol values. Then the most often value is found and
the erased symbol is replaced with this value.

Task statement Code structure Decoding algorithm Numerical results Results

Stop criteria

Added erasures are removed. The syndromes before and after
iteration are compared. Return to Step 2 in case of not equal
syndromes. In case of equal syndromes the syndrome weight is
calculated. If the weight is equal to zero then the decoded vector
is returned. Return denial of decoding if the weight is not equal to
zero.

Task statement Code structure Decoding algorithm Numerical results Results

Modeling description and chosen code parameters

We used a code with such parameters while modeling process:
q = 16; n = 2048; R = 1

2 ; n0 = 16; ` = 8. Modeling process starts
from 300 errors. This value decreases by 5 errors after 10 denials
are got. The result of a modeling process is a dependency of denial
probability on number of errors (number of erasures is fixed). Over
than 106 tests are carried out for each dependency.

Task statement Code structure Decoding algorithm Numerical results Results

The dependency of realized correcting capabilities on initial number of erasures

50 100 150 200
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

number of errors

de
ni

al
 p

ro
ba

bi
lit

y

0
5
10
30
50
70
90

Task statement Code structure Decoding algorithm Numerical results Results

The dependency of realized correcting capabilities on initial number of erasures

Let τ denote the number of erasures, e∗ denote the number of
errors in case of the denial probability is less than 10−4 (the
greatest number of errors which meets the condition is chosen).
We will use a value d∗ = 2e∗ + τ + 1 to describe the realized
correcting capabilities of the suggested algorithm. The dependency
of realized correcting capabilities of the suggested algorithm on
initial number of erasures is introduced in the Table.

τ 0 5 10 30 50 70 90

e∗ 142 140 136 126 110 94 81

d∗ 285 286 283 283 271 259 253

Task statement Code structure Decoding algorithm Numerical results Results

The comparison with a majority algorithm

50 100 150 200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

number of errors

de
ni

al
 p

ro
ba

bi
lit

y

majority algorithm
algorithm with
insertion of erasures

Task statement Code structure Decoding algorithm Numerical results Results

Results

1 An iterative decoding algorithm capable of correcting both
errors and erasures is developed.

2 The dependency of realized correcting capabilities of the
algorithm on initial number of erasures is introduced.

3 Error-correcting capabilities of the algorithm are better than
error-correcting capabilities of a majority algorithm.

Task statement Code structure Decoding algorithm Numerical results Results

Futher research

It is possible to use this algorithm in case of more powerful
constituent code without any changes. But more powerful
constituent codes can correct to d − 1 erasures and it is rational to
change the decoding algorithm.

Task statement Code structure Decoding algorithm Numerical results Results

Thank you for the attention!

	Task statement
	Code structure
	Decoding algorithm
	Numerical results
	Results

