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Notation

Fq = GF (q) – the Galois field of order q = pr

Fn
q – the n-dimensional vector space over Fq

d(x, y) = #{i : xi 6= yi} – the Hamming distance

w(x) = #{i : xi 6= 0} – weight of x ∈ Fn
q

supp(x) = {i : xi 6= 0} – the support of x ∈ Fn
q

C ⊆ Fn
q – a q-ary code of length n;

d(C) = min{d(x, y) : x, y ∈ C , x 6= y} – the minimum
distance of C
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Definitions

Code equivalence

Two codes are equivalent if there is an isometry of Fn
q that

maps one of the codes into the other one



Introduction Automorphisms of a code Linear codes The Hamming code Conclusion

Definitions

Perfect codes

The balls with radius 1 centred
at the codewords partition the
space Fn

q

Such codes have the minimum
distance d = 3

Golay codes

Binary and ternary Golay
codes and codes equivalent to
them have d = 7 and d = 5
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Structure investigations

Faces of regularity

Linearity

Rank of a code

Dimension of the kernal of a code

Perfect and uniformly packed codes

Distance invariance

Complete regularity

Regular properties of minimal distance graph

Other extremal properties
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Structure investigations

Automorphisms and symmetries

Automorphism group of a code C

The group of isometries of the space Fn
q that map the code C

into itself

Symmetry group of a code C

The group of automorphisms of C that fix the vector 0.
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Isometries and automorphisms

Examples

Permutation

π ∈ Sn – a permutation on coordinate positions,

n = 3 : (x1, x2, x3)(123) = (x3, x1, x2)

Configuration

σ = (σ1, . . . , σn) ∈ Sn
q – n permutations on elements of Fq,

n = 3 : (x1, x2, x3)σ = (x1σ1, x2σ2, x3σ3)
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Isometries and automorphisms

Isometries of the space Fn
q

Theorem (Markov, 1956)

The group of isometries of the space Fn
q is

Aut(Fn
q) = Sn i Sn

q = {(π;σ) : π ∈ Sn, σ ∈ Sn
q}

with multiplication given by

(π;σ)(τ ; δ) = (πτ ;στ · δ)
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Isometries and automorphisms

Kinds of isometries: q = 2

Permutation automorphisms

π ∈ Sn −→ PAut(F2) = Sym(F2)

All configurations are translations

S2 acts on F2:
e → β + 0
(0 1)→ β + 1

x ∈ F2, σ ∈ Sn
2

xσ = x + v
for some v ∈ F2
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Isometries and automorphisms

Kinds of isometries: q = 3

Permutation automorphisms

π ∈ Sn −→ PAut(F3) ⊂ Sym(F3)

Monomial configurations

S3 acts on F3:
e → 1 · β
(1 2)→ 2β

x ∈ F3, σ – multiplying
xσ = xD
for some diagonal matrix D

Monomial automorphisms

x ∈ F3, π ∈ Sn, σ – multiplying
x(π;σ) = xPD = xM −→ MAut(F3) = Sym(3)
for some monomial matrix M
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Isometries and automorphisms

Kinds of isometries: q ≥ 4

Permutation automorphisms

π ∈ Sn −→ PAut(Fn
q) ⊂ Sym(Fn

q)

Configurations

q = 4
Gal(F4),×,+
(0α2 1α)→ (β + α)2, where α – primitive element of F4

no matrix representation for all!

q ≥ 5
no field operations for all!
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Linear and semilinear transformations of Fn
q

General linear group

GLn(q)
f (αx + βy) = αf (x) + βf (y)
for all x, y ∈ Fn

q and α, β ∈ Fq

General semilinear group

ΓLn(q) = Gal(Fq) i GLn(q)
f (αx + βy) = γ(α)f (x) + γ(β)f (y)
for all x, y ∈ Fn

q , all α, β ∈ Fq, and some γ ∈ Gal(Fq)

But not all of them are isometries of Fn
q !
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MacWilliams’ theorem

Theorem (MacWilliams, 1962)

Two linear codes are monomially equivalent iff there exists an
isomorphism between them (as linear spaces) preserving the
weight of each vector

Corollary 1

MAut(Fn
q) – all linear symmetries of Fn

q

Corollary 2

Gal(Fq) i MAut(Fn
q) – all semilinear symmetries of Fn

q
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The automorphism group of a linear code

Proposition

If a code C ⊆ Fn
q is linear, then

Aut(C) ∼= Sym(C) i C

Theorem

C is an [n,n −m,d ≥ 3]q-code

⇒ The semilinear symmetry group of C is isomorphic to some
subgroup of ΓLm(q)
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What is known

Semilinear automorphisms ofH

Theorem

The semilinear symmetry group of a q-ary Hamming codeH of
length n = qm−1

q−1 is isomorphic to ΓLm(q)

q = 2, 3 – all symmetries of Fn
q are linear

Aut(H) ∼= GLm(q) iH
q ≥ 4 – not all symmetries of Fn

q are semilinear
Aut(H) ∼= ΓLm(q) iH – ?
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What is known

Is there anything to doubt?

Example

C ⊂ Fn
q is the linear code with H = [1 1 . . . 1]

A ∈ Sq is a linear transformation of Fq as a vector space
over the subfield Fp

⇒ (e, (A,A, . . . ,A)) ∈ Aut(C)
⇒ for q ≥ 8 there exists A such that this automorphism of C

is neither linear nor semilinear
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Results

Collinear triples

T = {x ∈ H : w(x) = 3}
Sym(H) ≤ Sym(T )

Lemma
x, y ∈ T

supp(x) = supp(y)
⇒ y = µx for some µ ∈ F∗q
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Results

Symmetries of Hamming triples

Lemma (saving collinearity)

(π;σ) ∈ Sym(T )
⇒ (π;σ) preserves collinearity of vectors from Fn

q

Lemma (saving sum)

(π;σ) ∈ Sym(T )
⇒ (π;σ) preserves sum of vectors from Fn

q

Lemma

(π;σ) ∈ Sym(T )
⇒ (π;σ) is a semilinear transformation of Fn

q
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Results

The automorphism group ofH

Theorem

For any q-ary Hamming codeHof length n = qm−1
q−1 , where

q,m ≥ 2, it is true

Aut(H) ∼= ΓLm(q) iH
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Conclusion

We proved that

all symmetries of the Hamming code are semilinear

the same can be said about the triple system of a q-ary
Hamming code
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