

Symmetries of a *q*-ary Hamming Code

Evgeny V. Gorkunov

Novosibirsk State University <evgumin@gmail.com>

Algebraic and Combinatorial Coding Theory Akademgorodok, Novosibirsk, Russia September 5–11, 2010

(日)(2日)(2日)(2日)(2日)

Introduction ●○○	Automorphisms of a code	Linear codes	The Hamming code	Conclusion
Notation				

- $\mathbb{F}_q = GF(q)$ the Galois field of order $q = p^r$
- \mathbb{F}_q^n the *n*-dimensional vector space over \mathbb{F}_q
- $d(x, y) = \#\{i: x_i \neq y_i\}$ the Hamming distance
- $w(x) = \#\{i: x_i \neq 0\}$ weight of $x \in \mathbb{F}_q^n$
- $\operatorname{supp}(x) = \{i: x_i \neq 0\}$ the support of $x \in \mathbb{F}_q^n$
- $C \subseteq \mathbb{F}_q^n$ a *q*-ary code of length *n*;
- $d(C) = \min\{d(x, y) \colon x, y \in C, x \neq y\}$ the minimum distance of *C*

Introduction ○●○	Automorphisms of a code	Linear codes 000	The Hamming code	Conclusion
Definitio	ons			

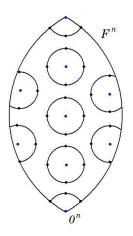
Code equivalence

Two codes are equivalent if there is an isometry of \mathbb{F}_q^n that maps one of the codes into the other one

э

ヘロト 人間 とくほとう ほとう

Introduction 00●	Automorphisms of a code	Linear codes 000	The Hamming code	Conclusion
Definiti	ons			



Perfect codes

The balls with radius 1 centred at the codewords partition the space \mathbb{F}_q^n

Such codes have the minimum distance d = 3

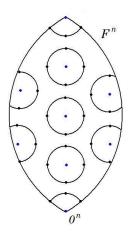
Golay codes

Binary and ternary Golay codes and codes equivalent to them have d = 7 and d = 5

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

State niversity

Introduction ○○●	Automorphisms of a code	Linear codes 000	The Hamming code	Conclusion
Definitio	ons			



Perfect codes

The balls with radius 1 centred at the codewords partition the space \mathbb{F}_q^n

Such codes have the minimum distance d = 3

Golay codes

Binary and ternary Golay codes and codes equivalent to them have d = 7 and d = 5

svosibirsk State niversity

Introduction 000	Automorphisms of a code ●000000	Linear codes 000	The Hamming code	Conclusion
Structure investigat	ions			
Faces of	regularity			

- Linearity
- Rank of a code
- Dimension of the kernal of a code
- Perfect and uniformly packed codes
- Distance invariance
- Complete regularity
- Regular properties of minimal distance graph
- Other extremal properties

イロト イポト イヨト イヨト

Introduction 000	Automorphisms of a code ○●○○○○○	Linear codes	The Hamming code	Conclusion
Structure investiga	tions			
Automo	orphisms and sy	mmetries		

Automorphism group of a code C

The group of isometries of the space \mathbb{F}_q^n that map the code *C* into itself

Symmetry group of a code C

The group of automorphisms of *C* that fix the vector 0.

ヘロト 人間 とくほ とくほ とう

Introduction 000	Automorphisms of a code ○○●○○○○	Linear codes 000	The Hamming code	Conclusion
Isometries and auto	morphisms			
Example	es			

Permutation

 $\pi \in S_n$ – a permutation on coordinate positions,

$$n = 3:$$
 $(x_1, x_2, x_3)(123) = (x_3, x_1, x_2)$

Configuration

 $\sigma = (\sigma_1, \ldots, \sigma_n) \in S_q^n - n$ permutations on elements of \mathbb{F}_q ,

$$n = 3:$$
 $(x_1, x_2, x_3)\sigma = (x_1\sigma_1, x_2\sigma_2, x_3\sigma_3)$

イロト イポト イヨト イヨト

Introduction 000	Automorphisms of a code $\circ \circ \circ$	Linear codes 000	The Hamming code	Conclusion
Isometries and auto	morphisms			
Isometri	es of the space	\mathbb{F}_q^n		

Theorem (Markov, 1956)

The group of isometries of the space \mathbb{F}_q^n is

$$\operatorname{Aut}(\mathbb{F}_q^n) = S_n \wedge S_q^n = \{(\pi; \sigma) \colon \pi \in S_n, \sigma \in S_q^n\}$$

with multiplication given by

$$(\pi;\sigma)(\tau;\delta) = (\pi\tau;\sigma\tau\cdot\delta)$$

Novosibirsk State University

э

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Introduction 000	Automorphisms of a code 0000000	Linear codes	The Hamming code	Conclusion
Isometries and aut	omorphisms			
Kinds of	f isometries: <i>q</i> =	= 2		

Permutation automorphisms

 $\pi \in S_n \longrightarrow \operatorname{PAut}(\mathbb{F}_2) = \operatorname{Sym}(\mathbb{F}_2)$

All configurations are translations

S_2 acts on \mathbb{F}_2 :	$x\in \mathbb{F}_2, \sigma\in S_2^n$
e ightarroweta+0	$x\sigma = x + v$
(01) ightarroweta+1	for some $v \in \mathbb{F}_2$

ヘロト ヘ週 ト ヘヨト ヘヨト

Introduction 000	Automorphisms of a code ○○○○○●○	Linear codes 000	The Hamming code	Conclusion
Isometries and aut	omorphisms			
Kinds of	f isometries: <i>q</i> =	= 3		

Permutation automorphisms

 $\pi \in S_n \longrightarrow \operatorname{PAut}(\mathbb{F}_3) \subset \operatorname{Sym}(\mathbb{F}_3)$

Monomial configurations

 S_3 acts on \mathbb{F}_3 : $x \in$ $e \to 1 \cdot \beta$ $x\sigma$ $(12) \to 2\beta$ for

 $x \in \mathbb{F}_3, \sigma$ – multiplying $x\sigma = xD$ for some diagonal matrix *D*

Monomial automorphisms

 $x \in \mathbb{F}_3, \pi \in S_n, \sigma$ – multiplying $x(\pi; \sigma) = xPD = xM$ for some monomial matrix M

•
$$MAut(\mathbb{F}_3) = Sym(3)$$

vosibirsk State aiversity

Introduction 000	Automorphisms of a code ○○○○○○●	Linear codes	The Hamming code	Conclusion
Isometries and aut	omorphisms			
Kinds of	f isometries: $q \ge$	<u>≥</u> 4		

Permutation automorphisms

 $\pi \in S_n \longrightarrow \operatorname{PAut}(\mathbb{F}_q^n) \subset \operatorname{Sym}(\mathbb{F}_q^n)$

Configurations

- q = 4Gal(\mathbb{F}_4), ×, + (0 $\alpha^2 1 \alpha$) $\rightarrow (\beta + \alpha)^2$, where α – primitive element of \mathbb{F}_4 no matrix representation for all!
- *q* ≥ 5 no field operations for all!

Introduction 000 Linear codes

The Hamming code

(日)

Conclusion

Linear and semilinear transformations of \mathbb{F}_{q}^{n}

General linear group

 $\begin{aligned} & \operatorname{GL}_n(q) \\ & f(\alpha x + \beta y) = \alpha f(x) + \beta f(y) \\ & \text{for all } x, y \in \mathbb{F}_q^n \text{ and } \alpha, \beta \in \mathbb{F}_q \end{aligned}$

General semilinear group

$$\begin{split} &\Gamma \mathcal{L}_n(q) = \operatorname{Gal}(\mathbb{F}_q) \land \operatorname{GL}_n(q) \\ &f(\alpha x + \beta y) = \gamma(\alpha) f(x) + \gamma(\beta) f(y) \\ &\text{for all } x, y \in \mathbb{F}_q^n \text{, all } \alpha, \beta \in \mathbb{F}_q \text{, and some } \gamma \in \operatorname{Gal}(\mathbb{F}_q) \end{split}$$

But not all of them are isometries of \mathbb{F}_q^n !

vosibirsk State niversity

Introduction 000	Automorphisms of a code	Linear codes ○●○	The Hamming code	Conclusion

MacWilliams' theorem

Theorem (MacWilliams, 1962)

Two linear codes are monomially equivalent iff there exists an isomorphism between them (as linear spaces) preserving the weight of each vector

Corollary 1

 $\operatorname{MAut}(\mathbb{F}_q^n)$ – all linear symmetries of \mathbb{F}_q^n

Corollary 2

 $\operatorname{Gal}(\mathbb{F}_q) \prec \operatorname{MAut}(\mathbb{F}_q^n)$ – all semilinear symmetries of \mathbb{F}_q^n

ovosibirsk State University

・ コット (雪) ・ (目) ・ (コ)

・ ロ ト ・ 理 ト ・ ヨ ト ・ ヨ ト

The automorphism group of a linear code

Proposition

If a code $C \subseteq \mathbb{F}_q^n$ *is linear, then*

 $\operatorname{Aut}(C) \cong \operatorname{Sym}(C) \land C$

Theorem

• *C* is an $[n, n - m, d \ge 3]_q$ -code

⇒ The semilinear symmetry group of C is isomorphic to some subgroup of $\Gamma L_m(q)$

Introdu 000	iction	Automorphisms of a code	Linear code	The Hamming code	Conclusion
What is	s known				
0	•1•		1 · C	a (

Semilinear automorphisms of \mathcal{H}

Theorem

The semilinear symmetry group of *a q*-ary Hamming code \mathcal{H} *of length* $n = \frac{q^m - 1}{q - 1}$ *is isomorphic to* $\Gamma L_m(q)$

- q = 2, 3 all symmetries of \mathbb{F}_q^n are linear Aut $(\mathcal{H}) \cong \operatorname{GL}_m(q) \times \mathcal{H}$
- $q \ge 4$ not all symmetries of \mathbb{F}_q^n are semilinear Aut $(\mathcal{H}) \cong \Gamma L_m(q) \land \mathcal{H} ?$

Introduction 000	Automorphisms of a code	Linear codes 000	The Hamming code ○●○○○	Conclusion
What is known				

Is there anything to doubt?

Example

- $C \subset \mathbb{F}_q^n$ is the linear code with $H = [1 \ 1 \dots 1]$
- $A \in S_q$ is a linear transformation of \mathbb{F}_q as a vector space over the subfield \mathbb{F}_p
- \Rightarrow $(e, (A, A, \dots, A)) \in \operatorname{Aut}(C)$
- ⇒ for $q \ge 8$ there exists A such that this automorphism of C is neither linear nor semilinear

・ ロ ト ・ 理 ト ・ ヨ ト ・ ヨ ト

Introduction 000	Automorphisms of a code	Linear codes 000	The Hamming code ○○●○○	Conclusion
Results				
Collinea	ar triples			

•
$$T = \{x \in \mathcal{H} \colon w(x) = 3\}$$

• Sym $(\mathcal{H}) \leq$ Sym(T)

Lemma

- $x, y \in T$
- supp(x) = supp(y)
- \Rightarrow $y = \mu x$ for some $\mu \in \mathbb{F}_q^*$

Introduction 000	Automorphisms of a code	Linear codes	The Hamming code ○○○●○	Conclusion
Results				
Symme	tries of Hammir	ng triples		
Lemm	a (saving collinearity	y)		

- $(\pi; \sigma) \in \operatorname{Sym}(T)$
- \Rightarrow (π ; σ) preserves collinearity of vectors from \mathbb{F}_q^n

Lemma (saving sum)

- $(\pi; \sigma) \in \operatorname{Sym}(T)$
- \Rightarrow $(\pi; \sigma)$ preserves sum of vectors from \mathbb{F}_q^n

Lemma

- $(\pi; \sigma) \in \operatorname{Sym}(T)$
- $\Rightarrow (\pi; \sigma)$ is a semilinear transformation of \mathbb{F}_q^n

vosibirs State

(日)

Introduction 000	Automorphisms of a code	Linear codes 000	The Hamming code ○○○○●	Conclusion
Results				
The aut	omorphism gro	up of ${\cal H}$		

Theorem

For any *q*-ary Hamming code \mathcal{H} of length $n = \frac{q^{m-1}}{q-1}$, where $q, m \ge 2$, it is true

 $\operatorname{Aut}(\mathcal{H}) \cong \Gamma \operatorname{L}_m(q) \checkmark \mathcal{H}$

ヘロト 人間 とくほとくほとう

Conclusion		

We proved that

- all symmetries of the Hamming code are semilinear
- the same can be said about the triple system of a *q*-ary Hamming code

ヘロト ヘロト ヘビト ヘビト