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INTRODUCTION

It is well known that the beautiful algebraic theory of block codes
over finite fields does have severe problems with coding for two
dimensional constellation.

Huber introduced the Manheim distance and proposed block codes
over Gaussian integers designed for that distance. One problem
which arises when we use this code construction is that based on
given code we arrange the signal points in a signal constellation.
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Integer codes are codes defined over finite rings of integers. The
original form of integer codes have been given by R. Varshamov
and Tenengolz (1965) where an integer code to correct a single
insertion/deletion error per codeword was described.

The main advantage of integer codes, over the block codes, is that
we can correct errors of a given type, which means that for a given
channel and modulator we can choose the type of the errors (which
are the most common) and after that construct integer code
capable of correcting those errors.



V. Levenstein and A. Han Vinck (1993) showed one possible
application of Integer codes for magnetic recording.

A. Han Vinck, H. Morita (1998) investigated Integer codes with a
view to frame synchronization and coded modulation.

H. Kostadinov, H. Morita and N. Manev (2003) used Integer codes
for QAM modulation scheme.



Similar results but using different approach and coding technique:

Nakamura proposed single and double Lee-error correctable block
codes designed for PSK and QAM channels. His construction of
single Lee-error correctable code is equivalent to a construction of
(±1) single error correctable integer code.

Huber and Rifa presented a construction of single error correctable
block codes over Gaussian integers and using Manheim distance for
QAM constellations. In case of Manheim distance equal to 1 it is
equivalent to a construction of single error ("cross type")
correctable integer code.



MAIN RESULT

Definition 1. Let ZA be the ring of integers modulo A. An integer
code of length n with check matrix H ∈ Zm×nA , is referred to as a
subset of ZnA, defined by

C(H,d)={c ∈ ZnA | cHT = d mod A}

where d ∈ ZmA .

Without loss of generality we shall assume that d = 0 ∈ ZmA



Definition 2. The code C(H ,d) is said to be a
t-(±e1,±e2, . . . ,±es) error correctable if it can correct up to t
errors with values ±ei , i = 1, . . . , s.

Definition 3. A single (±e1,±e2, . . . ,±es)-error correctable code
C(H ,d) of block length n is called perfect, when A = 2sn + 1.

An integer code is called quasi-perfect if A ≥ 2sn + 1 is the
smallest value of A for which an integer code exists.



Example 1: (±1,±3,±4,±5) single error correcting code of length
n = 2 over Z17 has a check matrix

H = (1, 2).

C(H,0 ) = {(0, 0), (1, 8), (2, 16), (3, 7), (4, 15), (5, 6),
(6, 14), (7, 5), (8, 13), (9, 4), (10, 12), (11, 3),
(12, 11), (13, 2), (14, 10), (15, 1), (16, 9)}



α error vector
1 1 0
2 0 1
3 3 0
4 4 0
5 5 0
6 0 3
7 0 -5
8 0 4
9 0 -4
10 0 5
11 0 -3
12 -5 0
13 -4 0
14 -3 0
15 0 -1
16 -1 0

Table 1. Syndrome table for (±1,±3,±4,±5) single-error
correctable integer code of length 2 over Z17.



MAIN RESULT

Theorem 1. Let l > 1 be an integer. For every n ≥ 2l−1 there
exists a (±1) single error correctable code of length n over Z2l with
an m × n check matrix

H = (h1,h2, . . . ,hi , . . . ,hn)

where m > 1 is defined by

2m−2(2(m−1)(l−1) − 1) < n ≤ 2m−1(2m(l−1) − 1)

and every column hi ∈ S1 ∪ S2, where

S1 = {(s1, s2, . . . , sm)τ | s1 ∈ Z?
2l−1 ,

si ∈ Z2l−1 , i = 2, . . . ,m},
and

S2 = {(s1, s2, . . . , sm)τ | s1 ∈ {0, 2l−1},
si ∈ Z2l−1+1, i = 2, . . . ,m,

and at least for one i : si ∈ Z?
2l−1}.



Remark 1. When m = 1 a construction of integer codes was given
by Varshamov and Tenengolz.

Remark 2. We use the lower bound for n to obtain the highest
possible rate of the integer code of length n.

Corollary. A (±1) single error correctable integer code of length n
over Z2l with a check matrix H is quasi-perfect when
n = 2ml−1 − 2m−1.



APPLICATION OF (±1) ERROR CORRECTABLE
INTEGER CODES

We encode a A2-QAM constellation using a product code integer
code C(H ,0 )× C(H ,0 ) over ZA × ZA. In such a case we can
correct "square" type of error. For decoding the integer codes we
use soft decoding algorithm

In the following examples we assume that our communication
channel is AWGN.



Example 2. (64-QAM constellation) Let us consider the
following integer codes over Z8:
• Single (±1) error correctable integer code C1(H1,0 ), using
Theorem 1, of length n = 4 with a check matrix

H1 =

(
0 1 2 3
1 0 3 2

)

• Double (±1) error correctable integer code C2(H2,0 ) of length
n = 4 with a check matrix

H2 =

(
0 1 2 3
3 1 0 2

)

• 3-error (±1) correctable Integer code C3(H3,0 ) of length n = 4
with a check matrix

H3 =




1 0 0 0
0 1 0 3
6 2 1 4



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Example 3. (256-QAM constellation) In a similar way as in
the previous example let us consider the following integer
codes over Z16:
• Single (±1) error correctable integer code C4(H4,0 ), using
Theorem 1, of length n = 30 with a check matrix

H4 =

(
1 . . . 1 2 . . . 2 3 . . . 3 0 . . . 0 4 . . . 4
0 . . . 7 0 . . . 7 0 . . . 7 1 . . . 3 1 . . . 3

)

• Double (±1) error correctable integer code C5(H5,0 ) of
length n = 8 with a check matrix

H5 =

(
0 1 2 3 4 5 6 7
2 3 4 5 1 8 0 6

)

• 3-error (±1) correctable Integer code C6(H6,0 ) of length
n = 5 with a check matrix

H6 =




1 0 0 0 0
0 1 0 0 2
0 0 1 3 8



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CONCLUSION REMARKS AND FUTURE WORKS

Integer codes are codes defined over finite rings of integers. The
advantage of integer codes is that we can choose a type of the
error(s) and after that construct an integer code capable of
correcting that error(s).

Because of their flexibility Integer codes can be applied in all the
types of modulation schemes which are used in digital
communications.



We showed that for any given l and n there exists an (±1) single
error correctable integer code of length n over Z2l .

In case of AWGN channel and QAM schemes a comparison of
symbol error probability between integer codes and TCM shows us
that integer codes have better performance

The usage of integer codes capable of correcting more than one
error makes it possible to improve the performance, but increases
the complexity.



A construction of an integer code capable of correcting multiple
errors of given type(s) is much more complicated. Even in case of
(±1) double error correcting code is difficult to define the exact
form of the check matrix.

Another direction of our future research is to apply integer codes in
watermarking, steganography and fading channels.
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