On the binary codes with parameters of **triply**-shortened 1-perfect codes

Denis Krotov

Sobolev Institute of Mathematics, Novosibirsk, Russia

Workshop on Algebraic and Combinatorial Coding Theory, Novosibirsk, Russia, 2010

History of the question

- [M.R.Best, A.E.Brouwer, 1977] binary codes with parameters $(n = 2^m 1 j, 2^{n-m}, 3)$ are optimal for j = 1, 2, and 3.
- [T.Etzion, A.Vardy, 1998] ask: is any $(n = 2^m 1 j, 2^{n-m}, 3)$ code a *j*-times-shortened 1-perfect code for j = 1? j = 2? ...
- [T.Blackmore, 1999] The answer is "yes" for j = 1.
- [P.R.J.Östergård, O.Pottonen, 2009] The answer is "no" for j = 2, n = 13 (two examples found) and j = 3, n = 12.

[D. Krotov, 2009] It is shown that any
(n = 2^m - 1 - 2, 2^{n-m}, 3) code C_■ generates an equitable
partition (C_■, C_■, C_□, C_□). Moreover, C_■ is a doubly-shortened
1-perfect iff C_■ is splittable into two distance-3 codes, which
is equivalent to the biparticity of some graph (C_■ is the set of
vertices at distance more than 1 from C_■).

Today: $(n = 2^m - 1 - 3, 2^{n-m}, 3)$

Let
$$G = (V(G), E(G))$$
 be a graph.

Definition

A partition (C_1, \ldots, C_k) of V(G) is an equitable partition with quotient matrix $S = (S_{ij})_{i,j=1}^k$ iff every element of C_i is adjacent with exactly S_{ij} elements of C_j .

Equitable partitions \sim perfect colorings \sim regular colorings \sim partition designs \sim front divisors of graph \sim graph coverings

Example: Equitable partition

 $S = \begin{pmatrix} \circ & \bullet & \bullet \\ \circ & 1 & 2 & 0 \\ \bullet & 1 & 0 & 2 \\ \bullet & 0 & 2 & 1 \end{pmatrix}$

Incidence matrix of an equitable partition

Ē:

Adjacency matrix

Matrix equation for equitable partition

A – adjacency matrix of the graph;

 \overline{C} – incidence matrix of an equitable partition with quotient matrix S.

Then

$A\overline{C} = \overline{C}S$

Let G = (V(G), E(G)) be a graph.

Definition

A collection (C_1, \ldots, C_k) of subsets of V(G) is equitable with quotient matrix $S = (S_{ij})_{i,j=1}^k$ iff every element \bar{x} is adjacent with exactly $\sum_{i:\bar{x}\in C_i} S_{ij}$ elements of C_j .

Again we have

$$A\overline{C}=\overline{C}S$$

Distance infariancy of equitable partitions

Equitable partitions of distance-regular graph are distance invariant:

Distance invariancy (equitable partition)

The weight distributions of the cells C_1, \ldots, C_k with respect to a vertex $\bar{x} \in C_i$ depend only on *i* (do not depend on the choice of \bar{x} in C_i).

An equitable collection of has a similar property

Distance invariancy (equitable collection)

The weight distributions of the cells C_1, \ldots, C_k with respect to a vertex \bar{x} depend only on $\{i : \bar{x} \in C_i\}$.

But any partial subset from the collection is not nesessarily distance invariant!

Consider an arbitrary 1-perfect code $C \subset V(H^{n+2})$.

 $C = C_{\blacksquare} 00 \cup C'_{\blacksquare} 01 \cup C''_{\blacksquare} 10 \cup C_{\blacksquare} 11$

where C_{\blacksquare} , C'_{\blacksquare} , C''_{\blacksquare} , $C_{\blacksquare} \subset V(H^n)$ are doubly-shortened 1-perfect codes (by definition).

Define $C_{\blacksquare} := C'_{\blacksquare} \cup C''_{\blacksquare}$ $C_{\Box} := V(H^n) \setminus (C_{\blacksquare} \cup C_{\blacksquare} \cup C_{\blacksquare})$

Then $C_{\blacksquare} = (C_{\blacksquare}, C_{\blacksquare}, C_{\Box}, C_{\blacksquare})$ is a partition of $V(H^n)$.

Consider an arbitrary 1-perfect code $C \subset V(H^{n+2})$.

 $C = C 0 \cup C' 0 \cup C'' 1 \cup C'' 1 \cup C 1$

where C_{\blacksquare} , C'_{\blacksquare} , C''_{\blacksquare} , $C_{\blacksquare} \subset V(H^n)$ are doubly-shortened 1-perfect codes (by definition).

Define $C_{\blacksquare} := C'_{\blacksquare} \cup C''_{\blacksquare}$ $C_{\Box} := V(H^n) \setminus (C_{\blacksquare} \cup C_{\blacksquare} \cup C_{\blacksquare})$ Then $C_{\blacksquare\blacksquare\Box\Box} = (C_{\blacksquare}, C_{\blacksquare}, C_{\Box}, C_{\blacksquare})$ is a partition of $V(H^n)$.

Lemma (alternative definition of $C_{\blacksquare\blacksquare\blacksquare}$)

 C_{\blacksquare} consists of vectors complementary to the vectors of C_{\blacksquare} ; C_{\blacksquare} consists of vectors at distance > 1 from C_{\blacksquare} ; $C_{\Box} = V(H^n) \setminus (C_{\blacksquare} \cup C_{\blacksquare} \cup C_{\blacksquare}).$ Now consider an arbitrary $(n = 2^m - 1 - 2, 2^{n-m}, 3)$ code C_{\blacksquare} and define $C_{\blacksquare\blacksquare\blacksquare\blacksquare} = (C_{\blacksquare}, C_{\blacksquare}, C_{\square}, C_{\blacksquare})$ by the same rules:

 C_{\blacksquare} consists of vectors complementary to the vectors of C_{\blacksquare} ;

 C_{\blacksquare} consists of vectors at distance > 1 from C_{\blacksquare} ;

$$C_{\Box} = V(H^n) \setminus (C_{\blacksquare} \cup C_{\blacksquare} \cup C_{\blacksquare}).$$

Theorem

For every $(n = 2^m - 1 - 2, 2^{n-m}, 3)$ code C_{\blacksquare} the collection $C_{\blacksquare \blacksquare \square \blacksquare}$ is an equitable partition with quotient matrix

$$\begin{pmatrix} \bullet & \bullet & - & \bullet \\ \bullet & 0 & 1 & n-1 & 0 \\ \bullet & 1 & 0 & n-1 & 0 \\ - & 1 & 1 & n-4 & 2 \\ \bullet & 0 & 0 & n-1 & 1 \end{pmatrix}$$

Embedding in a 1-perfect code of length n + 2

Recall: $C_{\blacksquare} = \{v \mid d(v, C_{\blacksquare}) = 2\}$

Theorem

Let C_{\blacksquare} be an arbitrary ($n = 2^m - 3, 2^{n-m}, 3$) code. The following statements are equivalent

- C_■ is a doubly-shortened 1-perfect code;
- C_a is the union of two distance-3 codes;
- the graph $(C_{\blacksquare}, d(\cdot, \cdot) \in \{1, 2\})$ is bipartite.

Embedding in a 1-perfect code of length n+2

Recall: $C_{\blacksquare} = \{v \mid d(v, C_{\blacksquare}) = 2\}$

Theorem

Let C_{\blacksquare} be an arbitrary ($n = 2^m - 3, 2^{n-m}, 3$) code. The following statements are equivalent

- C_I is a doubly-shortened 1-perfect code;
- C_I is the union of two distance-3 codes;
- the graph $(C_{\blacksquare}, d(\cdot, \cdot) \in \{1, 2\})$ is bipartite.

Embedding in a 1-perfect code of length n + 2

Recall: $C_{\blacksquare} = \{ v \mid d(v, C_{\blacksquare}) = 2 \}$

Theorem

Let C_{\blacksquare} be an arbitrary $(n = 2^m - 3, 2^{n-m}, 3)$ code. The following statements are equivalent

- C_■ is a doubly-shortened 1-perfect code;
- C_■ is the union of two distance-3 codes;
- the graph $(C_{\blacksquare}, d(\cdot, \cdot) \in \{1, 2\})$ is bipartite.

Now consider an arbitrary $(n = 2^m - 1 - 3, 2^{n-m}, 3)$ code C_0 and define $(C_0, C_1, C_2, C'_0, C'_1, C'_2)$ by the rules:

 C'_0 consists of vectors complementary to the vectors of C_0 ;

 (C_0, C_1, C_2) is the distance partition of C_0 ;

 (C'_0, C'_1, C'_2) is the distance partition of C'_0 .

Main theorem (triply-shortened case)

Theorem

For every $(n = 2^m - 1 - 3, 2^{n-m}, 3)$ code C_0 the collection $(C_0, C_1, C_2, C'_0, C'_1, C'_2,)$ is equitable with quotient matrix

(0	п	0	0	0	0	
	1	<i>n</i> -4	3	0	0	0	
	0	<i>n</i> -2	2	0	2	-2	
	0	0	0	0	п	0	
	0	0	0	1	<i>n</i> -4	3	
	0	2	$^{-2}$	0	<i>n</i> -2	2	

A code is called **completely regular** if its weight distribution with respect to some initial vertex depends only on the distance between the initial vertex and the code. We call a code **completely semiregular** if its weight distribution with respect to some initial vertex \bar{x} depends only on the distance between \bar{x} and the code and the distance between $\bar{x} + \bar{1}$ and the code.

completely regularity

Corollary

(a) Any $(n = 2^k - 1 - 3, 2^{n-k}, 3)$ or $(n = 2^k - 1 - 2, 2^{n-k}, 3)$ code is completely semiregular. (b) Any self-complementary (i.e., $C_0 = C_0 + \overline{1}$) code with parameters $(n = 2^k - 1 - 3, 2^{n-k}, 3)$ is completely regular.

Orthogonal arrays (OA)

Corollary

Any $(n = 2^k - 1 - 3, 2^{n-k}, 3)$ code forms an orthogonal array of strength n/2 - 2.