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1 Galois rings

Remind that a Galois ring is a finite commutative ring R with identity e

such that for some prime number p and natural number n the lattice of all

ideals of the ring R is a chain of the length n of the following form:

R . pR . ... . pn−1R . pnR = 0.

In this situation charR = pn, a quotient ring R = R/pR, called top-factor

of R, is a field of q = pr elements and |R| = qn. A Galois ring is defined

uniquely up to isomorphism by its cardinality and characteristic and is

denoted by R = GR(qn, pn). Most important examples:

GR(pn, pn) = Zpn, GR(q, p) = GF(q).
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A natural epimorphism R → R = R/pR = GF(q) is one of the im-

portant instrument in the investigation of different transformations over

Galois rings. In all what follows we denote the image of element a ∈ R or

polynomial G(x) ∈ R[x] under the epimorphisms R→ R or R[x]→ R[x]

correspondingly by a, G(x).

Any Galois ring R = GR(prn, pn) has the following construction:

R ∼= Zpn[x] / G(x)Zpn[x],

where G(x) ∈ Zpn[x] is any monic polynomial of the degree r such that

G(x) ∈ Zp[x] is an irreducible polynomial.
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2 Recurrences and polynomials of maximal period

LetR = GR(qn, pn) be a Galois ring and u : N0 → R be a sequence overR:

u = (u(0), u(1), ..., u(i), ...). We call u a linear recurring sequence (LRS)

of order m with a characteristic polynomial F (x) = xm−fm−1xm−1. ..−f0
if u(i + m) = fm−1u(i + m− 1) + ... + f0u(i), i ∈ N0.

Let us denote by LR(F ) the family of all such sequences.

A period of F (x) is defined as

T (F ) = min{t ∈ N : ∃l ∈ N0 F (x)|xl(xt − e)}.

There are well-known that a period T (u) of any LRS u ∈ LR(F ) satisfies

the relations:

T (u)|T (F ), T (F ) ≤ τpn−1, where τ = qm − 1.
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If F (x) ∈ R[x], degF (x) = m, T (F ) = τpn−1, τ = qm − 1, then

F (x) is called polynomial of maximal period (MP-polynomial) over the

Galois ring R = GR(qn, pn) and an LRS u ∈ LR(F ) such that T (u) =

T (F ) = τpn−1 is called LRS of maximal period ( MP-LRS ) over R .

Theorem 1. A reversible polynomial F (x) ∈ R[x] of the degree m is

an MP-polynomial if and only if T (F ) = τ = qm − 1 and

xτ
F≡ e + pΦ(x), deg Φ(x) < m, where (1)

Φ̄(x) 6= 0, if p > 2, or p = n = 2,

Φ̄(x) /∈ {0, ē} if p = 2 < n.
(2)

Let F (x) be an MP-polynomial and u ∈ LR(F ). Then u is an MP-LRS

if and only if u 6= 0.
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3 Coordinate sets of a Galois ring

A subset K ⊆ R is called a coordinate set of the ring R if 0 ∈ K and

for any element a ∈ R there exists a unique element κ(a) ∈ K such that

a = κ(a). For such K every element a ∈ R has a unique representation

in the form

a = κ0(a) + pκ1(a) + . . .+ pn−1κn−1(a), κt(a) ∈ K, t ∈ 0, n− 1. (3)

We call (3) the decomposition of the element a in the coordinate set K

(K-decomposition of a).
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Main example of a coordinate set: Techmüeller coordinate set: Γ(R) =

{α ∈ R : αq = α}. Γ(R)-decomposition of element a ∈ R we call

Techmüeller decomposition.

If R = GR(pn, pn) = Zpn, then the p-ary coordinate set

δ(R) = 0, p− 1 = {0, 1, . . . , p− 1}

is also important. Let us note that Γ(Zpn) =
{

0, 1, 2p
n−1
, . . . , (p− 1)p

n−1
}

and equality Γ(Zpn) = 0, p− 1 fulfils exactly if n = 1, or p = 2.

Proposition 1. For any coordinate set K of a Galois ring R there

exists a unique polynomial ψK(x) ∈ R[x] with properties

ψK(Γ(R)) = K, degψK(x) ≤ q − 1, ψK(x) ≡ x (mod pR).

We call ψK(x) the interpolation polynomial of the coordinate set K.

Note that if K = Γ(R) then ψK(x) = x.
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Consider the p-ary decomposition of a number t ∈ N:

t = t0 + pt1 + ... + pktk, t0, ..., tk ∈ 0, p− 1,

and define the index of nonlinearity of a monomial lxt 6= 0 by

ind lxt = t0 + ... + tk, ind 0 = −∞.

We define the index of nonlinearity indψ(x) of ψ(x) ∈ R[x] as the

maximum of indices of nonlinearity over all its monomials. Note that

the interpolation polynomial ψK(x) of any coordinate set K satisfies the

relations degψK(x) ≤ q − 1, q = pr and therefore

1 ≤ indψK(x) ≤ (p− 1)r. (4)
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4 Main problem and results

Let u be an LRS with a characteristic MP-polynomial F (x) ∈
R[x], degF (x) = m. Consider some coordinate set K of the ring R

and the K-coordinate decomposition of items u(i) of LRS u:

u(i) = w0(i) + pw1(i) + . . . + pn−1wn−1(i),

wt(i) = κt(u(i)) ∈ K, t ∈ 0, n− 1. (5)

We can correlate to u the coordinate sequences w0, . . . , wn−1 over the field

(K,⊕,�) = GF(q), with operations:

∀α, β ∈ K : α⊕ β = κ0(α + β), α� β = κ0(α · β).

It is known that

T (u) = τpn−1 ⇐⇒ T (wn−1) = τpn−1.
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This motivates us to advance the following

Conjecture 1. For any coordinate set K the sequence u can be

uniquely reconstructed by the sequence wn−1.

This statement was proved earlier for

R = Zpn, K = 0, p− 1

(Kuzmin, Nechaev, Min-Qiang Huang, Zong-Duo Dai, 1992). In 2002

Weng-Feng Qi and Xuan-Yong Zhu have published the proof for the case

R = GR(2rn, 2n), K = Γ(R)

with some restriction on F (x) (see below).

Here we prove that Conjecture 1 is true for an arbitrary Galois ring R

with some restrictions on coordinate set K and polynomial F (x).
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Let us repeat some previous results.

A reversible polynomial F (x) of the degree m over a Galois ring

GR(qn, pn) is an MP-polynomial if and only if T (F ) = τ = qm − 1 and

xτ
F≡ e + pΦ(x), deg Φ(x) < m, where (1)

Φ̄(x) 6= 0, if p > 2, or p = n = 2,

Φ̄(x) /∈ {0, ē} if p = 2 < n.
(2)

If F (x) be an MP-polynomial and u ∈ LR(F ), then u is an MP-LRS if

and only if u 6= 0.

Any coordinate set K of the ring R has unique interpolation polynomial

ψK(x) ∈ R[x]:

K = ψK(Γ(R)), ψK(x) ≡ x (mod pR), indψK(x) ≤ (p− 1)r.
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Main result of this talk:

Theorem 2. If indψK(x) ≤ (p − 1), particularly if K = Γ(R), then

any MP-LRS u can be uniquely reconstructed by the highest coordinate

sequence wn−1 from K-coordinate decomposition (5):

u(i) = w0(i) + pw1(i) + . . . + pn−1wn−1(i), wt(i) ∈ K, t ∈ 0, n− 1.

Note that Qi and Zhu (2002) have considered only the case when

R = GR(2rn, 2n), K = Γ(R),

xτ
F≡ e + pΦ(x), deg Φ(x) < m, deg Φ(x) > 0.

Namely this result we send firstly for the publication in the Proceedings

of our conference.
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However some later our student Kirill Gukov has find mistake in our

proof. Our attempt to correct the proof before the deadline was unsuc-

cessful. So we was in necessity send for publication the following impaired

result, which is published in our Proceedings.

Theorem 3. If indψK(x) ≤ (p − 1), particularly if K = Γ(R), then

any MP-LRS u can be uniquely reconstructed by the sequence wn−1

from K-coordinate decomposition (5),

except possibly the case when

q > p = 2, n > 3, deg Φ(x) = 0. (6)

But now we have proof of the Theorem 2.
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For R = Zpn = GR(pn, pn) the equality q = p, i.e. r = 1 holds. Then

any coordinate set K satisfy the condition

indψK(x) ≤ (p− 1)

and condition q > p = 2 is false. This yields the

Corollary 1. For any coordinate set K of a ring R = Zpn every MP

LRS u over R can be uniquely reconstructed by coordinate sequence

wn−1 from K-coordinate decomposition (5).

Authors are grateful to D.Bylkov and K.Zukov for important remarks

which made more precise the formulation of the main result.
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