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Definition of Jacket matrix
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The basic idea was motivated by the cloths of Jacket. As our two sided Jacket is inside and outsid
compatible, at least two positions of a Jacket matrix are replaced by their inverse; these elements
are changed in their position and are moved, for example, from inside of the middle circle to
outside or from to inside without loss of sign.




General Definition of Jacket matrix

In mathematics a Jacket matrix is a square matrix 4 = aij of order n whose entries are
from a field (including real field, complex field, finite field ), if

AA*=A*A=nl,

Where : 4 * is the transpose of the matrix of inverse entries of 4 , i.e.

Written in different form is

a .
u,ve{l,2,...,n},u¢v:z a
a..

Vi

Jo,o Jo,1 Jon-1
[J] | o Jii Jin-
mxn : : :
_]m—l,O .]m—l,l Jm—l,n—l i

=0

[ Complex
Y B .- Orthogonal
[ | | Matrices
Complex . &
Hadamard - N |
Matrices > | | Conference
N " Matrices
.
&
-
_—
5 \" \‘\
[ | A
5
Hadamard ~y—
Tacket Matrices Orthogonal
Matrices Idatrices




Key Idea
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Key [dea on SCI-N Coding
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Center Weighted Hadamard Transform

Jacket Basic Concept from Center Weighted Hadamard

1 1 1 1 11 1 1

Al =2 2 -1 41 =172 172 -1
[WH]4: 9[WH]4 =

1 2 -2 -1 1 1/2 -1/2 -1

1 -1 -1 1 1 -1 -1 1

e ]y =]y, ®[H], where [HL:B —IJ

Sparse matrix and its relation to construction of center weighted Hadamard
A 1
[WC]N :[H ]N[W]ﬂz\f - [WC]N/z ®2[] ]2 [WH ]N - N [H ]N [WC]N

e 1. =[we 1), ® %[I]2 |, = Nlwcl)[H],

* Moon Ho Lee, “Center Weighted Hadamard Transform” IEEE Trans. on CAS, vol.26, no.9, Sept. 1989

* Moon Ho Lee, and Xiao-Dong Zhang, “Fast Block Center Weighted Hadamard Transform” IEEE Trans. On 8
CAS-1, vol.54, no.12, Dec. 2007.
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The Center Weighted Hadamard Transform

MOON HO LEE

Abstract —The center weighted Hadamard transform (CWHT) is de-
fined. This transform is similar to the Hadamard transform (HT) in that it
requires only real operations. The CWHT, however, weights the region of
mid-spatial frequencies of the signal more than the HT. A simple factoriza-
tion of the weighted Hadamard matrix is used to develop a fast algorithm
for the CWHT. The matrix decomposition is of the form of the Kronecker
products of fundamental Hadamard matrices and successively lower order
weighted Hadamard matrices.

[. INTRODUCTION

The application of discrete orthogonal transforms for signal
and image representation and compression is well known [1]-[4].
A much investigated method, due to the ease and efficiency of its
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implementation, is based on the Hadamard transform (HT) [8].
In this paper, we present a modification to the HT, which we call
the center weighted Hadamard transform (CWHT). This method
retains much of the simplicity of HT, but offers better quality of
representation over the central region of the image [5]-[7]. The
scheme was motivated by the fact that the human visual system 1s
most sensitive to the mid-spatial frequencies [9]. The paper is
organized as follows. In the next section the CWHT is introduced
and recursive relations for the generation of the transform matrix
is presented. Next, a fast CWHT algorithm which is similar to a
fast HT method is derived for both the forward and inverse
transforms that we have proved for examples.

[I. THE CENTER WEIGHTED HADAMARD TRANSFORM
(CWHT) AND IT$ FAST IMPLEMENTATION

Let the Hadamard and the center weighted Hadamard matri-
ces of order N=2* be denoted by [H], and [WH],, respec-
tively. The CWHT of an N X1 vector [f] and an N X N (image)
matrix [g] are given by

[F]=[WH]x[/] (1)
[G] =[WH]x[g][WH] . (2)

The lowest order WH matrix 1s of size (4> 4) and is defined as
follows:

1 1 1 1

s |1l =2 2 =1
[WH]4_ 1 2 -2 -1 (3}

1 -1 -1 1
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The inverse of (3) is

2 2 2 2
1
112 -1 1 =2
WHL =312 1 1 -2 4)
2 -2 -2 2

This choice of weighting was dictated, to a large extent, by the
requirement of digital hardware simplicity [6]. As with the
Hadamard matrix, a recursive relation governs the generation of
higher order WH matrixes, 1.e.,

[WH] , £ [WH] v, @[ 17].. (5)

where @ 1s the kronecker product and [/}, 1s the lowest order
Hadamard matnx given by [1]-[4], (8]

[H]z'[i _” (6)

We now present a fast algorithm for the CWHT which is
related to the fast HT (FHT) algorithm [2]-[4), [8]. The FHT can
be derived by decomposing (], into a product of k sparse
matrices, each having rows/columns with only two nonzero
clements. In order to develop a similar algorithm for the CWHT,
define a coefficient matrix [WC], by

(WC)y =[H][WH],. )
Since [H],'=1/N[H],, we have from (7) that
[WH] y =1/N[ H] s [WC] . (8)

It is shown that [WC],, is a sparse matrix with at most two
nonzero elements per row and column. Therefore, the fast CWHT
(FCWHT) 1s simply the FHT followed by a sparse matnx
1/N[WC],.

To show the sparseness of [WC], we start by computing the
lowest order [WC), i.e. [WC],.

11
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Fig. 2. Fastinverse CWHT flow graph. N = 4.
From (7), we have
1 1 1 111 1 1 1
1 -1 1 =141 -2 2 -1
WC|, =
[ ]4 1 1 -1 =111 2 -2 -1
11 -1 -1 11 -1 -1 1
4 0 0 0
_ |0 6 —2 0
0 =2 6 0 (9)
0 0 0 4

Clearly [WC], is sparse. Using the expansion properties of the

Hadamard and weighted Hadamard matrices, (7) can be written 12



Clearly [WC], is sparse. Using the expansion properties of the
Hadamard and weighted Hadamard matrices, (7) can be written
as

[WC]y = ([ H] v @[ HN[WH] v 2 @[ H];)
=([H]n:[WH] ) @([H][H].)
=[WC]na@(2f1],) (10)

where [I], is the 22 identity matrix. Since [WC], is symmetric
and has at most two non-zero elements in each row, it clearly
follows from (1()) that the same is true for [WC];, and hence, for
any [WC],,, N=2", k=2,34,---_Fig 1 shows a flow graph of
the 4-point FCWHT algorithm, From this figure it is clear that
the first three iterations of the algorithm are those of the FHT.
These are followed by the opetation of the [WC],. The N =2¢
point FCWHT algorithm requires AN + N/2 real additions and
L3N real multiplications in contrast with the N-point FHT
which requires &N real additions.

The inverse FCWHT may be formulated in a similar fashion as
the FCWHT. First we note that

[WC]y' = [WC] 28172 1],
Obviously,
[WC] ,[WC] .'-ii = ([WC] v ®2] _F];.]“WC] :;2 ®1/2 ”2]

— ([WClnaWCRh) @ (11, 1):) = [ 1] 4.
(1)

Equation (11) can be shown to be true by multiplying {WC] !
in (11) by the expression for [WC], given in (10). From (11) and
the sparseness and symmetry of [WC],! it follows that [WC];'
is also symmetric and sparse. Furthermore, using (), we have

[WH] ' = N[WC] [ '[H]L (12)

But [WC], and [H],'=1/N[H], are both symmetric with a
symmetric product. Thus

[WH] x‘l"[H]_\'[WC]Nl- (13)
Equation (13}, with the exception of the scale factor 1/N, is of

13
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the same form as (8). Consequently, it signifies a fast algorithm
for the inverse of [WH],, composed of FHT followed by [WC],,.
Figs. 2 and 3 show a flow graph of the inverse FCWHT for N =4
and a signal flowchart of the FCWHT, respectively.

III. EXAMPLES

The simple recursive relationship in (8) and (13) can now be
used to formulate a sparse matrix decomposition of [WH], and
[WH]R". As an example for N =8, [WH], can be represented as

[WH], = £ (L), [HL)((WCL 02 1],

1
=§([H]4[WC]4)®?1H]2
1
*E([WC]JH]A)@Z{HL (14)
ie, [WH];,
1 1 1 174 o o0 o
13 -1 1 -1flo 6 -2 o az[l 1]
81 1 -1 -1flo -2 6 o 1 =
1 -1 -1 1Jlo o o 4
1 1 1 1 1 1 1 1
1 =1 1 =t I =1 1 =i
1 1 =2 =3 2 2 =1 =1
1 -1 =2 2 2 -2 -1 1
11 2 2 -2 -2 -1 - @
1 -1 49 =2 =3 2 =1 1
i 1, =t =1 =l =1 1" 1

1 -1 -1 1 -1 1 1 -1
In a similar manner as the FCWHT, we note that
[WH]; ' = ([H].8[H],)([WC]; ' @1/2[1],)

= ([HldwC) ') ®1/2( H],. (16)
Therefore, (16) becomes
025 0 0 0 1 1 1 1
0 0.1875 00625 0 1 -1 1 -1
0 00625 01875 0 1 1 -1 -1
0 0 0 025411 -1 -1 1
I 1
o5(1 -1)
2 2 2 2 2 2 2 2
2 -2 2 =2 2 =2 2 =2
2 2 =1 =1 1 1 -2 =2
JAl2 -2 .11 01 -1 -2 2
16| 2 2 1 L =1 =l =2 =2
2 -2 1L =1 =q 1 -2 2
2 2 =2 =3 =2 =2 2 2
2 =2 =2 2 =2 2 2 =2

(17

The symmetrical matrix decomposition of the [WH], and
[WH]5' are of the form of the kronecker products of lowest
order Hadamard matrices and successively lower order weighted
Hadamard matrices. Using the algebra of kronecker products, (8)
and (10), it can be shown that

[wH],[WH],' =1/N({[H]rv/z[WC]Wz@z[”]z}
A{[HwalWClih@1/2[ H],))
=([WH] x2®[ H],)([WH] 52 @1/2] H],)
=(IWH] wal WH] }2) @ 1/2(] H L[ H])
=[1]x- (18)

|

| Fast Hadamard transfora J
Inverse CII“;‘>_~ Forward
FL g

Pl ) | s ZE
[uelusz @ 1/2[1]2 1N [ [WC)wsz @ 2[1)z2)
it @ et

Fig. 3. Fast CWHT flow chart.

4

Below, we illustrate this relationship for the case of N=8.

1 1 1 1
1

a_ 1 -2 2 a1
WHL[WH]: =2 ||} 75 5 11
1 =1 =1 1

2 3 2 13

12 -1 1 -2

2 1 =1 =2

3 =3 =3 3

=[I],. (19)
Clearly (19) is the 8 x 8 identity matrix.

IV. CoNCLUSIONS

A new non-orthogonal transform, the CWHT was introduced
in this paper. As in the case of the HT, the CWHT involves only
real operations. Fast algorithm for the CWHT and its inverse
were derived and shown to be of slightly higher complexity than
similar HT algorithms. This method is presented for its simplicity
and the clarity with which it decomposes a weighted Hadamard
matrix in terms of the sparse matrices.
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Jacket(1989)*

DFT (1822) DCT(1974) Hadamard (1893)
J. Fourier N. Ahmed, K.R. Rao,et. J. Hadamard Moon Ho Lee
1 1 1 1 1
N' €1 2o 2 11 T
_ — nk N lm,n =4/ 7o COS————— — — a -
Formula X(m = kzz(;x(k)w N N [H]2 B |:l — 1:| [J]4 B 1 ] - ] 1
=0,1.N—-1l,w=e/?"' m,n=0,,.,N—1 _ _
" w=e [H], =[H],, ®[H], b=t =11
[V],=[J],, ®[H], n>4
N =3 N=4 (=1 o (_l)éo"kfk W lin2 @i ) 2®1)
1 1 1 1
—_— = = — 1 1 1 1 1 1 1 1
1 2 22 2
[cl.=| & ¢ ¢ (] 1 -1 1 -1 /], = I —w w -1
Forward ]73 =1 w w sz C: C: sz 4 1 1 -1 =1 4 1 w —-w -1
2 3 7 1 5
w e—i27r/3 Ci _ COSZ w=1: Hadamard
8~ 8 w=2: Center Weighted Hadamard
Element-Wise Inverse Block-Wise Inverse Element-Wise Inverse Element-Wise Inverse
[ 1 1 2 3 ) or
—— C C C Block-Wise Inverse
ﬁ 8 8 8
11 1 1 e b I 11 11
a1 1 2 R v 1 -1 -1
e FT =S|l w! owR el =gl o _1 Lol Ve Vw -l
1 w2 w No Cs G G 41 1 -1 -1 * 41 Uw —Uw -1
1 7 2 5
_ﬁ Cx Cx Cx | 1 —1 —1 1 1 —1 —1 1
273 Im Im Im + Jlim
2
61271' COS— COS— 1 +1 1 +1
Circle \.\ Re Re Re Re
i )3 cos— cos No Limited by
e Circle
Kronecker [DFT]N ®[DFT]N 75[DFT]ZN [DCT ]N ® [DCT ]N * [DCT ]2N [H]N ® [H]N [H]ZN [J ]N ® [J ]N = [J ]z/v
Size 2" or p:pisprime X 2" 4n Arbi[rary

15



Jacket Definition: element inverse and transpose

[J ]mxn = [Ly' men

Examples:

0!

and

1,.)" =QL,] Y

11 1
M1 P —i
ke,
1 -1 -1

1 1 1
NP
(%4 =
l —1

1 -1 -1

Why use Jacket Matrices?

Simple Inverse

TS R
1 -1 -1 1
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A New Reverse Jacket Transform and Its
Fast Algorithm

Moon He Lea Senior Member, IEEE

Abprgei—Thiz paper presents the Reverse Jackes: mramsform
L snd & simple decomposidon of ity mamiz. which i3 uzed o
op a fast algorithm for e BJT. The matrix decomposition

is -:Er]:l.r form of tise marir produce: of Hadamard marcrices and
soccessively lower order coefitbent mutrices. This decomposition
very cleariy leads to 2 bleclk ciroelar sparze marriz factorizadon of
'Ih.tRﬂ!rx.T:l.d:rﬂH.]h- iz The main propersy of [HLY |5 i
thear thee fmverse manrices of ir: ebemenes cxn be obesined very easily
and have a special serucnzre. [FLI ]y i dermved usmgﬁ-l‘iiu;]:md.
Hadsmard eransform correspomding o rhe Hadamard marriz
[T~ and a basic symmemric mamriz A Each element nfll LT |

1 2 gemeralized for ]:n]'\.gmn] subcamping and cazenica
form. In thiz paper resent in partoular che sviremarcal
block-wise .pl:r:e ::ul:rl.: exrending-methad for [,

I LrooocTiow

EE HATAMARD tram=fomm is an orthogomal mamis with
highly practical vahe for representing sipnals and imazes

especially for the purposes of data compression [1]-[4]. [11].
The reazon for the practcalify of this Tansfom is the fact dat
the elements of the Hadamard matrix are sither +2"(=1) or
=3 =—1 Thus, the compatation of the tremsform of a siznal
comststs of additions and submactions of the sippal samples.

Recently, the Hadamard matrix has heen presented i that the
Walsh-Hadamard mansdoma & the most kpown of the nonsimg-
soidal orthogoral mmsforms. The Walsh-Hadamend mamix s
nzed fnnte‘i'i‘ulshrepre&aumdmofthedmsapmesitimage
coding and for Exdamerd-Walk orthogonal- sequence geamer-
anar in code-division poltple access (CTMA) spread-spectum
comumamicatiar. Their besic functions ars sappled Walsh func-
tioms which can be expressed in temms of the Hadamard [Hy
mamices. Using the onhozenaliny of Hadamerd matrices, we
comsmact @ genstalized Weighted Hadamard (WH) mamice [5],
[0, [8] called an [HI]y mamix with 2 reverse geomatric smx-
fure. In this paper. [IL)]s and o= fve cases of marix examples
are descrived. [1L0], is nonorthogoral but it Endamerd marmy,
which is a subset of [Ny [6], [E]. is erthogonal

Tast as m the caze of the fst Fourer mansfom (FFT), sev-
eral algorithms have bean developed for compusine v-length
Esdarerd rapsforms % by &, 1ather than &= operatons.
These are wsually zeneralizatons of the Coaley-Tulkey FFT al-
sorithn [4]. In this paper, we proposs a simple recursive fac-

hemmenpl received Apel 03, 100F, sevised Augest 1999 This peper wes
recommmnended by Asweciale Ediver T. Fuijii
The stk is with e Irstivale of L= Llr::.l"un & Comsusicelion, F:||rl-
el of & el T i g, (el Milisnal Uni-
wenmity, Chomi S61-T58, Kisea.
Publister Dem Idestifier 5 105771 30{00000582-5

torizaden for tha [BJ] in terms of the Kronecker products of
2% 2 [F]] and Hadamard merrices of cocssomively lower or-
dars. A comseguence of this factorzaton 15 @ sumple and clear
fast Hadamard ransform alzarithm resshing from a bleck cir-
culam? sparse masts factorization of the [BT] mamh:

Section I svmemarized the Waighted Hadamard transform
{WHT), and Secton I descrbed the BT mamix. Section IV ex-
plain the case of BT mairices apd its fast implementadon, and
Secton VW dsals with the conchision.

I Tee Cosmvevmowial WHT

Let the Hadamard and the Waighted Hadamard mamices of
arder v = 3% be denoted by 1] and [WH]s. respectively.
The WH mansform of an N = 1 vector [f] and an N + N matms
(Emage) fi] are given by [3]. [€]. [10]

F1=[WHI ] M
(7] = [WH] B WHE e
The Lowast arder WH matmx i3 of size (4 * 4) and 1s defined 2

1 1 1 1
. 1 =2 2 =1
MWHi=17 5 5 3
1l ==l =] 1
11 1 lj o o0 o
11 -1 1 oalle o6 -2 -
=1l 1 o alle —= 6 o =
1 =1 =1l 11l o o 4
The imverse of (3} i=
R
e > -1 1 -2
CwHE {:1-;—:
3.3 3 3
1 1 1 1 4 000
11 =1 = e s g
=mlr v -1 e 1o W
1l =] =1 1 o oo d

This cheice of weighting was dictated, 1o a large exent, by the
requirement of dizital hardware simpéiciny [5]. [8]. As with the
Hadamaard mairix, & recursive relation governs the peneration of
tigher ooder WH matmicss, 1.,

[WH]y £ [WHLy 2 = [Me 3

EOSP-T 1 3000E 1000 & D00 TEER
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where - I5 the Kronacker product and [#]s is the lowest arder
Hnnamardr:lan'u: govem by [1]-[3]. [13]. [14]

_J1 1
M= L] ®
Far exarple, for V' = &
L
. 1 2 2 17 |1
WHE=1, & 5 4@ [1
1l =1 =1 1
sl 1L 1 1 1 1 1 1
1 -1 1 =1 1 =1 1 -1
1 L =2 =2 2 2 =l =1
[ T R R R B, S | -
=l vz 2z =2 = a o V¥
1 =1 2 =2 =2 2 =1 =l
11 1 -1 -1-111
1 =1 =1 1 =1 1 1 =l

In grder to develop a sinlar genemal alzorithon fior the WHT.
define 2 weighed coefScien: mamix [R7] s by

[ = [ ] W] 6]
Cleanly, [H7), 15 sparse mermix Using the expansion propardes
of Hadamard and WH mamicss, (2) can be written as
Yy = (s e [H R IW ]y 2 & [ ])
= (il W]z = (R )
=[]y 2 =3l &
where [I']s s the 2 » 2 tdentity matrix. Sinca [, is symmetric

amd bias at most o nonzeros elsments i each row, 1t clearly
follows from (9] that the same is tue for KT, and heree, for

amy [RC] - ¥ = 2.k =2.3.4.... Fig. | shows 2 flow graph

of ﬂ:ne—;mmfaitu']-rﬂ:emethumneasRhmsf:um[RJT].

From thiz fignre if 15 clear that the Srst two terations of the

algomittm are thase of e st Hadamard irmsform. These ans

followed by the opemation of the [HC], sach as ke M+ 1.
Smee [HT = 1407 [4]y we have froe (107 that

[WH]» = LAN[H ] [RC] m
Furthearmore, nsmg (9, we have
[WHI7 = NIRCR M (1

The symmetrical mamix decompesidon of fhe [1.'|1-¥-,- amd
[WHI7 are of e form of the Fronecker products of lowest

E—Innmd mamees and soccessively lower ordsr
wmg]:l:er. Hadamard mamices. Using the alzsbra of Eronscker
products {5) and (11}, it can be shown that

WHLWHE® = 1 (il o)z = i |
A B RO 2 L2
= ([WHpe & R)([WHEZ 2 = 1/2[H )
= ([WHLyfWHI G, © 12 2[4
=[1v. nn
cleardy (12) iz the N = N idendny mamix.

Il Tu= Prorosen BIT

LI]I ars 2 peneralized comventional [WH]»- and
[6]. [7]. [9]. The [RJT] havine seomeTic Souctre property.
bazic idea of this paper was moedvated by the cloths of BT, Az our
two-sided jacket is insida and cubside compatthle, at least two
positdons of a BT maimy [HI]y are replaced by thesr ioerse;
these elements are chanzed in thett position and are moved, for
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examplz, from meide of the meddle circle o outside or fom o
inside without loss of signs; this i3 a very meeresting phepom-
enpr. Ths is the reasen why we call it an BT mafmix

Tha WHT was first tmoduced in [3]. [4]. [10], and fast al-
izocithms in ternys of Hadameard nmaimices hove besn investizaied
im [1]. [2] Basically, a WH mairix is a slight modification of
2 Hadamard matrix. The WH. however, weights the repion of
mid-sparal frequencias of the siznal more than the Hadamard
tramsfiorm [5]. The basic concept of this paper is denved fom
the 2w 2 rubnampling mariy of Waighted Hodammrd mami.

[RIT] is stradginforward and shows that the matrices [}
have the Slowing propemies.

1) [R]= is a symmetre madrix. 12,

[l = [RIE (13)
whare | demotes Tanspose.
1) [WI]= &= an orthoponal memix, m Case of BWT(33), as
basic mamiy elements p === 1
BT e = [ 14
Tt iz & different case from a ponorthogonal ez with
RIEF, as (36, (=00, (430, (48
DLl s =L (13

Dqfiniior 3: A (Znx Zn) mams 4 = (p Pl,.n e N
Jsl:nlle-iH.:rrrr'.lrmra-n.t'[L-'] [T, with J = [_III ot
wherz [ £ RE 2 is the vmit metris.

Dgfinirion 3.2- We dzfine ope mars noton raluhedmﬂ:e
Esdamerd pemiz [ ]s & BY 2 Lalil]e £ RS2 tea
o 3 pamin A w0 5 ey [ e suck that

[T = [H]E" [T [ ] {1g
iz galled the BT mams, where - belonss o infeger M. and R isa

real mumber. Al its components are £, n =h.1,.2. Egoation
(13} 13 enstly found to be eguivalent to the conditons

[ = (M (R s a7
s, = [ a8
R = s k22 09

We carefully considar the £ - 4 H] madrixz

11 1 1
1 -2 2 -

Mak=1 2 L o 20
10 -1 1

If we regard the upper-left 2 2 block subsampling matrs
af [WH]. then we can find some 2 rezular reomsive Zeameiric
simacture.

Thiz upper left 2 > I block subsampling given i3
_J1 1
F'I'H]'-’_[l —2]'
Thersforz, we define several matrces for [Rfjes follows:

Elk= Lj _'-'l] called Sip marrix

=
=
=

i jﬁ
=1 O

Let jp and D, & £ N be the (28 « ) unit mamty and zero
mamiy, respecimely. Then for ke = 1, we g8t

o [dm D .| =
wo=lir B ] ose=[E 5]
l.rz-".l
i = O I
f —.E'4 s |*
Further, we
Mo = [ _|,]_.'|.|IL el albse
Ma = Ealas (24

II}J = -.lr_. 1L-1|.Ir-1
1" = manspose parix

The determinamt of /- soch as scatering mamrix [12]. [18] &
dsfﬁ- E'} =deadele— i~ (237

Equadon (15) is proved in the Appendiz. Fmally, we obam
[T defined by

n B B oa
Mo _ |+ —= o= —

[rer]s = ’_.'l.M’ .'|.|',1:|_ oo = =h 26)
p — & a

Throughent the whels paper, we assume that Y, is meemible. We
dzfne the mverse BT mams as follews:

[lu];-=-:‘m- kedlal. cheR 27

'Whﬂ'il: tq_kamMEa
]E.astmr:nmn

fr —a

lo  ro=D
:'i:a’.l'.l’JI.."={'.|- a=0
=1 =il
L 104 14 lfa
J.-"I!- —1fc L g
J.,-'Ir -J‘l.,-"r' :J.,J‘-"t- .
J._-".'J =10 =10 1l

L=y

La =saeemmi - r)’_ ||"':I

Lo =kl E-u')
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The mairices [Hl=. & =3 will be defined subsaquemly. The
Sylvester comstraction for BT mamices can be epressed reom-
stvely i terms of Kronecker product [1), [13]. [14]

Pbes =R ok =l o |} L] k22

For examiple, as [T is an BT mamix, then it is

: (M .!H]ﬂ L]z
k=

A ik i) oo
M -WME -4k M
Mow, m a similar fashion as (T, e note that

g = [t
= [Hp & Rk o [H])
= (M [ & (HEH:)

]

= =l bz 2 &1
Since [H]7 = 1/ [H]«. we have from (31)
il = ;H [ e s [AC s (35

It can e shewn easily thas [IoC ] & 2 sparse mamix. Therefore,
the fast BT mansform is smply the fast Hadamard tmansform
followed by a sparse maims | 2RO & 2 2,

IV Five Cases oF BEvaRse Jacs=T Matrices anvm THEIR
FaAsT ALGORITHM

There are fve cases ik the elaments decision of baslc s
WETC WA N\, Which iz [}, The mamix \y consisss of
three alements {u, b, md o}, which are 21l nop-zero and take the
values of 220, =0 1.2 Their conditons me: 1) g ==
No=kFalao=rFhkflafhb=mmdHa gh=n
"I'_h et can be used for mudtidimersiona] subsapapling of

rzmals.

_",l Ciarg I: The elements are all the sme. witho = = o
For examle, bt the lemems b all opes, g = f=p == 1,
amd the bassc symmetic matix Ny = A = L] follows. This
is the same as the Hadamard matris. The Hadamand memix can
e considerad a awbset of the B matnix. We have fom (24)

e g £)-

4 ARSI A

(33)
amd its fmverse matms

S R | R A

A
| I—

From (32, we have
1 1 1 1
11 -1 1 -
R, = Il 1 -1 -1
d o=l =l 1
ml its Ioverse mas i3 (35
11 1 1
1_ i 1l -1 1 -
WEE=30 1 4
1 -1 -1 1

The [RIE* is determined to 0y and is 5[} 2 . Since the
duterminent of [0 is 2, the SaPping T2tio #nd Thé muzmber of
supchamnels are 2 The [L1]; is the same a3 the Hadamard ma-
i [#7];, which is orthogonal symmetric matrx and & special
117, and subsampling matm in this case [8]. The [1L0],

and its Imverse mairs L] 75 consist of same elements. When
this is wsed for dama coding, the Tamsmirter mit is the same az
e recetver vmif. This s the sams as the mside and owssids of
tveRJ[ 3], [161.

2 Cose I The elements” condition of Case Disp = f =

Ifo amd b are I's, amd = i3 2 1, then in this case, K==
tesmneas['.\}lhandlhe;}mmmrixmmy.ltjsapnlmmal
susanpling mamnix. The signs of sach comesponding elsment
Tenwzan fmdmdlmemmam:ﬁ are the sama.

Tha I acd [ i= In this caze, the
:m;:lﬂ?gura]ﬁ L f_l.ﬂ e H.I‘_EEIEE]H:IJ} derompozed
a5 3 Smzth Sorm [7]-[9]

[ 21 &][ 8108 i]=vw. e

Thee co-5et veCiors ame [::]. [,-'|] amd [ |- As an example

.m:nu]::[“ "’]=[j _lg]
bE e

amd its Imverse :|:r.ntrx

1 LIl 1 ])3 o -
wi =3 [f A]=5[ A][re] e
Also, we hawve [HI]
11 1 1
1l =2 2 -]
BL=1 2 % —4]
1 -1 -1 1
amd its imverse matr is (390
2 2 2 =2
p_ L1z -1 1 =2
e R
T R, R

In peometric stmacture, the outside (=1's anca) of [RJ], is cor-
responding to inside (£2% are) of [JLf" and vice vema The
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Cazz T mariy i3 formed of Muldvariare Gaussian chamma] ca-
pacity [L3H18]

3} Case Il Inikss case the elements conditionisp = £ I
Lat tha elemerts ben = & = lannt-= 2, Then we obain

tha basic patris Ap [S] 35 [3 % Jand the [RIE" Lil-[; —]
which is 1 /5[] The [ md (] are symmesmic mams
a5 follows:

wemn=; 2[5 2]

= ]
PR I y
ii .3] [u 1] G0
and its tmversa maris

wm -t} 45l 13 1)
ig, [J] where

1
1

-
I
]

12 2 1
a -1 1 -2
[HJL=[3 1 =l =2
1 o=2 =2 1
and ifs ioverse maimy is {23)
21 1 2
2 Ll1 = 2 4
WE =31 2 =2 -
a -] -1 32

The weo postiions of [[LF]; can be replaced by [ILIFS.

4} Cse 11" The elements’ conditon is o &= 6= . and lat
thembe g = 1 and = = 2. Then the L))o iz [5 3] and
[I_LJ]T':IS]_I.'LE -] Tha 4 - 4 forward and ioverss BT mamin
iz the following syrmmemic matis:

wemne[s 2]-Jt )
Y]
Lalbakn e

and its tmversa maris

112 2 1 y
HE =E[ﬂ —1]=E 1 —1][ 44
ig, [ILI]; where
1 2 2 1
2 ] 3 )
=13 5 5 5
1 =2 -2 1
and s ioversa mammiy is =3
2 1 1 z
2 L]l =1 1 =l
BE =3l 1 a2
2 =l =1 2

h]| Ca'i'! In Carse V) all elernents are pat equal, thatis, o &

fr = and bt )]s b2 [2 2] amd then |1 15.1-"',I[“l )
This is the | mﬂmﬁmhg:u:eaﬁ; samplimE
ratio and subclannsl i 9. I1ha5n_n£{ﬂ5ewem ie [HIE

N

Lol £
P
—
(=N
|a
[—
—
o -
~L
=
£

=
I
P |

)=

T 1
bk =

and its imverse matnx is
2 4 4 2
L4 -1 1 - .
D'{“IF = E 1 —1 =4l I._E'.l
2 =i =i 2
In this case, each matrix bas three zopes, which ara=1's, £2',
and==sareas. The=1's. =0z, and =4's areas o [11.J], e ablato
be replaced by =4's, =25, and =1's areas of [N respecthvely.
The movo positions of [ILF]; can be replaced by [ILF=.

The algoritm for BJT [FRJT] is simular fashion as
[5]. The [FRIT] can be derived by deconmposing [l oto a
pradict of sparse madrices given each rows/colurms with anly
o nonzers elements. Fig. 1 shows a fow graph of the four-
paint Case IR mansform alposithm From this fizurs, it is clear
that the first thres itararions of the al zarithm are those of tha fast
Eadamard mansform. These are followed by the operstion ofthe
M), The N = 2 poimt [FRIT] alzorithm requires &N 4
‘--"'? 1=l addittors amd |, real multplications in conmast
with the - -point fast Hadamard tremsform which requires W
real additions.

As ap examyple of Case I0, the fast BT mamsform for v = &
[HJ}s can be followad as (31)

[

[ = Sk RO
= S} W RC)e 2
= S RC)) @ 2l = R 2] )

In o sizdlar manner a5 the forward Case I of the fast BT mams-
forme. we oote the imvee of [ILI

—

bl = ) o Blen Dt )
= (L) o e
=T e %p‘:‘h (50)
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TAELE 1
ForRwarD Mamrid oF [BJ] Fros CASE [ mooCass

i IR-"I: ["-'l-
I T O A T B I O
1 | 1 1M 12 o 1= k-1 JJ -1 '|-I|-l:| 4 ¢ 0
amh=i | 'lJ F[! _|][|} 2] 1 1 =l -I- 1 1=t =1l 0 4 0
== ] 1 -t -1 1f@ 0 @& 4
[I [ [ T N 1 S | B
n [I 17 l|-| Ll{; _|] b=z 2z aft -1 L=tfe & -2 o
=h _ & — _ 1 0z =% =t i 1 =l <00 =2 60
rEnEe ! }J i I|_|:| ! ln U | I [ I || [
(1T T N O O T 1 O T
m | 2] 1fn ]l 3 |_'| Tool L= gl el T=lljoo& 30
a=ceh [1 _.]’I[, _.[_] Tl el =x3l -l m oz o8 o
: 1 =22 1 [1=1=1 Bf-2 0 o =&
[ S O O T Y T Y O
L) i 2 1 13 o 2. 2R qft =t 1 =lfl0 83 & @
adhsc l: _1]'T[| _:][_1 _1] pozoz-zfAl vl w8 o0
=22 1f (1«0 1Jl=2 0 & &
S N - Y T | SO -
v 1] A s -3 (RS | (] P | AT, QN
azghEec [. _*]:? 1 _|-|i I 5 L 4 -4 '|--1| -1 -l -6 MW 0
- : el =l o3 p-r-n oz e ok
In Tables D and IL [B] sparse matrices have 3 geometmic stic- 4 0 0
nme such as _ 6 =2 (54
T =2 G o
1 . o o o od
(Rl = ol [RC) (35
. In Tables [ and I, Case FCase 17 of the [BJ] matrix, with
R = [“ + "'"":]_ =2, (37y some examples, are shown IF we regard each basic sparse
e S mainx of [, then we have found some ragular exiending

The forward or the fmverse mamsfoem of the W = 25 poinr
[EJ] sparse matris regaires &' kg & real additions; e 2. [RI]z

{Clase IT)
1 1 1 1]_j2 —1 (53
o=l |1 =27 [+ 3 -
gl [I0]y (Come IT)
PO T T | PO
1 -1 1 —1fi1 =2 2 -
1 1 -1 -1 1 2 -2 -
L=l o=l 1 L=l o=l 1

seometic smuchme Therefore, we have a blockedse ciroulane
sparse manty that looks like foothall sphere as follows.
* forward sparse masirix:

[2e 0O 0 X
o b _ |0 2 2 O o
[r' :;]ﬁ R N G3)
| 3 O 0 Za
* DETIA SRATIE MATY
. B L U
a BT _ 0k oa = 0
L' EE] I R | (36)
| =i O 0O
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TAELE @
Tivemesr bdarrrs oF |B] eros Cass [ oo Case W

Cue [R1]; [RI];
[N [ 1]4 L I
it 1 Lot ajfz o [ T T ¥ T I | T (I
1 E[] _L]=TE[| _|]’ 3] F T | T TR AT | PR I
L=t=l i [=t=1 1o @ 0 4

o 0]
iz ] afr a2 oa L
I e
L ] T L R R ] | I 3w
oo
- o
1[| 2]1|1 |Is|] o
m - = e
sz -1) 2 51 -1f-1 3 18
L]
1 moao oo afs o o
" L[z 1] L.l[’ ’l[' "] =t =l alv-r a-ils 2w
&2 -1 2 &[) 1) 0 3 Bl 1=t =11 1-1-fm 0 oz
ISR T O I | [T T
14 04 ] oo & 0 n=1
1[4 1 1o 1[5 =1 4 =i 1 =4 glE =1 B =1f| * 5 kN
¥ gl 277 -1l 40 -1 -& @l 1er-lfld 3 5 @
. Tegod 2] Pet=n )=z o0 B

Comperng the forward sparse maitns with the ioverse sparse
s, the matrny alermenes are changed 2 follows:

el Basn

Fiz. Xa) and (B) shows the sxpanding blockwise cirrulamt
Sparse mamis stmaciure 25 1o Tables Tand I This Sgmeis a plane
surface amd am imberesting point 5 that the blockwiss ciroulant
sparsa matriy is characterzad in similiar fashion as the foothall
and rodating pattern This mesms that when the 2 = 1 sparse
matry is expanded to 2 4 = £ mamix, the element oS the 2« 2
sparse matriy becomas as showmn in the patern of Fip. 2. As the
exarepla of the Cose Jand Coase Taf [T,

* [B.C] sparse mamiy of Cwse I

4000
NERI RN
I;lU]:ﬁ[,., z]" [uu:u
000

amd fts irneren of [ §

5000
R N -
[lUE#[H#....,.:._,.- &7
0o i g

» [Bil] sparse maimx of Cere I
4 0 0o
2 =l [ R
[““]F"[u 3]"‘ B —2 & 0
o o4

and its mverss of [lL)]a

4 00
- 30 o310
Sk 2]=~Iu PLML em
o oo 4

V. Comcnuson

The [BJT] was mooduced in this paper The BT matms is a
zeneralized form of the Weizhted Hadamerd and Hadamard.
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bee

]

Fg I Te illesas geserd coposgl of spaese mains [RJ] peiem. ()
Eldiwias chivibat sjrees salri jwen (1) Sl secubed sjeces malis,
e fzoakall

The [Fu ], matrix bas 2 recursive structure and symmetric char-
acteriszics. The elements’ positions in the forward matrix can
be replaced by ts Imverse mairiz, and the sipes are not changed
betwesn the marts and its mverse. The [R]» matrix has fae
cases 0Ibasic symmeiic maimix accarding to the consmaucdon of
elements. The Hadamwerd maod: is a specal case of the FJ ma-
s, The fast L)) Tansform algoritin is the mwamty decom-
positon of die Hadumard mstrices and succesively lower ardar
[HC] 5. A blockwize ]y cironlant sparse mamix of [100] s
leads tovery clear decompositon. This method is presented for
its simnplicicy and clarity, decommpesing an [ ], maixin temns
of the sparse mamices.
Arrermee [

The proof of (23] is as follow.

Lat A be a complex menrix, pardtionsd 33 a ¢ my w ng.fe
My M b g e s X

i} gy #0, then

e !ﬂ E:] =deadmie— a1, (3
i} If dist o £ 3, then

o [: ; .I:} =t ol =B, (60

Far (39, first note that ]
de [:"‘5' '“'_"'}=1
e

by

'11'-"-(; E}=-’JF(E E}:tl".udsr.n

Theselore, by denfpb) = o o decie

(3 ) (3 B T

"r'[:!-" r—I!-‘ri
= denendeid e — b-"'n‘:I!-).
The proof of (60) is siilar o {55).
Below, we illustrate fhis Telatonship for the Case of BJ-IL
[i =def (=2 =1-1-1)==3, (60

Clearly, (61) is the determénant.
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Jacket Matrices(Iinverse)

Jacket case [J];l [J];l
11 1 1 1 1 1 174 0 0 0
; a=b 1o 1 1M1 172 o il -1 1 -1 _Ll -1 1 -1[{0 4 0 O
=c=1 211 Z117 2211 ~1llo 2 4/1 1 -1 -1| 161 1 -1 —-1{0 0 4 0
1 -1 -1 1 1 -1 -1 1/0 0 0 4
@ w=real =2 2 2 2 2 1 1 1 174 000
12 1] _11ft 13 0 112 -1 1 =2| 1|l -1 1 —1}0 3 1 0
201 —1] 2 3[1 —-1]1 2 82 1 -1 —-2|"16/1 1 -1 —-1[0 1 3 0
he 2 -2 -2 2 1 -1 -1 10 0 0 4
2 —b=1, . . . . .
_ (o) w=imaginary = j J J J J 1 1 L |4/ 0 0 0
=W I 111 o] ||/ Ctr = |t -1 1 =10 2j+2 2j-2 0
[1 _J [1 _JL_I 5 j 1 -1 —j 1 1 -1 =10 2j-2 2j+2 0
J+1 = 20 +1) J —=J —Jj J _ 1 -1 -1 10 0 0 4j
4; 16
2 1 1 2 11 1 173 0 1
a=c#b 1t 2 11t 13 1 1r -2 2 -1 1|1 -1 1 -140 3 -1 0
sl a=c=1L |55 1172501 —1]=-1 3 81 2 -2 —1| 161 1 -1 —1f0 -1 3 0
b=2 2 -1 -1 2 1 -1 -1 1)1 0o o0 3
b 2 1 1 2 1 1 1 173 00 1
a#b=c
| oas1, 2 27 1101 174 1 11 -1 1 =1 a1t -1 1 =1j0 2 0 0
bec=2 6l2 Z1172%6l1 ~1]o 3 81t 1 -1 —1| 16/1 1 -1 —1[{0 0 2 O
2 -1 -1 2 1 -1 -1 11 0 0 3
dibec 2 4 4 2 1 1 1 176 00 -2
a=2, 114 1 1 1|1 15 -1 14—1 1 _4_L1_1 1 -1/ 0 5 3 O
*l petle=4l9l1 —2|72°9[1 1|3 3||8[4 1 -1 -4 16/1 1 -1 1|0 3 5 o0
2 -4 —4 2 1 -1 -1 1]-2 0 0 6
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DFT /DCT/ Wavelet

A
o T
—_— = DET
il
? swiching ? 4L
o
7 T b T — 0 — HWT
|Km2 |Pr1-.rx2 |P ‘Imz| |DN12 |Wm2 |P ’-E?'mz| H{} ?}-_
DFT, Fourier,1822 DCT-ll, K.R.Rao, 1974 Wavelet, G.Strang,1996
N-1 m(n+—)xw
X(n):Zx(m)W"'", 0<n<N-1 ) [CN]M:\/%km cos NZ . mn=01,..N-1 [A]zz{: _FJ
i " L, LFE 0 I, j=12,.,N-1 r
[F]4:[Pr]4[F]4 :[{[2 _[2}{0 Ez}j where k; = L 0N *[A]lzl Vr 1r
F (] {1 —]} N > 201/r —1/r
= 1 1
i P — —| 12 12 . .
O / [€], = V2 V2= { 2 \/—} [QL :[Pl]4 [A]4 [P]]4
RI* . (i1 -u 11 c; cr| LNz UN2 r
([ ]) J — * \/_ \/_ [2 Iz Iz 0
M 2 111/ J =J [C]’]:ll ’ 21 "\, -0 4
L, 07[F, o1, o1y Iy S ) ] - 2
[1:" ]N { : ) z : : _2 ]C :|:[N/2 0 }{ n O }|:[N/2 0 }|:[N/2 Ly, Ul - Ly, 0 Ly, 0L, 0L, I,
‘ P% 0 F% ‘ Wg I% [% - ]N 0 K] 0 Gu] 0 Dy, |lvs _IN/2_ [ ]N 7 0 B;/z 0 D4N/2 0 val/z Ly, -y,
[F], =l [F] [Cly =[BT CI BT} [4], =[Pi], [ 4], [P,

N N
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DCT Matrix:

The DCT of a data sequence X (m), m=0,1,...,N—1 is defined as

1 N-1

L.(0)= W= — > X(m),
and

2= (2m+ Dkrz

L (k)= ZX( )co , k=12..,N-1, ¢y

where L, (k) isthe X thDCT coefficient.

It is worthwhile to note that the set of basis vector elements

1 2 (2m+Dkrx
—, = cos )
VN VN 2N

ig actually a class of discrete Chebyshev polynomials. This can be easily seen by examining the
following definition of Chebyshev polynomials

1

Tﬂ(p):ﬁ

and
TAZ )= J%cos[kcns"l (Z ], k,m=12.. . N-1, (2)

where T,(Z,) isthe k -th Chebyshev polynomial.

Now;, the zeros of the N -th polynomial 7};(Z, ) are given by
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Z = Osw,

n N =0L...N-1. 3)

Substituting (A-15) in (A-14), we evaluate {L(Z, )}, {=0L...N—1 at the zeros of

T (Z.,). This results in the set of Chebyshev polynomials

1
Tn(m)—ﬁ

T, (m) = \/% cos[kcos™(Z, )]

_ {2 o 2m+Drx _ B 4
_\/;cos[kcos (C0572N V], km=12_ N-1, ()

:\/zcos[(Zm+l)k;r]
N 2N

which are equivalent to the basis set of the DCT.
Again, the inverse discrete cosine transform (IDCT) iz defined as

and

2 (2m+Dkr
X(m) = ——L(0)+ | =Y L (k)cos =M 000, N1, (5
(m) = f O \[;z k) e )
It can be shown that application of the orthogonal property
S Lp=q
T (T (m) = s
; ST ) {O,Diﬂ? (6)

Computational Considerations: It can be shown that the DCT can be equivalently expressed as
1 N-1
L0)=—=2> X(m
m m=0
and

L(k)= (Re{e szil)((m)w’f”’} k=12..N-1, (7)

where W =e " i1, X(m)=0, when m=N,N+1..2N—-1, and Re()

denotes the real part of the term enclosed.
Proof of (A-19): 8ince we have

_Jk_ﬂ%l . i ifl B %l (ZmL)icn (2N
e W X(mW ™= ”"[ X(me ™ J: X (e "
m=0

m=0 m=0

(N (2m+ Dz . (2m+ Dir
= [; X(m)(cos N isin =——-= B ,



then

Re {ei:;' 2f)((m)w’m}

_ H (2m+Dkz . . (2m+Dkz
=Re { mzzﬂ X(m)(cos oV isin N D}
- le(m)(cosi(zm;\?kﬁ]

and X(m)=0,when m=N,N+1..2N—1, thus the (A-20) can be written as

Re {e-f;; zilX ()™ } = zle (m)(cos %]

m=0

= (Z2m+ Dk
= ;X(m)(cosizN j

The result is DCT coefficient.
For example, a 4-by-4 Fourier matrix is as

1 1 1 1

1 i -1 -
F =

1 -1 1 -1

1 —i -1 i

and we use the part of (A-22), as

11
F'= .

By using the (A-14), we can evaluate 2-by-2 DCT matrix as

L 0 L
- - 11
C=Rej| YN |F —Rei| +2 L }
i T i
0 e N 0 e
N=2,k=1
1 1 1 1
2 2 N N
=Re " J: =Re 2 2
e |e 4l 1.1, (L+Li}'
2 2 2 W2
1 1 11
_Red 2 2 |2
- 1 1. { 1 1 J | 1
—_—t—=i |-—=+—=i — =
NG 2 V2 NN )

Thug we obtain the 2-by-2 DCT matrix.

(8)

©)

(10)
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MIMO Channel Singular Value Decomposition

J =, L
ijLtRx

Eigenvalue Decomposition(EVD), MIMO SVD

Fibonacci (1175-1250) Markov (1856-1922) Jacket Moon Ho Lee
ltaly Russia (2000,2006) Korea
Based on Sequence: 0,1,1,2,3,5,8,13,--- Based on Probability Kronecker High dimension
A=SAS™ Eig(4,) =4, . A=8SAS™" Eig(4,) =4, A=8SAS™" Eig(4,) =4,
LA o] !
F|Fiz = F + Fx 4= SA"S‘—SL) AS‘ A2:{0.9 0.2} eSS ,Lk o o Ak:SAkSIZSh Z{}Sl
o P {1 0.1 08 ————
u,=| | 4, :{ } i If 4 :{x‘ xﬂ S =J {1 _W}o{ ¢ M}
NN e R
M 11 F_=F _+F - oL X, ¢ _x
_ + k+1 K w=_|—O0r— Ak:J71 kJ
ukﬂ_L O}ukc{ Fei=Fe A=l A4=07 Boah § 3 8
Vi 23 13 A, =4, QA J,=J, 0, A { }
= = -l = A " i &4y Sy =J 2 2
U —Azk”o—S/\kS u, {zk} { } {1/3 —1/3}{0 07}{1 Z}LJ ? ? o - 12 _j
A AIAY o[ =4 ] 1 A =J; /\"J2=5 11 {(_) kM }
- u -—— Lo 71 2
1or]lo Af|[-1 A4 [A4-4 ° *A {a b} a,c,b,d >0 2 2
11 2~ —1 b+d=1 ** Iy x X =X
* Ais a fixed matrix: 4 L J ¢ d] axe " 4, :L@ xj delz(A)4¢ 0

*
r http://en.wikipedia.org/wiki/Jacket matrix, http.//en.wikipedia.org/wiki/Category:Matrices, htip://en.wikipedia.org/wiki/user:leejacket




The Applying of Jacket Matrices in CDMA

A general 4*4 Jacket matrix is:

a b b
], = b - ¢
Ylb e —c
la —b -b
Its inverse matrix 1s:
and: PARFARS
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Sending message 0 0 1 1

CDMA Multiplexer:
station 1 Bit 0
station 2 Bit 0 —

station 3

station 4

0 —Zbtic -Zb-Ic O}J
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CDMA Demultiplexer:

AR
a b b a
ﬁ‘L R+ -B-2k b
-0+ -0 - &
® — - ) — [ —[ — Bito
T 111
b -c ¢ -b
y P A e
9 -_: "’c‘“o — [ —[] — Bito
L ey B —
b ¢ ¢ b
2+ 2 =2-2 Add
— R — . — % - @ —@ — Bit!l
LI B |
a - -b a
2b+ 2 -2b-2 had
g . |0FBE H - B —E—
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PIN Seguence

Eegister

Chatput
1 Stage 2 Stage 3 Stage
Ezclusive or operation
output output output Output
movement | 1 stage 2 stage 3 stage register
0 11— 0, 1 1
1 1 M >0 0
2 1 1 1 1
3 0 1 1 1
4 0 0 1 1
) 1 0 0 0
6 0 1 0 0
V4 1 0 1 1
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Output matrix is Jacket matrix:

Output matrix is Jacket matrix: (1—> -1, 0 —1)

1 1 1 1 1 1 1
=L 1 _ =l =1._=L__1___1.}.___. » PO

1l -1 1 -1 -1 -1 1] ., P1 }

-1 -1 -1 1 I -1 1 P5

[S— [S— [S— [S— [S— [S— [S— [S—
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
)
]
]
]
]
]
v

------------------------------------ > P86

and,

P =

— = = ek m
I
—_
I
—_
—_
I
—_
—_
—_
I
—
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Output matrix is Jacket matrix:

PO: -11-1-1-111

station 1 Bit O = -1 =& —= 1-1111-1-1

Fl:. 1-11-1-1-11 \

. /‘59—>2-2200-20
& —=1-11-1-1-11

PO: -11-1-1-111

Al Add
—> 2 —s -2-2-200-20 —» -8 —=[] —= Bit 0

station 2 Bit 1 =

W

2-2200-20

P1: 1-11-1-1-11

Add
—>& —> 2220020 _, 3 [ —> Bitl
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Fibonacci Jacket Conference Matrix GF(7)

— —
~ Il
2 3
< n

X
N 3]

=~ ~

— — —

Il
o~ ~ o~
= = =
N “ ©

X
<t on =)

~ ~ ~

3 5
3 515 8/

23

40

6 0 6 6 3 2 46
1 6 06 63 2 4
31606 6 3 2
531606 6 3|
4 5316 06 6
1 45316 06

1

10 6 6 3 2 4 6 1

1 453160

mod 7, Jg1=

MM

6 6 06 1 53 2

56 60615 3

4 56 6 0615

2456 6 0 6 1

6 245 6 6 06

1 6 245 6 60




Fibonacci Jacket Conference Matrix GF(p)

F:=GF(p);

Paley "Fibonacct"

F=lay.an..... a,;. \ / Ui =00 1—00.2,1, ;% 0.

u =a.ui—b.ui_1.<: (a,b)=(1,1) - Fibonacci sequence.

(a,b)=(o,—a) - hire... 41

i+1



Example: GF(5)

4140

4141012

1

414024

1

2

012(4(2(3]3

41024122

414102142

1

2

3
1

3
1

1

0|4 |4

310144

4131]0(4]4

314 (3044
203 14(3]|0]|4
213 (314]3]0

0

0

—1

—1

—2

—2
-3

-3
4

1
1

3u,—3u,

ui+1

Fix signs

Uy Uy Uy, ...

0,1,3,1,4,4,0,3,4,3,2,2,...
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Fast Block Center Weighted Hadamard Transform

Moon Ho Lee, Senior Member, IEEE, and Xiao-Dong Zhang

Abstract—Motivated by the Hadamard transforms and center
weighted Hadamard transforms, a new class of block center
weighted Hadamard transforms (BCWHT) are proposed, which
weights the region of midspatial frequencies of the signal more
than the Hadamard transform. Based on the Kronecker product,
direct sum operations, the identity matrix and recursive relations,
the proposed one and 2-D fast BCWHTSs algorithms through
sparse matrix factorization are simply obtained.

Index Terms—Block center weighted Hadamard transform
(BCWHT), center weighted Hadamard transform (CWHT), fast
algorithm, sparse matrix decomposition.

[. INTRODUCTION

HE Walsh—Hadamard transform (WHT) and discrete

Fourier transform (DFT) are highly practical value for
representing signals, images and mobile communications for
orthogonal code designs ([ 1]—[4] and [5]). With the technology
rapid development, communication systems will require more
and more transmission and storage capacities of multilevel
cases in cochannels for numerous clients. Recently, variations
of WHT and DFT called center weighted Hadamard transform
(CWHT) ([6], [7]) and complex reverse Jacket transform
(CRIT) (I8]-[10] and [11]) have been proposed and their ap-
plications to image processing and communications have been
reported. When the center part of data sequences or the middle
range of frequency components are more important, the CWHT
can offer better quality than the WHT ([2]. [3] and [4]).

In this paper, motivated by the Hadamard transforms and
CWHTSs ([6] and [7]). we propose a new block center weighted
Hadamard transform (BCWHT) in Section 1I, which may be
applied to multilevel cases in communication. In Section ILI,
based on the Kronecker product and direct sum operations, a
fast 1-D BCWHT algorithm is proposed. In Section IV, a fast
2-D BCWHT algorithm is presented through sparse matrix fac-
torization and the Kronecker product. Finally, in Section V., we
make our conclusion.

II. BCWHT

For the 1-D BCWHT matrix [B]ax of order 2N with N =
2% which is partitioned to the N x N block matrix, we can

Manuscript received August 29, 2006: revised April 18, 2007. This work was
supported by the Ministry of information and Communication (MIC), Korea,
under the IT Foreign Specialist Inviting Program (ITFSIP) supervised by the
Institute of Information Technology Assessment (IITA) of the Ministry 3
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5.-M. Phoong.

M. H. Lee is with the Institute of Information and Communication. Chonbuk
National University, Jeonju 561-756, Korea (e-mail: moonho@ chonbuk.ac.kr).

X.-D. Zhang is with the Department of Mathematics, Shanghai Jiao Tong
University. Shanghai 200240, China (e-mail: xiaodong @sjtu.edu.cn).

Digital Object Identifier 10.1 109/ TCSL.2007.905655

transform a temporal spatial vector x into a transformed vector
Yy by
Y= [B]Q;\{JJ. (1)

Let [f]z and [H]z be the 2 x 2 identity and the lowesl order
Hadamard matrices, respectively..i.e.

[1]2:(3 (1’) [H]Q:G _11). @

Denote by [A]z = (1/v/2Z)[H]z. The lowest order BCWHT ma-
trix of order 8 is defined to be

9w o U
e 7/ s A7 o B

-7 [z

with each block being 2 x 2 submatrices. Since

aar = (0 4) (4

=]z “)

—[1]2

1 1

[zt =1 = 2 G _11) )

Since

]z [z [z [l

U]z =[A]z [Alz —[I]2

[l [Alz -[Az -[l]

{lz —[]z -[]: []2
[7]2 > ]z 12

o | —[/1]21L [/1]?L —[1]=
Ul [Alz- [z =[]
[l -[lz -[ 2

1
Al © 0 0
0 '1[(1)]2 0 0 ) ©
0 0 0 4l

the inverse of (3) is

(T
-1 _ 2 —| > A 2 - 2
Pea=3| 1L gt -k

[z =M= -=Ulz [

L]z ]2 (]2 [1]>

Ul —[4F [ -[]- )

Ul (A —[4F —[]=2 )"

Uz [z -[ [k

1549-8328/$25.00 © 2007 IEEE
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Certainly,

[Bloxa[Blats = []s- (8)

This choice of block weighting was indicated, to a large ex-
tent, by requirement of digital hardware simplicity. With the aid
of Kronecker product and Hadamard matrices, the higher order
BCWHT matrix is given by the following recursive relation:

[Blay = [Bly® [H]2, N =8 ©)

where & is the Kronecker product and [H]s is the lowest order
Hadamard matrix. We are able to show that

o i
[Blzv = ~ [BlEx- (10

We can use the induction method to prove this assertion. From
(7). (10) holds for 2N = 8. Assume that (10) holds for N, i.e.,

N _ 2
[BI~[BIE = U~ [BlF = —[B1%- (11)
2 N
Now we show that (10) holds for 2N.

[Bln[Blay =([Bly ® [H]2)([Bly ® [H]2)"
=([Bly @ [HR)(BI} ® [H])
=((BI~[BI%) ® ((HL[H])

= %[I]J\' ® (2[I]2)
=N[I]zn.

Hence. (10) holds. Therefore, BCWHT is a class of transforms
which are simple to calculate and easily inverted. Further, the
inverse BCWHT can be written as follows:

Bl = [Blztbky = xBixlby. (2

III. FAST I-D BCWHT ALGORITHM
In order to develop the fast 1-D BCWHT algorithm, we first
introduce three block permutation matrices [P]}, [J]4 and [P]§
as follows:

& e o
PE=|ph b U} [

O [ [ [l
[445([0]‘-2’ %Lf) (13)

[
= ) smemn s

where @ denotes the direct sum operator(see [12]). Then we
transform the BCWHT of order 8 as

[Bls = [Pla[Bls[Pls
U [1: ‘ 1 b

_ | W - [2_[2.(15)
Il [Al ‘ -lo —[Al
[ 2 _[A]2 —[ 2 [A]2

The general permutation matrices [P]5 and [P]55 are defined
to be

P~y = [Pl ® U]z (16)

and

[Plsny = ([Tl @ [J14) @ []n/4
=[ly & ([T« @ ]n/a) (17)

It is easily checked that both permutation matrices are unitary
which satisfy

[Plon ([Plan)T = ([Plax)" [Play = Ulan (18)

and

[Plin ([Pl = ((Plsn) T [Plsy = l2y- (19

Using the two permutation matrices and the definition of
BCWHT. the order of 2N BCWHT matrix [Blan can be
transformed to the following

(Bloy = [Plo [Blen [Ploy
=[Plsn([Bly @ [H]2)[Plsx
([PIs @ {]wyaX[Bls @ [H]nya)([(Pls @ [L]ny4)
= ([MP]E (Bls[PIg) ® (] ~/a[H]nyalLlnya)
=[Bls ® [H]nya- (20)

Hence [E]Q'\, can be written as (21) shown at the bottom of
the next page. Let [Q]4 be the permutation matrix of order 4 as
follows:

10|00
Qs = 00|10 55
Q= 010 o0]) =
ool o1
Then
[H]> @ (] = [Qls({]2 @ [H])[Q]E. (23)
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TABLE 1
COMPUTATIONAL COMPLEXITY OF THE PROPOSED FAST ALGORITHMS FOR [-D BCWHT TRANSFORM OF ORDER N = 2%

Directed Computation | Proposed algorithm N = 2

Additions N(N -1)

Nlog, N

Multiplications NxN

N
1

From (21) and (23), we have

_ (MeeHs Uk Hly
mw= (bl Hhathe,)

=[Hl ® (]2 ® [H]x/s)

=([H]z ® [{]2) ® [H]n/a

= (@l HIQIT) © (Ux/alHlv/aUlxss)

=( Q@ /) ([Ta B [ [Hlyya)x (QF ©[Tx/2)

— Q14 ® )Tz ® [Hl/2)(QE o).

From (21) and (23), we have

_ (Ul2® Hlnpa  [Alz® [Hlvp
[Fl = ([Iﬁ@ [H].w54 —[Ai@ [H] ;,J

- (g]ﬁ —[1[4/]11])2) @ [H]nys

- 2 [{]2 [Z]z [0]2 i
- (U ) (68 GR)) =
~ (e (fE [R)) o v
= (@I @ [HL)QID)

< (f 1)) © @nwalnia
= ((QU(1: & [HL)QID) @ [Hlx/a)

0
) e
= ([Qls @ /a2 @ [H]n/2)[Q)] @ [[]nv/4)

~ (( %012 [[g]]zz) ® [I]_.w4)

Based on the matrix identity in [12]
En A
(g k) = @we ey, e

Therefore, the proposed fast 1-D BCWHT algorithm is written
as

[Blzxy = (Piy)" (Ely @ [ElyWU]v)(Hz ® U]v) (7 ‘-’c-”')(;)

The permutation matrices (Piy)” and (P5y)" do not re-
quire computation, since they just perform data permu-
tation. The operation [H]z ® [I]ny requires N additions,
since it can be performed by N/2 butterflies. Since the
permutation matrices [Qls @ [I]nya and ([Qls @ [I]n/a)T
do not require computation, the operations of [Ely =
([Qk ® Uy)([Tl2 @ [Hly/2)(QIF ® [Ty/a) is the same
as these of [H]N/z. It is known that the Hadamard transform
[H]ny2 of order N/2 requires (N/2)log,(N/2) additions.
Thus, the operation [E]x requires (N/2)logo(N/2) additions.
On the other hand, the operation [E]n[U]nx first performs
[U]w. which is equivalent to N/4 direct connections and
N/4 multiplications, then executes an operation [E]x which
needs (N/2)logy(N/2) additions. Because the direct sum
[E]ly & [El~[Uly can be independently divided into two
parts [E]y and [E]x[U]w. the operation [E]y @ [E]ln[Uly
requires N log,(N/2) additions and N/4 multiplications.
Hence, the proposed algorithm depicted in (25) requires, in
total, N + (N/2)log,(N/2) + (N/2)logs(N/2) = Nlogy, N
real additions and N /4 real multiplications for N = 2%, while
the direct computation for the BCWHT transform requires
N(N — 1) additions and N? multiplications. The results are
summed up as the following Table I. Moreover, Fig. | presents
an example for a fast BCWHT flow graph with N' = 8. The
first, second and last steps stand for data permutation, while the
third and fourth steps stand for additions and multiplications.

IV. 2-D FAST ALGORITHM TRANSFORM
The 2-D transforms a temporal/spatial matrix X into a trans-

here = [E]N[U]N formed matrix Y as (see [12])
_ ({2 [0]z
U= (ff B @ M Y = [Blox X ([Blav)”. 26)
(]2 ® Hlnma 2 ® [Hln/a ‘ (]2 & [H]nya ]z ® [H]ny4
Bloy = [z ® [Hlnpa  —[lz ® [Hlnys Mz® [Hlys  —Mz® [Hlxm ) _ ( Ex [Ely ) o
‘ (e [Hlnu  [Alz® [Hlva ‘ ~z®[Hnn —[Al®[Hlva )~ \Flv —[Flv
[z ® [Hlnma —[Al2 @ [H]na —[l2@ [Hlnma [Alz ® [H]nya
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Xo(0) X1 (0) X2(0) X4(0) X4(0) X5(0)
Xo(1) X:(1) /Xg(l) Xs(1) Xa(1) Xs(1)
Xo(2) X1(2) /X_,(z) X3(2) ><>\x4(2) X:5(2)
Xo(3) X1(3) X2(3) X3(3) X4(3) Xs(3)
X(4) X;(4) V\ Xa(4) Xy(4) X4(4) \\ / X5 (4)
Xo(5) X1(5) X2(5) \/ X3(5) X4(5) )<>< X5(5)
X (6) X1(6) \Xz((i) X3(6) >O<X_l(u) / \Xr,{(i)
Xo(7) \ X1(7) \ X2(7) X4(7) (4 (7) X5(7)

Fig. 1. Fast BCWHT flow graph for 8 x 8.

Generally, the linear transform of matrix X shown as AXDB =
Y can be expressed by the transformation of the column-wise
stacking vector of X as (see [12])

(BT ® A) - vee(X) = vec(Y).

Thus, the 2-D BCWHT matrix in (26) can be expressed by

vec(Y') = ([Bleny @ [Blaw) - vec(X). Q27

In order to develop the fast 2-D BCWHT algorithm, we start to
define a coefficient block matrix [S]an by

[Slev = ([Hh ® [I]2 @ [H]n/a)[Blay, N 24, (28)

Hence, [S]an can be partitioned to an N x N block matrix
whose blocks are 2 X 2 submatrices. It can be shown that [.S]z2n
is a sparse block matrix with at most two nonzero blocks for
each row and each column block. In order to prove this assertion,
we first start to compute the lowest 4 X 4 block matrix

[Ss

([H]s ® ]2 ® [H]a/a)[Bls
Iz [z [z {2

_ (Ul =M=z [l =[]
Iz [z -z —[]:
]z =[]z -[]2 [l
[l [l ({2 [z
« | H2 =[Alz [AL: -]
[z [Alz -[A]z —[]=
Uz Mz -2 [z
4[I]2 (0] [0]2 [0]2
0]z 2([I]z+[A]z) 2([I]2—[A]z) [0]2
02 2([7]l2—[A]2) 2([I]2+[Al2) [0]2
[0]z [0]2 [0]2 A[I]2

Clearly, [S]s is a sparse matrix whose each row and each
column block is only at most two nonzero blocks. Moreover,
by a calculation, we have

[T = ([H]s ® [I]2 ® [H]4/4)[Bls
=[Bls([H]s @ ]2 @ [H]1/4).

Clearly, using the properties of Hadamard matrix and the Kro-
necker product, (28) can be rewritten

[Slen = ([H]s @ ]2 @ [H]n/a)([Bly @ [H]2)

= (((Hls ® ]2 ® [H]n/s) @ [H]2) ([Blx @ [H]2)

= (([(Hls+ @ [1]2 ® [H]n/s)[Blv) ® (H[H]2)

=[S~y ® (2[]]2). (30)
Since [S]s is block symmetric and has at most (wo nonzero
blocks in each row and each column blocks, [S]za is a sparse
block matrix with at most two nonzero blocks for each row and
each column block by using the recursion relation of (30). Fur-
ther from [H|7t = (1/4)[H]a. [I-I]E?1 = (4/N)[H]n/4 and
(28). the BCWHT transform [B]zx can be written

[Blon = ([Hla ® [I]2 ® [H]nya) " [S]on
= %([H]I ® 1]z @ [H]~nya)[S]2x 31)

Based on (27), (28) and (31), the 2-D BCWHT transform in (27)
can be wrilten as

[Blon ® [Bla~
= ({2~ [Blon) @ ([Blan[L]2n)
= ([{]on @ [Blan )[Blan @ [{]2n)

= (e © (k@ U2 ® xSk ) )
x (30 Uk @ [Hl)(Shx ) © v )
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TABLE 11
COMPUTATIONAL COMPLEXITY OF THE PROPOSED FAST ALGORITHMS FOR 2-D BCWHT TRANSFORM OF ORDER N2 = 22k

Directed Computation | Proposed algorithm N = 2F

Additions N2?(N2-1)

(1/2 + 2logi N)N?

Multiplications N2 x N2

9/2N?

1
= wz ey ® ((Hl @ [I]2 ® [H]v/4))

X ([]on @ [Slon)([H]s @ ]2 ® [H]y/4)

@ [T28)([S]2ny ® [Tlaw)- (32)
From (32), The fast algorithm for the 2-D BCWHT transform re-
quires four iterations. It is known that the Hadamard transform
of order N = 2% requires kN = Nlog, N additions. Thus,
Uy ® ([H)s @ [I]2 ® [H]n/a) require (EN)2 = N2log N
additions. Since [S]zx is a sparse block matrix with at most
two nonzero blocks for each row and each column block, it
is easy to see that [S]o requires N/2 additions and (3/2)N
multiplications. Then ([I]2nx @ [S]an) needs (N/2)2 = N2/4
additions and ((3/2)N)? = (9/4)N? multiplications. There-
fore, the 2-D fast algorithm for BCWHT transform requires
(1/2 + 2log2 N)N?2 additions and (9/2)N? multiplications,
while the direct computation needs N2(N?2 — 1) additions and
N* multiplications. Table II shows that our proposed algorithm
in (32) requires fewer operations.

V. CONCLUSION

A new nonorthogonal transform, the BCWHT was introduced
in this paper. Based on the Kronecker product, direct sum opera-
tors and sparse matrix factorization, one and 2-D fast algorithms
for the BCWHT are proposed and their inverses are derived.
With low complexity and highly regular modularity, the pro-
posed one and 2-D fast algorithms advance the applicability of
the BCWHT for image. signal processing and orthogonal code
design for mobile communications ([2]-[4] and [5]).
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lower correlations quasi orthogonal functions for 3G
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Hawaii,USA, Nov.5-8,2000.]

H Cryptography

[J.Hou, and Moon Ho Lee,”Cocyclic Jacket matrices and Its
application to cryptosystems,” Springer Berlin/Heidelberg,
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B Space Time Code

[Jia Hou, Moon Ho Lee, “Matrices Analysis of Quasi Orthogonal
Space Time Block Codes,” IEEE communication. Letters, vol.7,
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Eigenvalue decomposition of Jacket matrix of order 2

Now we assume that a matrix

a b
A=
c d
is able to Jacket eigenvalue decomposition. In other words, A can be rewritten as follows:

A=JAJL.

A0 . e L :
where A = ( Dl \ ) . By matrix multiplication and the property of Jacket matrix, we have
2

jﬁj_l _ d1€1 dln’;’fg )'tl 0 l dllel dglel — 1
d;}E]_ _dﬁ €2 0 }llg - dj_lEg N w'izlez 2

Hence we have

AL+ Az j—;(kl — Az)
B2 (Ap — A2) A1+ Az
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Theorem 2.1 A 2 x 2 matriz A is Jacket simzlar to the diagonal matriz if and only if A has the

A:(ﬂ 5)1
c a

re., the entries of the main diagonal of a matriz are equal.

following form

dy —dydy
—Vdidy —dy

A 2 x 2 symmetric Jacket matrix pattern is J = (

If A is eigenvalue decomposition by the symmetric matrix, then

_ -1
TAT-L — dy —/dyds Ar 0 dy —/dyd3
—/dyds —ds 0 As —/dyds —do

(4 vaG [y o0\ & =
—/dyds —dy 0 A 2\ - gi—dg _%
B 1 A+ Ao g—:()'tﬂ - )"1)
2\ V2N -M) M+
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Hence A + Ay = 2a, ﬁ[}ug — A1) = 2b, @Uﬂg — A1) =2c
dg dl

By solving these equations, we can get )\, — A\, = +2Vbe

Hence we have M =axvVbe, A=aF Vbe

and dy = b and d> = e.

a b\ b —be a++/be 0 b —/be
e al \ —Vbe —e 0 a ¥ Vbe —Vbe —c

: . a b
For two by two symmetric matrix 4 = (
b a

A can be eigenvalue decomposition by unitary symmetric Jacket pattern

xr xr
xr —I
r=1: Hadamard matriz.

A can be eigenvalue decomposition as the follows:

)= (e e () (e

;
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Eigenvalue Decomposition of Jacket matrix of order 3

1 1 1
We just recall the 3 x 3 Jacket patterns. =11 w w?
1 w? w where w® =1 and w # 1.

We assume that A = (a;;) of order 3 is Jacket similar to diagonal matrix A. In other words,
there exists a Jacket matrix B such that

A= BAB™!

we may assume that B = DJ and D = diag(dy.ds,ds). Then

d 0 0 1 1 1 M 00
DIADIY =] 0 dy 0 1 w w? 0 A O

0 0 dy 1 w? w 0 0 )

1 1\ " /d o0 o\

1 w w? 0 dy 0

1 w? w 0 0 ds
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d 0 0 1 1 1 AN A + 0 0
= 0 d 0 1 w w? Aa Aaw?  aw 0 + 0
0 0 ds 1 w? w Ag Agw  Agw? 0 0 =
d 0 0 AL+ A2+ Ag A+ }\ng + Aaw AL+ Aow + )'ngw‘z
= 0 dy 0 ) A+ Asw + )'ngu.f‘g A+ As + As A+ }ugug + Aqw
0 0 dy A+ ;‘hgmj + Aw A+ Aosw + )'ngi.dg M+ Aa+ Mg
+= 0 0 AL+ Ao+ Ag (A1 4 Aow® + Aaw)
0 4 0 | =] 0\ +dw+Aaw?) A+ Ao+ Mg
0 0 dl—a g—ff;’nl + dow? + Agw) S—z[}ul + Aow + Aqw?)
i—;(}q + dow + )kgu.«‘g) aj; aia  ais
EM+ i+ haw) | = an axn ax
A1+ Ao+ Aq 31 a3z asza

we have the following equations:  ay; = @99 = a3 = A\ + Ao + A3,
ayzaz = (A1 + Aaw® + A3w)(A1 + dow + Agw?),
arzaz; = (A1 + Aaw? + Aaw)(A1 + dow + Agw?),
agaazs = (A1 + Aow? + Aaw)(A1 + Agw + Aaw?).

Hence A must have the following properties

11 = @22 = ass and @12a21 = @134z = 423432 56



This explains that any matrix of order 3 which is Jacket similar to diagonal matrix must own the

above two equations. In other words, A must have the following the form

iz aia
i fdan
k

23 @

Theorem 3.1 Let A = (a;;) 2s of order 3. The A is Jacket similar to a diagonal matriz A if and only

if A must be satisfied Eq. (25). In other words,

For example, let

We assume that

1 1 1
4. — ]_ w l..l.--2
1 l'.n.r‘g e

such the matriz must be eigenvalue decomposition.

a b ¢
A= c a b
b e a
A 00 11\
0 A O 1 w w?
0 0 A 1 w? w
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Then from the above equation, we are able to obtain the following equation.
MAA+ =30 AN+ Aw?+Aw=3b A + dow+ \w? =3¢
By solving the above equations, we obtain
M=a+bte M=a+bw+cw?®, I=a+bu’®+ cw.

Hence the matrix A can be decomposed as the following form:

a b ¢ 1 1 1 a+b+ec 0 0
coa b |=]1 w w° 0 a + bw + cw? 0
b ¢ a 1 w? w 0 0 a+ bw? + cw

WY W —y
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Eigenvalue Decomposition of Jacket matrix of order 4

Theorem 4.1 Any Jacket matriz of order 4 is equivalent to the following Jacket matriz.

1 1 1 1
1 —w w -1
1 w —w —1
1 -1 -1 1

We assume that A is Jacket similar to diagonal matrix A.

Then A= (WD)A(W D)=t Hence D='AD = WAW ! Since

t

1 1 1 1 A0 00 1 1 1 1
WA -1 — 1 —w w -1 0 X O O 1 —1/w 1/w -1
1 w —w -1 0 0 Az O 1 1w —1/w -1
1 -1 -1 1 0 0 0 A 1 —1 —1 1
a b e d
1) f a d e
4| e d a I
d ¢ b a
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Where
MAA+Aa+A=a, A —Ajwt+Ag/w—Ay=0b
M+ A jw—Afw—A=¢, M—A—M+M=d
MA+Xw—Aqw—Ay=e, M —Aw+lqw—M\=1f
Then by solving the above equations, we obtain Ay = (1/4)(a+b+c+d), Ao = (1/4)(a—bw+cw—d),
A= (1/4)(a+bw—cw—d), \y=(1/)(a—b—c+d),w=/2"D f=btc—e
Now we compare with both sides of the equations D™'AD = WAW ~! which implies that A

must have the following form

o  (bdy)/dy (cdy)/ds (ddy)/ds
(fdo)/dv o (ddy)/ds (eds)/d,
(eds)/dy (dds)/ds o  (fds)/ds
(ddy)/dy (cdy)/ds (bdy)/ds @

A=

Theorem 4.2 Let A be an matriz of order 4. Then A is Jacket similar to diagonal matriz iof and

only if A has the form Eq. (31) where f = b+ ¢ — e.
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For example, A=

m S~ 2
[T = TR = B
(=T =~ T
=B =Y

d b
is a symmetric matrix and is factored into a diagonal matrix with using Jacket matrix and whose

eigenvalues are easily computed.

a b c d 11 1 1 M 0O 0 0 11 1 1

b oad c | |1 -1 1 -1 0 A 0O 0O 1 -1 1 -1
cda b | |1 1 -1 -1 0 0 A O 1 1 -1 -1

d ¢ b a 1 -1 -1 1 0 0 0 M\ 1 -1 -1 1

where \y =a+b+ece+d, do=a—-b+ec—d, Mq=a+b—c—d, \y=a—b—c+d.

a b c d 11 1 1 M 0O 0 0 11 1\
coadb | |1 i i -1 0 A 0 0 1 - i -1
bdac| | 1 i —i — 0 0 A O 1 i —i -1

d ¢ b a 1 -1 -1 1 0 0 0 M\ 1 -1 -1 1

where \y =a+b+c+d o=a+bi—ci—d, Ms=a+b—c—d, \y=a—b—c+d.

2 -1 1 1 1 1 1 1 3 0 0 0 1 1 1 1
-4 2 1 4 1 -2 2 -1 0 1 0 0 1 -2 2 -1
4 1 2 —4 | |1 2 -2 -1 0 0 1 0 1 2 -2 -1
1 1 -1 2 1 -1 -1 1 0 0 0 3 1 -1 -1 1



Eigenvalue Decomposition of Jacket matrix of order n

we use Kronecker product to construct eigenvalue decomposition of a matrix of order 2% x 3!,

a b _ a a a+b 0 a a -
For example, b ool o4 —a 0 a-—b a —a d
all

-1

a b ¢ 1 1 1 a+b+c 0 0 1 1 1
c a b = 1 w u.:z 0 a+ bw + gwr.z (0 1 w W2
b ¢ a 1 w? w 0 0 a+ bw? + cw 1 w? w
We can construct matrix A of order 6 can have eigenvalue decomposition
a b ¢ 1 1 1
a b a a
(b ):"" R ( )K b
a a —a .
b ¢ a 1 w? w
b0 a+b+c 0 0 1 1 1
ﬂl i
a— _
0 0 a+ bw? + cw . 1 «? w

62



In general, we assume that A =M\ Jl_l,

where Ay of order 2 has eigenvalue decomposition with Jacket matrix J;.
Ay = JoAoJSH,
where As of order 3 has eigenvalue decomposition with Jacket matrix Jo. Then we have
Ay @ Ag = (Jy @ o) (A @ Ag)(Jy 0 Jo) ™!

With the aid of Kronecker[l, 25], the eigenvalue decomposition of A,=(p = 2,3) based on Jy» is
given as follow:

f’lpn = .j_nlﬂ n.} ",

where Apn = Apno1 @ Ay = Ag"”, Jpn = Ty @ Jp = Jf“, and Apn = Apns @ Ap = 1‘1';3”. In

general, assuming Aom = ngﬁgmfg_ﬂ% and Asn = JanAan Jg_nl, we can get
;’-lgmxgn = ;’-lgm / 4-"-1313 = [sz:'i_zm.};ﬂ}} / (.}3131‘137‘; ._F-g_ﬁl] — {sz \ Jgn)[j"igm ‘\ i"'i.gnjl(JQm / Jgﬂj_l.

For example, we have

Ji2 = ng 2 Ja = (Jg wdo)wJy = (Jg 2 [y & Ig}{fg 2 Jo @ Igjllffg Ao 0 Jg),
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J1o2 matrix Is given as

-1

0 0

000 0

-1

1 00 -1

0

1
0
0
0

00000

1

0

1 00 00

1 0 0 0
00 0100

00

1 0
00 000

1

00 0 0
0

1

00000

-1

-1

0
0
0

1 00 00

1 00 0
000100

0 0

0

1

00 0 0
00 00O

1
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TABLE 1

Computation Complexity of The Fast Algorithm Based on Block Jacket Matrices.

DCA JA FOR N = p* JA FOR N = p™q"

ADD | (N - 1)N (p—1)Nk mN(p—1)+nN(g—1)
MUL | N? UL NE | B (p 1)+ (g 1)

xo(1) x, (1) x5 (1)

Xo(2) \ ; x1(2) \ / x5 (2)

%0 (3) \\ /7 %, (3) \X/ x(3)

%o (4) \\\/ / 7 X8 ><>1<X: %2 (4)

NN/ A

o (6) \W; x: (6) / l \ x2(6)

x0(7) W x (7) x2(7)

%o (8) / Wx . (8) \ / x,(8)

w0 2T 0 S

waw [/ w60 XL o

xp(11) // | \\ *,(11) />1<\' x,(11)

x,(12) / | x x,(12) / 1 \' x2(12)

Figure 1:

Fast Jio signal flow graph, N =12 . 65



Cooperative Relaying in Alamouti Code Analysis Based
on Jacket Matrices

Alamouti code is proposed to cooperative relayving in downlink for IEEE 802.167 , a single
time-frequency resource within a frame is assigned to one RS{Relay station) in relay downlink to

MS(Mobile station) as shown in Fig.2.

This diversity gain can be accomplished in 3 ways:
i). cooperative source diversity, where the same signal is transmitted from different sources;

ii). cooperative transmit diversity, where the signal is space-time coded and transmitted

from different sources:
iii). cooperative hybrid diversity, which is a hybrid mixture of source and transmit diversity.
For example, for 2 transmit antennas using Alamouti Matrix : encoding follows the
coding scheme. That is, it represents the operation [rq, x3] — [y, —x3] for antenna {0, [za, x]] for
antenna f1. For 4 transmit antennas using Matrix , encoding follows the coding scheme. That
is, it represents the operation [z1, x2, z3, 4] — [21, —23,0,0] for antenna {0, [xo, x7,0,0] for antenna

1, [0,0, 23, —x}] for antenna #3, [0, 0, x4, x3] for antenna §1, with rate 1.
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The most important Alamouti code matrix

T To
C = ).
—x5 T

Now we discuss how to factor this matrix by using Jacket matrix. We assume that

factored into JyA.Js5, where J; and J5 are Jacket matrices. We assume that

a a c d A 0
'_,T = . ,_;T = 5 lﬁ!l.. = 3
ac(Ay + Ao ad(A; — Ag)
be(M — Aa)  bd(A + X))

then
J 1 AJ. a2 = (

(46)

Eq. (46) can be

By comparing with both sides of C' = J;AJs, it is easy to get the following equations,

ac(}.l -+ )&2] =T, {I-d()kl - )&2] = Ia, b(‘[)\l — )\2} = —.'L‘E, bd()\l + )\3] = ;I.‘I.

By solving the above equations, we have

C()tl + Ag) _ T c(A1 — Ag) —xd

d(/“tl — )\2] o ;?3-2‘ d()tl + )\2] II .

Hence by
* 2 * 42
(Ejz _ Ty —xy(zd)
(f I‘QII ;El;rI;EQ;EE
X7 imy _ mq . I oalha+Ag) 0 my alh—Ag) _ xg
We can put ¢ = e d= A Similarly, we have BOa—ra) — % BOuThe) =
. 2 .
; N _ %3 P — . ir1dy VL) —
have a = L b= - So |1~1|2()"1 + Ao} = >y, |1~1||1~2|()"1 Ag) = r9.

. Therefore, we



Solving the equations, we obtain Ay and As.

ry r2 )\ _[a a A0 c d — LA,
—ry T b —b 0 A c —d

Consider 4 x 4 Alamouti matrix with rate 1/2 , we are able to find that

ry e 0 0 a a 0 0 A0 0 0 c d 0 0
—ay 2 0 0 | | b b 0O O 0 X 0 0O e —d 0 0
0 0 = 2 | | 0 0 a a 0 0 XN O 0 0 ¢ d
0 0 -z zi 0 0 b —b 0 0 0 X\ 0 0 ¢ —d

= I-g 2 [J-]_ﬂ..jgj = [Ig ) J—ljlffg 4 ;"'L)Iffg =) Jz]

ELI]E[ I Ia I Io

—x5 x] —T5 T [ S0 A A Jy 0
0O 0 = a | \ 0o g 0 A 0 J,

0 0 —x5 =

four symbols Alamouti matrix given

I Ia 0 0 aq aq 0 0 ;\1 0 0 0 ] dl 0 0
—;I.‘E ;?:‘I 0 0 o bl —bl 0 0 0 )&2 0 0 ] —dl 0 0
0 0 Iq Iy 0 0 o o 0 0 /\3 0 0 0 o dg

0 0 - zt 0 0 by —bo 0 0 0 M\ 0 0 o —do



where

'i;?:l i I 'i;tg Ty ry
Gm=ci=— b=—2 d="=, aa=c=—\ b=_1  d="——
1] |z2| |22 |3 |4 kY
2 . 2 u
xT [ xI 1rary
——12 (/\14‘)&2) == I, —()&1—)&2] = Ia, — 32 {)'ng—l—)q] — I3 ﬂ-ﬂd ()hg—)nﬂ — I4.
1] |z1]|z2] |23 |z3||z4|

eigenvector is block-wise diagonal, however, eigenvalue is linearly diagonal,

depend on signal frame relay ¢ and ¢ + 1, as Fig.2(c).
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Relay Encoder

w Xy e
——»|  Encoder P gy |osng) Decoder |— 5
(a) Relay Channel

- Eelaw .
_____.-—-"' — X=X,
o T
__-i'--.— --\-\-t
N SR &
— = . k-
T — MS
-H"\-\._\__H- _.—""‘--- '
EH"H.._H_ e Xy 'y
" Falaw
{b:l Alamouti in nc.]n}r Channel

Frame i Frame (i+1)

(c) Frame in Relay Channel
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10 | —8— 4 by 4 Alamouti code w/o Relay channel
—— 4 by 4 Alamouti code in Relay channel
—=— 2 by 2 Alamouti code w/o Relay channel
—+— 2 by 2 Alamouti code in Relay channel

th

10

0 2 10

SNR (DB)

(d) Simulation
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OUTLINE

Hadamard Matrices

Jacket Matrices Definition and Examples

Jacket Matrices of Small Orders

Construction of Jacket Matrices
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An n X n matrix whose entries are +1or —1is called a Hadamard matrix if

HH' =nl,
where T denote transpose of /, / identity matrix.

m For example:

1 1
H:[l J HH =21 .

1 1 1 1
H=1_1 b HH' =41
1 1 -1 -1 -
1 -1 -1 1



B Center Weighted Hadamard Matrices

1 1 1 1
1 1 1 1
1 -2 2 -1 1_%%_1
i _ T
1 2 -2 -1 A R
1 -1 -1 1 22
1 -1 -1 1

1.e. transpose matrix of elements inverse of W.
Clearly by a simple calculation,

WW: =41,

In particularly, if w=1, it is a Hadamard matrix and if w=2 it is a special Center
Weighted Hadamard Matrix.
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1 1
and W =W QH ,whereH = [1 J

Furthermore, there exists a permutation matrix P (each row and column of P
has exactly 1) such that

PW P =P(W®H)P =H QW,

where PTis the transpose matrix of P. Hence,

WW =P (H ®W)PP(H QW)P
w o w\(wW WY\
=P | | P=2nl.
o) w )
1

WW'=2nl , W'=—W'
' 2n
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B Turyn-type Hadamard Matrices
An n X n matrix H whose entries %1, i (/2=-1) is called Turyn-type Hadamard
matrix, 1f
HH =nl,

where * denote conjugate transpose.

m Example: 11
I 1 1
11 1 1) (1 1 1 1 1 - = (b1
1 1 1
1 i @ i 1 @ -1 = 4= 111:1_1 -1 -
A= =, _ b 1 — — =71 =1 1 -1
1 7 i i I -1 1 -1 P
1 77 @ 1 1 = -1 i 1111 L= =1 i
A A
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AA = A4 =41

Hence A4 is a Turyn-type Hadamard matrix and also a DFT matrix, but not a real
Hadamard matrix.

B An n X n matrix H whose entries are power of g-th root of unity is called a Butson-
type Hadamard matrix if

HH =nl
For example, let w 1s a third root of unity, i.ew=¢e"",i’ =—1 and
1 1 1 b 1 1 1
} 11 :
B=|1 w w|B=|1 — —|=|1 W w|soBB =BB =3I
Z wow | Z
1 w w 1 11 wow
wow
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B Complex Hadamard Matrices

An n x n matrix A=(a;) is called a complex Hadamard matrix if

| a, |= 1, AA" = nlin

1 1 1 1
1 1 1

1 1 1 1 1 1 1 — — p

w w w

I w w w w1 . ! 1

. . ) ) . . w? iw’ w

c i w W =W —iw —i C'=C" = | | i
— 1 _ _

2 . 2

I W w w w’ 1 w wsw

2 2 1 L _L 1

i W iw —iw =W —i W w W
i i —i R ] ] L
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Jacket Matrix Definition and Examples

Let A = (a;) be an n X n matrix whose elements are in a Field /' (including real fields,
complex fields and finite fields, etc). Denoted by A7 the transpose matrix of elements

inverse A.ie. A'=(a,'). A is called Jacket matrix if

AA =AA=nl,

where / is the 1dentity matrix over field F.

W For example:
1

1
PR \/E,A‘: a ~ac
R
Jac ¢

So A is a 2x2 Jacket matrix. When a=c=1, it is a 2x2 Hadamard matrix.
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B The class of Jacket matrices contains

B Real Hadamard Matrices;

B Turyn-type Hadamard matrices;
B Butson-Type Hadamard matrices

B Complex Hadamard matrices;

B Center Weighted Hadamard matrices.

I

1 1 1 1 2 3
11
2 2 2 2 -y 5 2

A=|3 3 -3 3[4 =-

M

r_1r 11 2 3

2 2 2 2

L

2 3

Any pair of rows of A4 are
orthogonal and A4 is a Jacket

matrix since 44'=4;, but it 1s not a

real Hadamard matrix.
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Properties of Jacket Matrices

An n Xn matrix 4 = (a; ) over a field F' 1is a Jacket matrix if and only if

forall j #k ia”:O
i=1 a'l

forall j #k ia"’:O
i=1 a

For any integer n, there exists at least a Jacket matrix of order n.

There exists a Jacket matrix of any order.

mLet 4=(ay) be an n X n Jacket matrix.
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(DIf ‘aﬂ,‘ =1 forall j,k=1,...,n then is a complex Hadamard matrix.

(IDIfa, isreal and,a’ =1 forall j,k =1,...,n then A is a real Hadamard matrix.

m Let 4 be a Jacket matrix.
(I) Then A4', A'and A" are also Jacket matrices.
(I1) (detA )(detA )=n".

B Let A be nxn Jacket Matrix and let D and E be diagonal matrices. Then DAE is also
a Jacket matrix.

M Let A be an n x n Jacket matrix and let P and Q be n x n permutation matrices.
Then PAQ is also a Jacket matrix
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Jacket matrices of small orders

Theorem : (1) Any Jacket matrix 4 of order 2 is equivalent to the following matrix

11
J = .

(2) Any Jacket matrix 4 of order 3 is equivalent to the following Jacket matrix

1 1 1
J=1 w w|
I w w

1
Proof: Let 4 = (1 j be a normalized Jacket matrix, then 1+a_=0.

aZZ
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Let

S S =
W | =

1 1
1 1
b b,
1 1
b b,

be a normalized Jacket matrix and its inverse matrix and from properties of Jacket
matrix, we have

I 1
1+b +b =0, 1+b +b =0, 1+—+—=0,
b b
1 1
I+ —+--=0, 1+b—+b—=0, 1+b—+%=0
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Theorem: Any Jacket matrix of order 4 is equivalent to the following Jacket matrix.

1 1 1
-w w1
w —w -1/
-1 -1 1

ek ke

if w =1, then it is a real Hadamard matrix;
if w =i, then it is a Turyn-type Hadamard matrix;

If w=2,then it is a Center Weighted Hadamard matrix.
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':-T.:/-]

A

Jacket matrices of order 2, 3, and 494 are
UuUnNnigque under eqgquivalent relationship.

It is nature to ask whether Jacket matrices
of order 5 are unique.

— E:QTTi/5’
/1 1 1 1 1) (1 1111 )
1 ¢ ¢? @3 o 1 ¢ 97 ¢ o
— | 1 2 4 L 3 AT=11 3 o % p?
= TP Py
1 3 o o4 2 1 (192 994 © c],:)?’
proop w P > ¥,
"4 3 2 2 3"
\1 ¢" ¢ ¢* ¢ ) \1 ¢ ¢° ¢ ¢

AAT =5,
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Let a = —_5+‘*"€

2
[a+1 1 1 1 1)
1 a-+ 1 1 1 1
B = 1 1 a-+ 1 1 1
1 1 1 a—+ 1 1
\ 1 1 1 1 a-+ 1 /
= alg + T,
where 7' is a matrix of all one.
—a
BBt = (als + 1) (——~Is + 1)
2 2 _
—a a< + b5a+5
a—+ 1 5T a -+ °
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A and B are Jacket matrix of order 5.
A s not equivalent to .

T here are at least two Jacket matrices of
any order n > 5 which are not equivalent.
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Construction of Jacket Matrices

Proposition 1: The Kronecker product of two Jacket matrices is also a Jacket matrix.

Proof:
Let A be an m x m Jacket matrix and B be an n xn Jacket matrix. Then AA' =mI and

BB' =nl Clearly (A®B) =4 ® B".Hence

(A®B)A®B) =(A®B)A ®B')=(44")®(BB")=mnl .
So A® B is a Jacket matrix.

Proposition 2: Let 4and Bbetwon x nJacket matrices.Then

A AB
A -AB

1s also a Jacket matrices of order 2n, where A # 0.
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Example : Let

if A =1, then

1s a Jacket matrix of order 6. If A=2, then

O e =y

ek e e pd

.-a%wg

s =

2 =

- = =

1 1
I w w
I w w
1 1
w w
w w
-1 -1
-w —-w
-w  -w
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1 1 1 2 2 2

I w w 2 2w 2w
e I w w2 2w 2w

1 1 1 =2 =2 =21

I w w -2 2w 2w

I w w -2 2w 2w

1s also a Jacket matrix.

Theorem : Let 4,B,C and D be the core of Jacket matrices of A,B,C,D of order n,
respectively. Then 4 = BD' if and only if
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1 ¢ ¢ 1

e A B e
X = | |
e C -D -—e
e —e -l

1s a Jacket matrix of order 2n , where e is a column vector of all one.

1 €
Proof: Let 4= ( p j 1s a Jacket matrix,
e

1 Y1 € 1 e 1 ¢
= ) =nl.
e A)le Al‘ e Al‘ e 4 '

e+eAd=0,(A4+1)e=0,ee +AA =nl .

Hence,



Similarly, we have
e +eB=0,(B+I)e=0,ee +BB =nl .

e +eC =0,(C+I)e=0,ee +CC =nl .
e +eD=0,(D+I)e=0,ee’ +DD =nl .

S0 (1 el e n 0
AC = =
e A)\le C 0 ee +AC
1 e\l ¢€ n 0
e B)le D) \0 ee+BD )

BD

Therefore, AC' = BD' if and only if AC' = BD'
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Binary erasure Channel
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Binary erasure channel

A binary erasure channel with erasure
probability p is a channel with binary input, | 1. -

ternary output, and probability of erasure p. \
That is, let X be the transmitted random b

variable with alphabet {0, 1}. Let Y be the o k
received variable with alphabet {0, 1, e}, /
where e is the erasure symbol. Then, the 0 >0
channel is characterized by the conditional

I I'I"

r

o

=0

-p

o
-

1
o

o
-

1
o

o
-

1
p
0
0
p
1

)
)
)
)
)
)

<~ <X <X <X <<
I
- O O -~ O O

Y

I

X X X X X X
I

U
-

I
= A

-p
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Jong Nang Binary Code

0ooo 00 000 00 D 0(digit) 00 000/0000 000
00
o o 00 000 00 — 1
R (0030 00 OO 0
00 00) 000 ()
O
M U0 U 1U 0
Oo/o \ 0
. (0 000 00 00 o]
00 00) 100 ()
O O
— — 1
O el O 00 000 000(a, RO 0
0000 00 00) o]
© © 101 0(0)
EPO
— — 1 —
- O 000 00 ., 0
000(00 o]
i 0ooooo) 111 a()
©] 97




Example 1

+ P (y=0|x=100)=1 P (y=0|x=101)=1 input () output(y)
P (y=0|x=111)=1 P (y=1|x=000)=1 000 — 1
}
To calculate capacity: PR
C=max I (x;y)=max{H (y)- H (y|x)} l; :_‘: :1,/{f

Let P (x=100)=a, P (x=101)=b, P (x=111)=c, P (x=000)=1-(a+b+c)
P (y=0)=a+b+c, P (y=1)=1-(a+b+c)

m

H(Y)=-> p(y)log, p(»,)

J=1

H (y)=-P (y=0)*log P (y=0)- P (y=1)"log P (y=1)
= -q*logg-(1-9)*log(1-q) where g=a+b+c

H(Y|X)= —zn: Zm: p(x;,y;)log, p(y,

i=1 j=1

X;)

Since  log, p(y, |xl.) =0 H (y|x)=0.
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Example 1

I (x;y)=H (y)- H (y|x)= H (y)= -q*logq-(1-g)*log(1-q)

dl(x;y) 1 1 l1-g¢g
=—1 — log(1l- 1— = log(——
I 8q -4 g5t og(l-g)+( 61)(1_61)1112 og( . )
log(L=4y 0= g =
q 2
I (x;y)=H (y)- H (y|x)= H (y)= -q*logg-(1-q)*log(1-q)=1
Thus C=max [ (x;y)=1
Formula:
Inx
dlu(x)v(x)] _ W )du(x) u(x )dv(x) dlog, x _ E: I dinx _ 1 1
dx dx dx dx In2 dx In2x
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Example 2

input{x) , output{y)
5)5]) 1
o 000 011 1010, 001
i e - 101 === 001,100
b ol — ° 110 1100, 010
= e
L =P 0 Assumption: At most one error occurs from “1” to “0”

p
e

Let P(x’=010 or 001|x=011)=p P (x=011|x=011)=1-p
P (xX=001 or 100|x=101)=p P (x=101|x=101)=1-p
P (xX=100 or 010|x=110)=p P (x=110|x=110)=1-p
P (y=1)=1-(a+b+c)=1-q
P (y=e)=p”(a+b+c)=pq H(Y) ==Y p(y)log, p(»)
P (y=0)=(1-p)(a+b+c)=(1-p)q el | e
where q=a+b+c =—(1-¢q)log,(1-q)~ pqlog, pq—(1- p)qlog(l- p)q
P (x=000,y=1)=1-q ~ R
P (x=011,y=e)=ap H(Y|X) __;;p(x'
g Ex=1(1)g),y=e;=bp =—(1—-g)logl—aplog p—bplog p—cplog p
X= ,y=e)=cp . . _ _ . . _ _ _
P (=011 y=0)=a(1-D) > —a(1-p)log(1— p)~b(1— p)log(1— p)—c(1- p)log(1- p)
P (x=101,y=0)=b(1-p) =—gplog p—q(1- p)log(l-p)
P (x=110,y=0)=c(1-p) ) 100



Example 2
C=max I (x;y)=max{H (y)- H (y|x)}
I (x;y)= H (y)- H (ylx)

=—-(1-¢g)log,(1-¢q)— pqlog, pg—(-p)glog(l-p)g —[-gplog p—q(1—- p)log(l- p)]

=~(1-q)log,(1-q)~ pq1og, p— pqlog, g —(1- P)qlog(l~ p)~(1- p)glogq +gplog p-+4(1—p)log(l-p)

=—(1-g)log,(1-g9)— pglog, g—(1- p)qlogq

I l 1
=log(1-¢)+(1—¢q) (Nq)lnz—Plogq—P%—(l_l’)logq_(l_»‘q\qmz

1
=10g(1—q)—10g(q)=0=>q=5

dl(x;y)

I(x;y)=-0.510g0.5-0.5p1l0g0.5-0.5(1—- p)log0.5
=—-0.510g0.5-0.510g 0.5
=1

Thus, C =1 101



A Novel Class of Element-wise-
inverse Jacket Transform With
Many Parameters
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OUTLINE

some preliminaries and notations are
presented

Element inverse jacket transform with
many parameters

the proposed EIJT transform is efficient
algorithm

results
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PRELIMINARIES AND NOTATIONS

/ 1 1 1 1 \
W, = 1 —w w —1
Tl e w1
\ 1 —1 —1 1 /
/ 11 1 1 \
- 1 1 — L 1 1
W, 1 _ : ) %:L w
\1 -1 -1 1 )
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Definition 2.1 A matriz [J|nyx~N = (Jir) of order N
whose entries are complex is called a jacket matrix, if

the element in the entries (i, k) of its inverse matriz

s equal to product of % and the inverse of the element
in the entries (k.i) of [J|nxn. In other words, if

Joo Joo -+ Jo,N—1
J10 Ji1 o J1,N—1
I nxn =

j:\.r—J_U J‘\T_]-l e jj\-'r—lu"\'r—].

and 1ts inverse

1 1 1
Jjoo Jj1o JN=-1,0
1 1 1 . 1
[J}—l _ jo1 Jj11 IN=1,1
N x N N
1 1 ..o 1
Jo,N—1 Ji,N—1 JN-1,N-1

then .J s called a jacket matrix.
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For example,

1 1 1 1 1 1 1 1
1 —1 1 —1 1 — ' —
H4 _ -1 — i 1 1 1 1
11 -1 -1 N I S
1 -1 -1 1 r -1 -1 1
1 1 1
_-irg = _I. Lt ._,._.-2
1 l..;-.e'E it

1 1 1
a b e 1| = 4 =
P =_ 1 v} a
_,irg — f_f Ei__i__,l EWIE 3 3 b bl bew”
) e 1 ) a
e be 2 E»;_,._a o o< CEw
a a1
Ja Pz = I3,
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In order to propose ELIT transform, we need following notations. For an integer N = 3 = 2", where r is
any arbitrary positive integer. Then any integer n with 0 < n < N — 1 can be written as

n=n.(3 x E'-r—l','l + 127+ n 227 o 132 + mp,

where n,., n,_2,...,np take values from {0, 1} and n, 1 takes values from {0, 1,2}. Then n can be represented
by a vector

1= 1y, p_1,-- -, 11, N0).

[t is easily to see that this representation is unique. In other words, it n # m, then the vector (n,.,---, ng)
of n 1s not equal to the vector (., - -, mo) of m.
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For example, let N = 3 »x 21, Then the representation of integers 10,1,2,3,4,5} is (0,0}, (0,1}, (0,2),
(1,0),(1.1). (1.2) respectively. If N = 3 x 22, then the representation of {0,1.2, 3, 4,5,6.7.8,9,10,11}
is (0,0,0). (0,0,1), (0,1,0), (0,1,1), (0,2,0), (0,2.1). (1.0,0), (1,0.1), (1. 1,0}, (1,1.1), (1.2,0), (1,2, 1)
respectively. For any two integers 0 < n,m < N — 1 with n = (n,..-- -, ng) and m = (m,., - - -, mg), denoted

by

win,m) =n—_amy_2 + ny—_gmy_3 + - -+ + npmy,

ifr > 2; ¢(n,m) =0if r =1 or r = 0. For example, it n =4 and m = 5, then ¢(n,m) =0. If n =9,

m = 11, then n is corresponding to (1,1,1, ).i.e.,
0=1x(3x22"H+1x21+1
and m is corresponding to (1,2,1), ie.,

11=1x(3x22"1)+2x21+1.

Henee
(0. 11) =1x1=1,
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The Jacket Transform has following three
advantages

element inverse orthogonality

the entries of the forward and inverse
transforms have reciprocal relation

the fast algorithm
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PROPOSED FOR
EIJT WITH MANY PARAMETERS

Definition 3.1 Let N = 3 =27 be a positive integer with arbitrary nonnegative integer v and w be a primitive

third root of unitary. For any two integers 0 < k,m < N — 1, let k and m be represented as k = (k,,---, kp)
and m = (m,.,---,mg). Denoted by plk,m) = k,_om,_g+ --- + kgmg for r = 2, otherwise 0 forr =0 or
r=1. Let (k) =3k + (1 — kr)kr—1 + kr(2 — Br—1). For any complex sequence (z(0),---,xn_1) of order
N =3 x 2", an ELJT transform is defined as

N-—-1
y(k) =Y x(m)ag,m(—1)#FmgPk)wim)

me=I

fork=0,1,--- N — 1, where w is a primitive third root of -1, i.e., w® = —1 and the parameters ay, ,,, must
satisfy the following conditions

Oy = Q00 . k.m = 1,--- N — 1.
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For example, for N = 3 x 2%, then the ELJT transform of 3-point can be used as follows:

i.;'l.r'D:l = I{Djﬂgg‘Fl[ljﬂmﬁ‘IﬁzﬁMDE
y(l) = z(0)ayg + r(1jwiosol + p(2)w 2—‘“”,;‘0'”
y(2) = xz(0)ag + x(1)w E—M 201 (222000

a0

Theorem 3.2 The inverse transform of the ELJT transform defined by (12) is given by
| V-
T Z (m j— ( lvjwfk m), |—f.-'|:k:'*~ ':'m:'

fork=0,1,---,N — 1.

111




Proof.
First, we establish the following equalities

N-1
Z Crmp (—1)Plmp)—p(mik) ,(blp)—b(R)(m) _ )y for p = k;
Ak ?

m=0

N-1 f L]
3 Gmp (1 yelmp)—p(m k) ((p) (R Joim) — orp 7 F.

Dok
=l ke

If p=F, then

N-1 _
Z Amp [-_1]p[mfpj—g[m,k]mf;h‘”Eﬂj—ﬂ>=(k:|:|t~'"':”“:'
Ok ;

m=0
N-1
_ Z Oimp (— 1}-¢ﬁ{m,pj—w[ﬂhp}w( ip) —d(p))eim)

1
m=0 F

N-1

— Zl:.-".

m=0
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L . N Lm0 (10 : O 000k
If p=£ k, we have mp = ——2 and ap,; = — _
{00 o0
Hence mp  OGmoQop oo dop
Loy ke tog Qoo ok

Let m be corresponding to the vector (m,.---,mg). Then

N—-1

Z Ao (1 ylmop)—elm.k) (s (p) — (k) (m)
Aok f
=00
N1
— Z%(_1]w(m,pj—mtm,%(wlzpzl—r.-‘w:sr:nww:m:l
= aok )
_ Z ﬂﬂpL | ye(mep)—p(mad) (3 (p)— b (k) (m)

- x5

0k

(p—g e, g Ter=0

Z (—1)Plmpl—wlm.k) (¢ () —b(k))d(m)
e —1 =0
Mg ' My _g(pr—a—Fk-—q )+ +mo(po—Fka)
— —1) . *
o, Z m.j;.“’ ,

["1_|_w& _|_w2r:t_|_w3a _|_w4a +w5f_‘t}‘

17




where the sum in the second equality is taken over all (m,.,---,mg) which corresponding to m from 1 to

N — 1; and o = [3}?:" + '-r-l- _prjpr—l I E:"T'-rg _pr—l«”x

(3k. + (1 — k. )kp_y + k(2 — k._y)). Since w is a primitive third root of -1, we have 1 + w® + w?® + w

w"—la +w5a — 1.

we have
N-1N-1
2k =7 E Z
p=0 m—l:l
t’—1'J"F":m-PI'—»?Iim.-fiJw.ih-(p}—ab(kjjf,b(mjﬂm
NoIN-1
lf_1]*pim,pj—w(m,ﬁ-}lmit:=(p}l—f.b[kj|j-¢-(-mj_Ilrp;.l
| M=l vl
- N z { Z () —1)77)
: =0 p:l:l

Jﬁ":P:'t::l:ﬂ'-:'}_ L r;_l]k—*':krmjw—ﬁ’(kjﬂﬂzm:l
ok !
N-1

_ 2 E“”“ _l_ yetkm)  — ok )b(m).

3Ct_|_

Hence we get The inverse transform of the ELTT transform and this completes the proof.
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Then the proposed ELIT transform and its inverse transform can be presented in term

of the matrix form as follows:

Y = Py X
X =Py,
In other words,
1
—1
O N

[ o @01
ip  dp W
a2
fap Ol
Py = .
ftzp —az1W
40 0410
\ aso  —asi

(7)
Pmk / v

Erample 1 For N = 3!, the forward matrix is as follows:

dpz

ay9w”

—l2W

—fzaw

dgoll

(52

2

oy

— Ii1~13|'.1«'2

—agl/
Iggl)

e

—ilg3

— il g
ﬂ-g,-_l-'.-:.:'z
azqw’
— g4l

dgqit

fps, \\

—ls
Q25
—dag
45
—ilss )
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FAST EFFICIENT ALGORITHM FOR
THE EIJT TRANSFORM

fim) = ag 2(m) + ag y_1_mr(N — 1 —m). glm) = agmz(m) — do,N—1-mZ(N —1—m).

For N =6=2x 3 with r = 1. the ELIT transform is as follows:

Y = [T]eX.

[‘T]5=P( [‘23 ;_3 )([I]z ® [J]al( [In]g ;: )f..[flz ® [H]2) DR
<1 1
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X(0) X(0) X(0) X(0) X(0) X(0) X(0) X(0)
X(1) X() X(1)E 5 iX(1) X() L X(1) X(1) X(1)

X(2) X(2) X(2) X(2) X(2) X(2) X(2) X(2)

X(3) X(3) X(3) X(3) X(3) 1 X@) X(3) X(3)

X4) X4) X(4) X4) ! X4) X4) X4) X(4)

X(5E) ————— X&) X(5) X(5) X(5) T X5) X(5) X(5)
P Diag(l3, P1) l2 03 Diag(ls3, D1) 1360 H2 D R

Ma 0 Y. pmad Hla B Y ﬁ
[T]a=F’( . pl)t[f]z [J]a,!( 0 Dl)'-.[f]s-a [H]2) DR
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CONCLUSION

* A new reciprocal-orthogonal parametric jacket
transform (EIJT) is proposed by combining the
kernel of the basic jacket transform with five
parameters and the well-known WHT transform.
On the one hand, the proposed EIJT of a
sequence N = 3" has 2N-1 independent
parameters, while the WHT transforms has no
iIndependent parameters and the ROP transform
Is for sequence of power of two. On the other
hand, the proposed EIJT still preserves the nice
properties of the WHT transforms, such as
reciprocal orthogonality, reciprocal relation and

fast algorithm.
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Motivation

* In 2001, Lee et al. [1] introduced a generalized reverse
Jacket transforms (GRJT) as a multi-phase or multilevel
generalizations of the WHT and the even-length DFT.
The matrix representing a primary GRJT is equivalent to
the DFT matrix, and in addition has a border consisting
entirely of £1's.

 However, it can be proven that such matrices with entries
from the field of complex numbers, do exist only for even
orders [2]. So, it is naturally to ask about the existence
of similar transforms on different spaces of odd
dimension.
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Definition & Examples

 W.l.o.g. we are focussed on the fields GF(p), where p is
an odd prime:

DeriniTion 0.1. A Jacket modulo prime (JMP) matrix J of
order n over GF(p) is an n x n nonsingular matrix of =1’s of that field

such that
JJT = nl.

where 1 is the identity matrix of order n, while J 1" denotes the franspose
matrix of matrix J.

Remark: The conventional Hadamard matrices are JMP
modulo any prime p, which does not divide the order n.
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Definition & Examples

 An JMP modulo 3 matrix of order 7:

1 1 1 1 1 1 1
1-1 1 1 1 1-1
1 1—-1 1 1 1-1
1 1 1-1 1 1-1
1 1 1 1-1 1-1
111 1 1-1-1
1-1-1—-1-1-1 1

J7
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Definition & Examples

 More general example:

LetJ, ..ra e @ (pxk+4) x (pxk+4) matrix of £1's,
where £ iIs a positive integer, such that:

* its first row and column consist entirely of 1’s;

* its last row and column consist of —1’s with exception of
the corner’s entries;

« all other entries are equal to 1 with exception of those on
the main diagonal.

The previous example is obtained if p=3 and k= 1.
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Definition & Examples

Sketch of the Proof:

Any two among the upper p x k£ + 3’s rows agree in
exactly p « k 4+ 2 places, while the last row has exactly 2
agreements with each of the others. Thus, the inner

product of pair of rows equals to +p x &, 1.e., t0 0 In
GF(p).

J k44 1S NONsingular since p and p « k + 4 are relatively
prime, whenever p is an odd.

So, there exists JMP modulo arbitrary odd
prime p matrix, whose order is also odd.
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Main Result

* Itis well-known that a necessary condition for the
existence of a conventional Hadamard matrix is its
order ntoobey: n=1,2orn 0 mod 4.

« Analogously in this work, we try to find (and found)
some necessary conditions for the existence of odd
order JMP matrices.
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Main Result
The following proposition holds:

Proposition 0.2. /f there exist a JMP
modulo odd prime p matrix of order

n = 1 (mod 2) then n is a quadratic
residue modulo p,

ie,3 x:n=2a°(modp).
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Main Result

Example 1:
Take p = 3. We have: 20 =1, 21 = 2.
Proposition 0.2 claims:

 the order of any JMP matrix mod 3 must be 1 (mod 6);

« and there exists no such a matrix of order 5 (mod 6).
For example, one cannot find a construction of JMP
matrix mod 3 whose order is 5 or 11, etc.

Of course, the requirement for non-singularity
implies that the order cannot be multiple of 3.
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Main Result

Example 2:
Takep=5.We have: 20=1,21=2,22=4, 23 =3.
Proposition 0.2 claims:

« we cannot construct JMP matrices of orders 3, 7 (mod 10);

* Jg(p =95, k=1)is an JMP matrix mod 5 of order 9. We
also, construct an JMP modulo 5 matrix of order 21, which
is 1 (mod 10) by using finite projective plane of order 4.

Of course, the requirement for non-singularity
implies that the order cannot be multiple of 5, i.e.,
S (mod 10). 131



An Application in Cryptography

Definition for (s, v)- all-or-noting transform:

Let X be a finite set, called an alphabet with | X| = v. Let s
be a positive integer, and assume that ¢ : X* — X*
Informally, the function ¢ is an all-or-nothing transform
provided that the following properties are satisfied:

1. ¢ 1s a bijection.
0. Ifany s — 1 of the output v;. .. .. ys are fixed, then the

value of any one input variable z;. (1 <i < s) IS
completely undetermined.

We shall denote such a function as an (s, v)-AONT.
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An Application in Cryptography

The cryptographic significance of all-or-nothing
transform:

The usage of such a transform affords a certain amount of
additional security (over the block cipher encryption)
since 1t requires an adversary to decrypt all s blocks of
cipher-text (by means of a brute force key search, say) in
order to determine any one block of plain-text. As such, it
can be thought of as an additional mode of operation that
could be used instead of the usual ECB, CFB, CBC or OFB
modes.
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An Application in Cryptography
Theorem 0.3. (Stinson’1999)

Suppose that q is a prime power, and V1 is an
invertible square matrix of order s with entries from
I¥,, such that no entry of M is equal to (. Then the
function ¢ : % — T defined by ¢(x) = xM ! is
a linear (s, q)—AONT.
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An Application in Cryptography

Finally, we would like to mention 3 points:

« Stinson gave an example of a linear (s, p)-AONT, where
s 0 mod 4 and p > 2 is a prime number, by taking in the
role of M (from Theorem 0.3) an ordinary Hadamard
matrix whose entries are reduced modulo p (of course,
when such matrix does exist for given s).

* The existence of JMP matrices (and the corresponding
constructions) whose orders are not 0 mod 4 (discussed
in the present work) extends in an obvious way the
above described cryptographic application.

* Yet another cryptographic application of JMP matrices
was announced by Chang-Hui Choe, who proposed their

usage in a running Hill cipher.
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2010-10-11

S/P

° COD/
MOD

DEC/
DEM

P/S

multiplexing (=rate) gain vs diversity (power) gain

Multiple-Antenna (MIMO) System
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Index Mapping of STBC

x X X X, | 1 2 3 4
O e oy —x ox -2 1 -4 3
Tl ™ _xy x,  x  —x -3 4 1 -2
—X, X3 X, X | -4 -3 2 1]
Change the variables to fixed number
(X, —-x, —-x;, —-x,|[ x X, X, X, |
X X X — X — X X — X X
04T04 _ | *2 1 4 3 2 1 4 3| (x12+x22+x32+xf)l4x4
X, —X, X X, ||—x  x, X, =X,
X, Xy —XxX, X X, —XxX3 X, X,
(1 -2 -3 -4 1 2 3 4
2 1 4 -3|-2 1 -4 3
Ind " Ind = =(1*+2°+3>+4%1,,,
3 -4 1 2 [|-3 4 1 =2
4 3 -2 I1-4 -3 2 1
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CAlmoutZ:
{j

G

2

J
-2 ]
3j
4j

uasi

Index mapping

[ X 1 2

[ —4 Same as the STBC
=211 2 jj+4 O _(j+4jf]] construction criterion
L2/ j| | 0 4j+j ’

. 0x 0w x| [1 2 3 4]

e R M %*:—ZJ' J 43

e A R S B 7 B Y A Y

Yy o % x| [ 4 -3 =2 1]

2 3 411 2 3 4] [j+4i+9/+16 0 0

1 -4 -3j|-2j j -4 3j| 0 JH4j+9j+16 —8j-12)
4 1 =2j|-3 -4 j 2j| 0 —8j—12j  j+4j+9/+16;
302 j |4 -3 -2 1 8j—12j 0 0
2010-10-11

8j—12j
0
0

j+4j+9j+16j_
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Pilot Channel Estimation

r = S,a, —S:052+n1 attime t =T
r, = S,a, +S1*052+n2 attime t = 2T

Pilot patterns : (A, A) for antenna 1

(A, —A) for antenna 2 where A is real number
p,=Aa, + Aa, + n,
p,=Aa, - Aa, + n,
Channel estimates
a, _ Pt P, and a, _ P~ P
2 2
Symbol estimates
s, = rloff + r:OZ2
S, = rzofl*—rl*ofz
If channel estimates are perfect,  diversity can be achieved
§, = Qal‘z + ‘a 2‘2)91 + noise terms

2010-10-11 140



Jacket Matrix

V¥l sh Hadanard Matri x

Jacket Matrix

[H], =[H], ®[H],, k=1.

[V =V] ®[H],, £22.

4*4 case

|

[y

[y

|
o o h
AN

"

-1 -1 1|[jo"

olo s o
QO

—
|
[E—
[E—
|
[E—
)

r O oo

......... F xed veighted factor as 1

p— ek

4*4 case

1
1 -1 1 -0 "=~
_____________________ 11 -1 —Jjo &

1 -1 1 1 -1 -1 1j]o o o

0
40
0

4

Vari abl e veighted factor as 2 or j

C 1 -&ructure of the sparse natrix

‘“'-'-'.;;}""?'_T N A
A . i
= =
=t ?’-;:“-;:x.,;f.-’ e

1\{-“ " -“‘:_ .-‘< ‘1'14';- e
LS
£ A AN

=

|‘--~__ H{,— X — ‘_{ i

= =

:_‘"'..J Reh ."j ..-( .ff :

[ -Sructure of the sparse natrix

Space Time ‘ Real QOthogonal ST Designs

Quasi -orthogonal ST Desi gns

2010-10-11

Similar patterns research
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Weighted and Quasi Orthogonal

Weighted factor

Jacket matrices

Forward \ Reverse
! 1/ ] 2 2 2 2]
e S I S P N
2 — 2 —1 S —T1 ="
-1 =1 1 ] 2 —2 —2 2 |

Graphic Pattern

[ o X5 X5 /x4 | i X, %\‘ x5 X5

QOD Pattern| |[— x, * x, * —Xx,F xyF x, X, X5 X,
—xy* —x,* x * x, * —x, * —x* ix ¥ x, K
| Xy, — X5 — X, x| | T et X, T

denotes the nonorthogonal denotes the orthogonal

2010-10-11

\Non Alamouti /
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Feature selection in sparse
matrices

0O b

a 0
0O a
b O

. 2 2 2 2
a—‘xl‘ +‘x2‘ +‘x3‘ +‘x4‘

— 3k sk __ k__ k

2010-10-11 143



Analysis of Existing Designs

® Jacket Unitary pattern from generalizing
Walsh and weighted Hadamard.

® Quasi orthogonal after extending the
orthogonal cases.

® Analysis the existing patterns to find the
unitary properties.
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Jafarkhani Quasi-Orthogonal

Same as Jacket Matrix

N % X% x| a 0 0 &

ek ok k% 0O a -bH, 0
C— A B B e x* X CJHCJZ J
T=Br AF| | gt gt ox* x* 0 -b, a O

X\ X% N b, Q 0 Ta_

2 2 2 2
Diversity gain: d = ‘xl‘ + ‘xz‘ + ‘x3‘ + ‘x4‘

Correlation: b_] — xl.X4 * +.X4.xl * _X2X3 * _.X3.X2 *

H. JAFARKHANI, IEEE Trans. Communications, vol. 49, No.1, Jan 2001,
pp. 1-4
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TBH Quasi-Orthogonal

X X, X X, ‘a 0 b, 0]
A B| |-x* x* —x,* x* 0O a 0 b
C, = _| TR X 4 N CTHCT _ T
B A X, XX X b 0 a O
A N e TR 0 b 0 a

o _ 2 2 2 2
Diversity gain:  a = ‘xl‘ +‘x2‘ +‘x3‘ +‘x4‘

Correlation: bT — xl.X3 * +X3xl * _.X2.X4 * _.X4.X2 *

Tirkknen, Beariv, Hottinen, IEEE 6% Int. Sym. SSTA, 2000, New Jersey, USA,
pp.429-432
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Measurement of the matrices

Diversity Product:
1
j = min |det (€ — &) (€ - )]
{C+C}
_ S
G 0 0 b, ||
, de( | 0 T 0
0 -b, a 0 Similar scheme
b, 0 0 a_ TBH has
1 1
_ - N2 2022 : " A ™
~ (@)= 0 Ay = min (@) - (b;)*)|

{C£C}
2010-10-11 147



Unitary of TBH and Jafarkhani

* The same determinant of the matrices
shows TBH and Jafarkhani are unitary.

* We can derive the some patterns from
unitary transform.

* From investigation, the distribution of the
conjugates is major point.
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Jafarkhani with TBH Sparse

We have

2010-10-11

Matrices

b: correlations position is moving

Original Jafarkhani
E T X X, X, X,
. T T S B —x,* x* —x* ox*
X X N _)%* —x4* x1* xz*
e R S
a 0 b 0] a 0 0 b
0O a 0 b 0O a -b 0
C,/'Crr= . —cH
A B 0 b a4 O C,C,
0 b 0 a b 0 0 a
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Performances of Modified
Jafarkhani

10 ;
¢- —=— afarkhani
-<%- Modified Jafarknani
-2
107k 3
010 E
)
10t 3
J||:|-5 1 1 1 : : I
> A = a8 10 12
SHR(DE)
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TBH with Jafarkhani Sparse

Matrices
Original TBH
I X X5 X3 Xy | X % X3 Xy
H e R RS YR _XQ* xl* _x4* X3*
Let Gy = . % . o u -
ROBT TR A X X XK
IR T 7 E B —x4* X3* _X2>x< xl>x<
a 0 Z b - 0 , 0
0 a 0
Then we have Cp," Cyy = 0O a 0 b
O b a O b 0 a 0
b 0 0 a] 0 b 0 a

2010-10-11 Correlated positions changed 151



Performances of Modified TBH

0% ¢

1EI'1-:_M_H

107 L

107

1 1 1 1 1 1
2 4 5 5 10 12
SHRIdE)

Red line 1s modified TBH and Blue line 1s TBH
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Distribution of conjugates on the bottom (1)

. A.u:{il iz} I X X X x4-
? 1:; 4, Ay X ¢ I
! M:{_ 1 sk v*}:_ ® v K 4k . ok
(A4)* (45) X3 AR R 5)
a by, O 0 _—x4* -5 % X" xl*_
b a 0 O
C HC _ N1
==> Cy Cy, 0 0 a by,
0 0 by, a

— * %k %k *
by, =x.x, *4+x, * x, + x.x, *+x,x,

The diversity product is !

: H o | n2 72 \2|2m
same as before: Ayy = min|det(By,By,)|>" = min((a” —by,)"|*"
{C=C} {C=C}
2010-10-11 Jia Hou, and Moon Ho Lee, “Matrices analysis of quasi orthogonal STBC” IEEE 153

Comm. June, 2003.



Distribution of conjugates on the bottom (1)

. A.u:{il iz} I X X X x4-
? 1:; 4, Ay X ¢ I
! M:{_ 1 sk v*}:_ ® v K 4k . ok
(A4)* (45) X3 AR R 5)
a by, O 0 _—x4* -5 % X" xl*_
b a 0 O
C HC _ N1
==> Cy Cy, 0 0 a by,
0 0 by, a

— * %k %k *
by, =x.x, *4+x, * x, + x.x, *+x,x,

The diversity product is !

: H o | n2 72 \2|2m
same as before: Ayy = min|det(By,By,)|>" = min((a” —by,)"|*"
{C=C} {C=C}
2010-10-11 Jia Hou, and Moon Ho Lee, “Matrices analysis of quasi orthogonal STBC” IEEE 154

Comm. June, 2003.
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Matrices Analysis of Quasi-Orthogonal
Space-Tiume Block Codes

Jia Houn, Moon Ho Lea, Sonior Member, IEEE. and Tn Yooz Park

Abprgci—In thay letter, according co the amahas of existng
Tanimiien mamices of geasi-a nal zprce-time block codes
(STEL), we generalize some of their characrers and decive several
new pacrern: to eerich che family of quasi-artheganal STBC.

Tmdex Termr—{Jrzasi-orthegonal, STBC, unitary patrern.

L rooucTion

N ADDRESSING the ismus of decoding complesdty, STBC

can eficently ackieve the Tansmit diversity i comibat
fadinz. By using the orthosorality of the ansmiied symibals,
Alamgur [3] £rst dafned a space tme Tansmmission mains a3

_ | am y
te=| 2 7] “‘
where the subscrpt /2 indicates the mdetermiraies ) and g
exdening in the Tansmission mamix. Based oo Alamout: ortog-
omal STBC, fafarkbami [1] zave a quasi-orthogoral STEC form
for four Tamswot antepnas as

3 F 5] 4 43
= M A _ (e ol —r] of )
il E TR L P e T
Ay =y =z a4
where Aja, Ay, are Alamoud codes. Iis character mairix has
similar fashion as the sparse matrmy paitem in [5], and we cam
wTits It a5
n Ik i ey
W b =y O -
i —y a0 )
I'J_r Ik 1] i1

wharz £ i the Hermitian of mamiz .o = 520, | f mnd
the comalated vale iy = (arpad +ajay) = Gro - o) B
2 real mumber. Further, diferent from Jafarkhemi scheme, the
TBH caze [4] has

rore ommoony
" .'!y! A H —J'ﬁ J'_‘I —J'_i J"II|

L= [.-!:u !1-1] o om ow x| O
—rf o -

Bmmerip receswal Movember 26, 1002 The asceine sdios coondisaling
the revien of hes letler asl apgioy ieg i R publicalion was Proll A Amasalie
Thetn work wis ssppeesed by KOSEF 303-15-2 snd WOVTER

I Haid wnell B H Las aie with the 1 of Tk lich assl O
cnen, Chonbak Midiomal Uksiscraty, l."|m|_|.._ 5517546, Fovza (e-mmil: houga-
sl hotrrail oo s oonEsiic s P

I Y. Poele o wils e Dispanrnent off Electy E ifgg, Seonas Undeer-
sy, ST Sevstire, Forsa (e-mroil pipligiorme Ll

Deggizal Cisjecrt Tdemtifier 101100000 3003 514706

o 0 by O
NP N B -
£t = fer 0 a0 7)
b b I o

whera the comelatad value by = cryof] oo o coarl] o el
T thez letter, we immoducs some new dezigns through analyzing
the chamcter matrices of exising schemes Moreover, one of

the pew dasizns can improve the performances by reducing the
ingerferences of adacent symbols.

I Ansyyas s Propossn New Marsices
sing a udtary parem idsa imrodaced o [3] to ovesceate
the distritration of comugates m the Tamsmession matrices, we
find that it is related 1o the positions of comelated valnes, By
champing the disimbution of comugates, we Can ofiain maTices
with differer: posidons of comalared values.
A Jyptrkha Case Wit IBH Corvelanes Poritions
We change the comjuzates” dismbudon of Jafarkhani mamy,
and let
B R S I
T Rt B R R
=ty ‘r —m | @
= —f af o
By exchapzing the last row and the third row fom (2), we
may gef the character mamix a5

i} 0 b 1]
NP il i = _
O = fpr 0 0 1] 0

b =lyy 1} Ir!

where the comelated value forr = b, uf the positions of cor-
related valnes are the same as the TBH caze.

[oaddition, the measurement of error proabiity is fom cal-
culaimg the diversity produact A[L]. We show it as

whera 1 iz the mumber of transoet anfenres, and ( i the emer
cods words fom 7 Assuming By = T = 0C0L M =
(= Clep) amd ey = o — 02 {1914 41 s elements of
ermor mairix M, the dversity products fom the Jafakban and
its modiSed case arz

Ar= min pleutd o
J _F!‘lel' By .rJIJ'
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.u"
= LI CREE
=i tafadchani with THH cometited position
mp THH 54
. -0 THH Wi Jobwkhan comelred poafian
n
L
m
“'l
1t
) 2 ] ] a i i
SMRE
Fig. | FPerl: ol the Vifiadl gine with L5 coelaled |

wairgy Four el ervesro aned Sns rezeive anlere o Ml fakng clomnel

a0 L b ] [

s I U by 1

_.:.?!!.. i ke 0 oy A0 ®
iy O 0 @

Ahrr= mig |'i'l[I'’f;!."":'J'-"JI:IIP_"I

o

O]
(a0 hy D B
= me | 0 i} 1] -;"J'."
a*Te| ber 4O
| 1] —|r.-_|-||. b A
(1
i i and iy = by = (0] + $7E) —

Gl J'-JJ;IJ?.III.ISWEEE'E.:U— Ao Decanse

el i = del @i = 00° =887 (1D

Based oo the same diversity product. these two cases have sim-
ilar performamces by using the same masiemm rade combing
(MELC) decoding alponthm prapesed in [1], [2]. The menerical
Ieﬂ..15.are=bcrwn1|:P1g,1

B TBH Came With Jgfmn-Correlaned Poriions

Sumilar to the above modification, we exchapgs the last row
amd the third row from (4) and let

F 5 B - I 1 - T

=3 =13 23 a

1 B = N 5 - 5.

iz we ebiain the characier mamiz as

il ] [
TP T A R T ST
=1 bpg o 0 (3
by O
wheme {vr; = {rp and the postitons of comelated values are the
same a5 the Tafakham case. Similar to the above anabysis, we
hanva .l'.l' = J"."J'- hecanze

detii i) = Al B s (0 =187 148

where by = iy = (3185 + 270y + Fad] + 55,). By using
e MEC decoding algorithon, these two cases present simmlar
performances, and the simmlations are shown in Fiz. 1. There-
fore, pereralizing the above two modified cases, the differsnr
distrrution of the conjuzate: in mesmission maims can lead
to different positions of comelated values and the posttons of
comalated values in the character mamix are not dioecily come-
sponding 1o the parformances of guasi-orhogonal STBC.
C. Designs With New Positions of Correlmted Faiuer

According to the above amalysis, we koow the posiions of
corralated values do not afect the BER. Therefore, now we da-
Tive some new mamices with diferent positions of comslated
vahues from the distmbution of comugates m the bettom of Tams-
TisEI0n MATIces.

Case |- Let the submainx be denoted as

Y EST: e
aa=[ 2] as)
Then we dasizn 2 new fomm as
f“‘[ :t. H?J']
. Ty
J‘_1 Eyl -I| EE]
L I e (s
e i 2 T

where 4, 4, are from (15). Thus we cam write

[ TS T | B ]

A ' B TR .
= |y B g tora an

ik ik fmg

wheme g = rpril o orfrs o] ey s @ 1eal omber
Based on the same MR.C decoding algorthon, the performance
of the pew desipn case 1NN isvery close fo that of TBH case,
&5 shown m Fig. 2. The diversity prodoct of N also is similar
to TBH case as

_ . - Y 1420 _ - 3 _p= HIJ-'.!"
haa = h ettt a7 = . |[.f1 i
(1)
Came I Let the submairix be danosed as
M= “'] )

= —m- &
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10 .
== fafrkhani case
wB NOE without oplimizing
== TEH case
1’ i@ NI
~{+ NOZ wilh ogtimizing
=g~ 14 rale erthogoral in [1]
10
(4
w
o
who RN N T
5 N T, o]
10 o
w*
2 '] B ] 10 12
SNRIdE)

Fiz 1 Performances of the new desipn cases usme four tramsmit antermas and
ona receive amenna over flat Sding channel

Then we define the newr fmm as
- g
Loy =
L J” (A, hz?”]
i) i Fin:] ry
—iz oIl —iid s l:}l}:l

—ry =@y O] -
—rf —tf o o)
and its character mahmx 15
¥l B [k i
T e T 1] 1]
el I TR T
1] 0 =hy= 0
where vz = I Fp=r] TEH 5T =5 15 2 Inagmary mimber.
And the doversity product of the new design case 2 (ND) 1=

Awa= min |[det{BE, By
W [é%}lu[ _w,z-f-'z_"..ﬂl

21

= min, [CEREH e Q2

Based onthe pams of transmt symbals, the Jafarkhan comelatad
fimctions are f[oy-ar4) and f [z, o) [2]. However, i the new
desizn cases, the comrelations are onlv from the interferances of
adjacent symbels [(rapa , ro). In the NDZ, we have

J‘[.rﬂ,._|..r2,|,._:| = .r"ﬂ._|.r2,|,- —.rg,l,-_|.l"2l|'.-
k=123.... (23}

Bv using a simple 3/4 rate modulation scheme, we can eazily
opiimaze the values from (23) and mmprove the performance of
the ND2. The optinuzed medulation 1= given as

1
Ta

ey, = 24
where [ and ¢} denote the in-phase and quadiature separately.
From obzervation of Fiz. 2, 1t 15 apparent that the ND2 is not
nuch better than the Jafarkhan: case when the adjacent mterfer-
encas exst but has remarkable enhancemant from conventional
quasi-orthogonal desizns by usng optmuzing the mterferences
of adjacent symbels.

I, CORaCLIrSIoON

Generally, based on 3 wotary pattem 1dea from [5], thas latter
analyzes the character matnices of quasi-orthogonal STBC and
derives several new codes to emich their fanuly. The new codes
have diffarent positions of comelated values m the character ma-
trices by changing the dismibuzon of conjuzates in transnussion
matrces. In addrbon, some of them can moprove BER with a
simple optomizing scheme.
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Jacket Matrix(JM) Concept

General case :

— A=QR factorization can be viewed as a Reverse Jacket Matrix
representation.

— Normally, matrix R is a sparse matrix and matrix Q is a unitary
matrix.

Special case : matrix Q can be fixed to a trigonometric transform
matrix by a constraint.

— A Reverse Jacket Matrix(RJM) is a generalized weighted
Hadamard transform matrix [9] and refers to such a case.

Here[S],, is a sparse matrix of [J].,.

7] = 1 (7] [S] ,m=2""ke{1,234,..}(1)
m
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Properties of Jacket-like Sparse

Matrix

« Jacket matrix [J], has an element inverse property.
- Theinverse of [J] , is also a Jacket matrix.

» All trigonometric transform matrix(DFT, DCT, DST, WHT, Haar Transform,
Hartley Transform, etc) can be represented as a Jacket-like sparse matrix.
For example, DFT matrix for N=8 case can be represented as follows:

N-1

F]-

m=0

41,

0
0

zi nm
(e JNJ , 0<n<N-1

0
2(G,H,)"
0

_ %[H]g[ﬁ]g[P]8 - %[ﬁ]g[f’]g

2010-10-11
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Recursive Factorization(1 ):DCT-II

» A typical forward DCT of type Il of a

sequence length N is given by:

DCTH-II:

where k]. =<

1

m(n+—)xw
[CN ]m,n = \/%km COS N2 ”

1, j=12,..,N-1

j=0,N

m,n=0,1,.,N-1

(2)

2010-10-11
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Recursive Factorization(2 ):DCT-I

To generalize a recursive factorization of size N DCT-Il , we start with

N=2,4, and 8:
. . 1 1]
1 11 1 [cC C
€l =V Vo|=|¥2 Y2 l- - o
Cl C3 - - 2 1 _1 2 Bl _Bl
4 4 _\/E 2_
- -1 1 1 1 -
1 0 0 0 1 0 0 0
2 A2 A2 A2
0 0 1 0 ; S >1lo 1 0 0
[P1[cLiP1, = C; C; G C
TR 0 1 0 0l a2 s 6 2 lO 0 0 1
CS CS CS CS
0 0 0 1-_C§ cloc C;__o 0 1 0
1 1 1 1 ]
2 V2 A2 2
_ C82 C86 C86 C82 |:[C]2 [C]z :|:|:[C]2 0 :||:]2 ]2
Cé C; C; C87 [B]z _[B]z 0 [B]z [2 _]2
G G G Gy
2010-10-11
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Recursive Factorization(3 ):DCT-I

« Similarly, for N=8, we obtain the followings:

~ C C C 0 1 Vi
[Pr]g[cg][Pc]f[cg]:{B“ _;}{O“ BHf _;}
4 4 4 4 4
By induction,
~ C C C 0 ||/ I
[C]N —[Pr], [c].[Pe], :{ vz G :[{ N/2 }{ vz A D
BN/z _BN/Z BN/z ]N/Z _]N/Z
_]N/4 0 0 0 |
0o I 0 0
Where [P, =BRO.[P],=| , "
N/4
2010-10-11 i 0 0 I, 0 | 164




Recursive Factorization(4 ):DCT-I

» Top left block matrix [C]y,, of [C]y has a recursive factorization, but
bottom right block matrix [B]y,, of [C]y does not.

« Many authors [Chen, Wang ] “High throughput VLSI architecures for
the 1-D and 2-D discrete cosine transforms”, IEEE Trans. Circuits
Syst. Video Technol., 1995, proposed a further decomposition
algorithm to derive a fast implementation of [B]y,, computation,
which normally requires (N/2 x N/2 ) real multiplication.

* Our proposed algorithm partitions [B],, into a recursive form using
both generation matrix and the trigonometric identities and relations
explained below:

Generationmatrix:[B]N/2 :[( gjém’”))m,n]mz (3)
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Recursive Factorization(d ):DCT-I

* In case of NxN DCT-Il matrix, [C]\ can be
represented using the form as:

1 1 1 1 1
R IR
Cj]li,oq}o Cj]li,oq}l Cj;oq}z e Cj]’ifoq’N—z Cj]lifo(DN_l
[C]N = Cf]liflq}() Cj]li,lq)l Cj;i}cpz . Cj]lifl(DN_z Cj]liflq)N_l ,
Cj]li,zq}o Cj]li,zq}l Cj]li[zq}z .. Cj]li,zCDN_z Cj]liIZ(DN—l
_Cj]li[N_z(Do Cj]/;N_chl Cj]li[N_chZ . Cf]li,N‘ZCDN‘Z Cj]li[N_Z(DN_I |

wherek, =i+1,i €{0,1,2,...}
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Recursive Factorization(6 ):DCT-I

» According to (3), a NxN matrix [B], from [C],\ can be
simply presented by:

@, @, D, Dy
Cyy Cyn Cyy Cyy
2ky+1)D,, (2ky+1)D, 2ky+1)D, Lky+1)D N,
C4N C4N C4N C4N
_ 2k, +1)D 2k, +1), Qhk+)d, 2k +1)D
[B]N C4N C4N C4N C4N
Cﬁvkjv—zﬂ)q)o Cﬁvkjv—zﬂ)q)l Cﬁka_ZH)CDZ Cﬁvkjv—zﬂ)q)N—l

Using the trigonometric identities and relations,
we can have the following equation:

QkAD)@, _ A 2kD, ~AD,  ~QK-DD, _ ~Qk-1®, 2kD, ~D,
Cyn =2C,y w —Cay — T “aN +2C,y 4N

me{0,1,2,....}  Example N2, k=1, €OV =202C! -V
2010-10-11 167



Recursive Factorization(7 ):DCT-I

« Using the trigonometric identities and relations,[B]y,, can be
expressed in terms of [C]y,, and a simplified recursive form for [Bly,

follows:
[k ]v[c][P],
- A 1 1 1 1 1
V20 0 0 0l —— — —_— = -
V2 V2 V2 V2 V2
— /2 2 0 0 0 C 2k C 2k, C 2k 2K 2 O 2K
\/5 ; ; 0 0 4N 4N 4N 4N 4N
| CHTCHTCHm e clte cle
- - Cj]/;zq)o Cj]/\cfz‘bl Cj]/\ffz‘bz Cj]/\cfz‘DN—z Cj]/;zq)/v—l
2 -2 2 -2 2
: C2kN—2(DO C2kN—2‘D1 C2kN—2(D2 C2kN—2(DN—2 C2kN—2(DN—1
- - 4N 4N 4N 4N 4N
c» 0 - 0 |
0 Cn :
. =[B]
: .0 N
0 0 Ch
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Recursive Factorization(8):DCT-I|

By using the

results obtained from the previous slides , we have

a new form for DCT - Il matrix

[Cly =LF, ];1 C]N[Pc]]_\fl =[F Iv[CIy[E Iy
lCJN = [Pr]N [C:N[PC]N
T
_ |:]N/2 ]N/z :||:CN/2 0 D :|:CN/2 0 :||:]N/2 ]N/2:|
]N/z _]N/z 0 BN/2 0 BN/2 ]N/z _]N/z

:_CN/z 0 :||:]N/2 ]N/z }

N 0 KN/2CN/2DN/2 ]N/z _]N/z
_ ]N/z 0 :||:CN/2 0 :||:]N/2 0 :||:]N/2 ]N/z } (4)

B 0 KN/2 0 CN/2 0 DN/2 ]N/z _]N/z

2010-10-11
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Recursive Factorization(9):DCT-II

« Center diagonal matrix
|:CN/2
0

can now be factorized in a recursive manner as

2010-10-11

Cya
0

0
Cya

|

/

N /4

0
0
0

0
KN/4
0
0

/

0 ]N/4

N /4

0
0

O }
C1N/2

0 0 |[[Cly,. 0 0 0 |
0 0 0 [C1y . 0 0
v 0 0 0 [C 1y 0
0 Ky, O 0 0 [Clya
]N/4 0 0 ]
_]N/4 0 0
0 ]N/4 ]N/4
0 ]N/4 _]N/4_
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Recursive Factorization(8):DCT-I|

« Data Flow Diagram of DCT-II

Pr

KN/Z
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Recursive Factorization(1):DFT

* |In a similar way, we can factorized a DF T matrix
[F]\ into a recursive form:

7, =[Pr], [F]N:@fm Iy, }FN” . DT

[N/z _[N/z 0 EN/2
_ ﬁN/2 0 :||:[N/2 [N/z }
0 EN/2 [N/z _[N/z
— ﬁN/Q 0 :||:[N/2 [N/2 :|
0 Pry o EyvisWyn v =1y

:_[N/z 0 :||:ﬁN/2 0 }{[N/z 0 :||:[N/2 [N/2:|
0 PrN/2 0 FN/2 0 WN/2 [N/z _[N/2

2010-10-11 172



Recursive Factorization(2):.DFT

o Finally, based on the recursive form we have

:F]N=<[Pr]N>l[ﬁ]N=<[Pr]N>{’N/2 0 }{F 0 }

0 Pr,,, 0 Fy
Iy, O Wm Iy, }
0 WN/z [N/2 _[N/z

) 0
. ®{ : H[zm o F]

_ ([Pr] )—1 IN/2 0
N 0 Pr,,| 0 Pr,
IN/4 ® [2 0 IN/4 ® [2 [2 ) IN/Z 0 IN/Z IN/Z
0 Vi Vi
0 Wz [2 _[2 WN/z N/2 A N2

Where [y, -|°* " = ©
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Recursive Factorization(3):.DFT
« Data Flow Diagram of DFT

| <
== wo X X...
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Recursive Factorization(1):Wavelet

 The discrete wavelet transform based on the Haar matrix
(HWT). Analysis in discrete time: b= Ax and

roor a4 11 /r 1/rF !
4] = A =2
[ ]2 L —r} [ ]2 2{1/1” —l/r}

(0 0 1 o[> # 2 2|1 0 0 0

B 0O 0 0 11||r* 2 —#2 21|00 0 -1 0

110 0 Offlr = 0 o001 0 0

01 0 0J][0 0 »r —r|0 0 0 -1
T
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Recursive Factorization(2):Wavelet

 In a similar way, we can factorized a Wavelet
which based on Haar matrix [A] into a recursive
form:

1

[Q]N:[pi]N[A]N[PJ]NZ’”(LM I}WZM%& AO DT

N/2 A N/2 N/2

:r|:[N/2 0 }|:IN/2 ]N/Z }
0 Pi]_vl/zgzv/zpjz_vl/z Ly =y

:r{IN/z 0 :|IN/2 0 |:IN/2 0 }{]Nﬂ ]N/2}
0 Piyy ]| 0 Yvn|l 0 Pivulldve —L
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Recursive Factorization(3):Wavelet

o Finally, based on the recursive form we can get the similar formula as
following

[4], =[P, [ 4], [77],

:r[Pl,]1|:]N/z 0 :||:]N/2 0 :||:]N/2 0 :||:]N/2 N/2 }[lﬂ
Mo PlN/2 0 A O 17N/2 vo

where [Pl']N:LO 1;6/2} [pj]N:[Pr]N{I%/Z _]0 }

N/2
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Recursive Factorization(4):\Wavelet

« Data Flow Diagram of Wavelet
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Discussions : Dual Use of Cooley-
Tukey Type Data Flow Diagram

« Computational Complexity

FFT Complex additions : N log N
2
Wavelet based o Real additions : 5
n Haar 5N—2log2N—2
DCT-lI(Chen Real additions :
Wang) 3N/2 (log, N-1)+2, M >4
DCT- Real additions :
RF(proposed) N log, N+N/2 -1

[Chen, Wang | “High throughput VLSI architecures for the 1-D and 2-D discrete

cosine transforms”, IEEE Trans. Circuits Syst. Video Technol., 1995
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Discussions : Dual Use of Cooley-Tukey
Type Data Flow Diagram

« Hybrid Architecture(switching to DCT or DFT)

{Im Im}
IN/2 _IN/2

- . @ [K1v>
N% > DFT . 0 \O
PR

Te ol L

Knia| Pry Do\ Wy sa eee 12 \Q
*— ¥ @

Swiching
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Generalized DFT/DCT/Wavelet by
using Jacket Pattern

A
i - DCT
—_— = DFT
] 2
? swicking ﬁ) 4b
O
o o O —= HFT
|sz |me:4 |P 'ﬂmz| |sz |sz |P bmz| H{} ?;
M, M,

The DFT and DCT Wavelet matrices can be simply generated by using the Element-wise
Inverse Jacket Sparse matrices. Where:

[Ml]: [I]N/zh—l ® |:52:1 _[;hhll } ® [12” ] [M 2 ] - [1 ]N—zh+l © 7 [1 ]2h ® [1 ]2h

- I h-1
[M3]:[I]N/2k_l®[lzk_l@Paz‘kl_l]@[l]zk,GSkSh) M |=1I],,, ® {12,” [2 _ }
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» Hybrid architecture achieves dual use of data
flow structure in DCT and DF T/Wavelet
computation.

Computational complexity of the proposed

scheme is comparable to FFT, Chen’'s DCT,
and Wang’'s DCT algorithms.

Further investigation is needed for dual use of
FFT architecture in other trigonometric
transform computation.
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