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Abstract. For an arbitrary monic polynomial f(x) of the degree m over the field

P = GF(q) the set K = L0,n−1
P (f) of all initial segments of length n ≥ m of the

linear recurring sequences with the characteristic polynomial f(x) is a linear [n,m]-
code over P , called recursive. We describe some conditions sufficient for the code K
to be MDS.

1This research is supported by the President of RF grant NSh-8.2010.10 and RFBR grant
08-01-00693-a



2 1 LINEAR RECURSIVE CODES

1 Linear recursive codes

Let P = GF(q). A sequence over P is a function
u : N0 → P . We will identify: u = (u(0), u(1), ..., u(i), ...).
Let us denote
P 〈1〉 = {u : N0 → P}. For an arbitrary monic polynomial

f(x) = xm − fm−1xm−1 − ...− f0 ∈ P [x]

we denote LP (f) =

{u ∈ P 〈1〉 : u(i+m) = fm−1u(i+m− 1) + . . .+ f0u(i), i ≥ 0}

the set of all LRS with characteristic polynomial f(x).
For any n ≥ m and any u ∈ LP (f) we consider its initial

segment of length n: u[ 0, n− 1 ] = (u(0), ..., u(n− 1)). The
set

K = L0,n−1
P (f) = {u[ 0, n− 1 ] : u ∈ LP (f)} (1)

is an [n,m]q-code over P , called linear recursive [n,m]-code
with characteristic polynomial f(x).
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The matrix

H =


f0 f1 . . . fm−1 −e 0 . . . 0
0 f0 f1 . . . fm−1 −e . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 f0 f1 . . . fm−1 −e


is a parity-check matrix of the code K = L0,n−1

P (f), and gen-
erating matrix of the linear [n, n−m]q code K◦ dual to K.

It is well known that the length n, dimension m and dis-
tance d of any code satisfy the following Singleton bound
[1]

m+ d ≤ n+ 1. (2)

Codes meeting this bound are called MDS-codes. One of the
defining properties of an MDS-[n,m]-code K is that Ko is an
MDS-code. Our aim is to describe recursive MDS-codes.
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2 Generalized BCH-Theorem

There is not difficult generalization of a well-known BCH-
theorem from cyclic codes to the recursive ones.

Theorem 1. Let a polynomial f(x) ∈ P [x], deg f = m, has
in splitting field chain of r roots (BCH-chain)

α1, α2 = α1α, . . . , αr = α1α
r−1, ordα ≥ n > m ≥ r. (3)

Then the code Ko dual to K = L0,n−1
P (f) satisfies the condition

d(Ko) ≥ r + 1.

If r = m = deg f then both codes K and Ko are MDS-codes.

Note that the last condition is equivalent to the equality

f(x) = (x− α1) · · · (x− αm),

which in view of f(x) ∈ P [x] is equivalent to the condition of
invariance of the BCH-chain (3):

{αq
1, . . . , α

q
m} = {α1, . . . , αm}. (4)
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3 Invariant BCH-chains. Description.

Let P ≤ Q, α1, α ∈ Q, t = ord(α), m ≤ t,

B(α1, α,m) = {α1, α2 = α1α, . . . , αm = α1α
m−1}

be a BCH-chain and

f(x) = (x− α1) · ... · (x− α1).

The problem of finding the recursive MDS-codes is partially
reduced to that of finding invariant BCH-chains:

B = B(αq
1, α

q,m) = B(α1, α,m),

or to the problem of finding conditions of the inclusion

f(x) ∈ P [x].

It is well-known that B is invariant in the following 4 cases:
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(i) B = {α1, α2 = α1α, . . . , αm = α1α
m−1}

is a degenerated chain:

B ⊂ P, or αq−1
1 = αq−1 = e.

Then of course f(x) ∈ P and under the condition

m < n ≤ t = ordα

the code K = L0,n−1
P (f) is a

recursive Reed–Solomon [n,m, n−m+ 1] MDS-code
with a generating matrix

G =


e α1 α2

1 . . . αn−1
1

e α2 α2
2 . . . αn−1

2

. . . . . . . . . . . . . . . . . . . .
e αm α2

m . . . αn−1
m

 .
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(ii) B = {α1, α2 = α1α, . . . , αm = α1α
m−1} is a

group chain:

m = t = ordα and B = α1 < α >

is a coset by the cyclic subgroup < α > generated by α1 ∈ Q
with property αt

1 ∈ P . Then

f(x) = xt − αt
1 ∈ P [x], m = n = t,

and K = L0,n−1
P (f) is a trivial [n, n, 1]-MDS-code.
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(iii) B = {α1, α2 = α1α, . . . , αm = α1α
m−1} is a

shortened group chain:

m = t− 1 where t = ordα, and

B = c (< α > \{e}) = c{α, ..., αt−1}, where c = α1α
−1 ∈ P.

Then

f(x) = xt−1 + cxt−2 + ...+ ct−2x+ ct−1 ∈ P [x]

and for n = t we can state that K = L0,n−1
P (f) is a

trivial [n, n− 1, 2]-MDS code of parity check;
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(iv) B = {α1, α2 = α1α, . . . , αm = α1α
m−1}

is a Georgiades chain [2, 1982]:

Q = GF(q2), ordα = t, t|q+1, 1 < m < t, αq−1
1 = αm−1.

Then
αq
i = αm−i+1, i ∈ 1,m, f(x) ∈ P [x]

and K = L0,n−1
P (f) is an MDS [n,m, n−m+ 1]-code for every

n ∈ m, t.
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Our main result:

Theorem 2. Any invariant BCH-chain has one of the follow-
ing types:

(i) a degenerated chain;
(ii) a group chain;
(iii) a shortened group chain;
(iv) a Georgiades chain.

The codes described in this Theorem we will call recursive
BCH-MDS-codes.

However this result does not solve the problem of descrip-
tion of all recursive MDS-codes.
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4 Examples and open questions

The family of recursive MDS-codes is very diverse.

1. Let P be a field of characteristic p ≥ n. Then among the
recursive [n, 2, n− 1]P -MDS-codes there exist Reed–Solomon
codes, Georgiades codes and non BCH-codes, for example the

code K = L0,n−1
P ((x− e)2).

2. All the recursive [8, 4, 5]8-MDS-codes are BCH-codes.

3. Although there are no recursive [10, 7, 4]8-BCH-codes.
But there exist exactly 42 other recursive MDS-codes with

these parameters. Everyone of them has characteristic poly-
nomial of the form f(x) = (x − a)3g(x), where a ∈ P ∗ and
g(x) ∈ P [x] is an irreducible polynomial of degree 4.
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4. There are no recursive [18, 15, 4]16-BCH-codes.
For P = GF(16) we could not enumerate all recursive

[18, 15, 4]P -MDS-codes with PC. Tveritinov (2009) has found
15 such codes. Their characteristic polynomials have decom-
positions over P of various types. The following table presents
some properties of these polynomials

Number of
polynomials

Number of
irreducible
factors

Number of
roots in P

3 1 0
1 2 0
2 3 0
2 3 1
2 4 0
2 4 1
1 5 2
1 6 2
1 6 3 (inseparable)

So the problem of full description of linear recursive
MDS-codes remains open.
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