Generalized BCH-theorem and linear recursive MDS-codes. 1

V.MARKOV Moscow State University A.NECHAEV Moscow State University vtmarkov@mech.math.msu.su

nechaev@cnit.msu.ru

Abstract. For an arbitrary monic polynomial f(x) of the degree m over the field P = GF(q) the set $\mathcal{K} = L_P^{\overline{0,n-1}}(f)$ of all initial segments of length $n \geq m$ of the linear recurring sequences with the characteristic polynomial f(x) is a linear [n, m]-code over P, called *recursive*. We describe some conditions sufficient for the code \mathcal{K} to be MDS.

 $^{^1\}mathrm{This}$ research is supported by the President of RF grant NSh-8.2010.10 and RFBR grant 08-01-00693-a

1 Linear recursive codes

Let P = GF(q). A sequence over P is a function $u: \mathbb{N}_0 \to P$. We will identify: u = (u(0), u(1), ..., u(i), ...). Let us denote

 $P^{\langle 1 \rangle} = \{ u : \mathbb{N}_0 \to P \}.$ For an arbitrary monic polynomial

$$f(x) = x^m - f_{m-1}x^{m-1} - \dots - f_0 \in P[x]$$

we denote $L_P(f) =$

$$\{u \in P^{\langle 1 \rangle} : u(i+m) = f_{m-1}u(i+m-1) + \ldots + f_0u(i), i \ge 0\}$$

the set of all LRS with characteristic polynomial f(x).

For any $n \ge m$ and any $u \in L_P(f)$ we consider its **initial** segment of length n: $u[\overline{0, n-1}] = (u(0), ..., u(n-1))$. The set

$$\mathcal{K} = L_P^{\overline{0,n-1}}(f) = \{ u[\overline{0,n-1}] : u \in L_P(f) \}$$
(1)

is an $[n, m]_q$ -code over P, called **linear recursive** [n, m]-code with characteristic polynomial f(x).

The matrix

$$H = \begin{pmatrix} f_0 & f_1 & \dots & f_{m-1} & -e & 0 & \dots & 0 \\ 0 & f_0 & f_1 & \dots & f_{m-1} & -e & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & f_0 & f_1 & \dots & f_{m-1} & -e \end{pmatrix}$$

is a parity-check matrix of the code $\mathcal{K} = L_P^{\overline{0,n-1}}(f)$, and generating matrix of the linear $[n, n-m]_q$ code \mathcal{K}° dual to \mathcal{K} .

It is well known that the length n, dimension m and distance d of any code satisfy the following Singleton bound [1]

$$m+d \le n+1. \tag{2}$$

Codes meeting this bound are called **MDS-codes**. One of the defining properties of an MDS-[n, m]-code \mathcal{K} is that \mathcal{K}^o is an MDS-code. Our aim is to describe **recursive MDS-codes**.

2 Generalized BCH-Theorem

There is not difficult generalization of a well-known BCHtheorem from cyclic codes to the recursive ones.

Theorem 1. Let a polynomial $f(x) \in P[x]$, deg f = m, has in splitting field chain of r roots (**BCH-chain**)

 $\alpha_1, \ \alpha_2 = \alpha_1 \alpha, \dots, \alpha_r = \alpha_1 \alpha^{r-1}, \ \text{ord} \ \alpha \ge n > m \ge r.$ (3)

Then the code \mathcal{K}^{o} dual to $\mathcal{K} = L_{P}^{\overline{0,n-1}}(f)$ satisfies the condition

$$d(\mathcal{K}^o) \ge r+1$$

If $r = m = \deg f$ then both codes \mathcal{K} and \mathcal{K}^{o} are MDS-codes.

Note that the last condition is equivalent to the equality

$$f(x) = (x - \alpha_1) \cdots (x - \alpha_m),$$

which in view of $f(x) \in P[x]$ is equivalent to the condition of invariance of the BCH-chain (3):

$$\{\alpha_1^q, \dots, \alpha_m^q\} = \{\alpha_1, \dots, \alpha_m\}.$$
 (4)

3 Invariant BCH-chains. Description.

Let $P \leq Q$, $\alpha_1, \alpha \in Q$, $t = \operatorname{ord}(\alpha)$, $m \leq t$,

$$B(\alpha_1, \alpha, m) = \{\alpha_1, \ \alpha_2 = \alpha_1 \alpha, \ \dots, \alpha_m = \alpha_1 \alpha^{m-1}\}$$

be a BCH-chain and

$$f(x) = (x - \alpha_1) \cdot \dots \cdot (x - \alpha_1).$$

The problem of finding the recursive MDS-codes is partially reduced to that of finding **invariant BCH-chains**:

$$B = B(\alpha_1^q, \alpha^q, m) = B(\alpha_1, \alpha, m),$$

or to the problem of finding conditions of the inclusion

$$f(x) \in P[x].$$

It is well-known that B is invariant in the following 4 cases:

(i) $B = \{\alpha_1, \alpha_2 = \alpha_1 \alpha, \dots, \alpha_m = \alpha_1 \alpha^{m-1}\}$ is a **degenerated chain**:

$$B \subset P$$
, or $\alpha_1^{q-1} = \alpha^{q-1} = e$.

Then of course $f(x) \in P$ and under the condition

$$m < n \leq t = \operatorname{ord} \alpha$$

the code $\mathcal{K} = L_P^{\overline{0,n-1}}(f)$ is a **recursive Reed–Solomon** [n, m, n - m + 1] **MDS-code** with a generating matrix

$$G = \begin{pmatrix} e & \alpha_1 & \alpha_1^2 & \dots & \alpha_1^{n-1} \\ e & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^{n-1} \\ \dots & \dots & \dots & \dots \\ e & \alpha_m & \alpha_m^2 & \dots & \alpha_m^{n-1} \end{pmatrix}.$$

(ii) $B = \{\alpha_1, \alpha_2 = \alpha_1 \alpha, \dots, \alpha_m = \alpha_1 \alpha^{m-1}\}$ is a group chain:

$$m = t = \operatorname{ord} \alpha$$
 and $B = \alpha_1 < \alpha >$

is a coset by the cyclic subgroup $\langle \alpha \rangle$ generated by $\alpha_1 \in Q$ with property $\alpha_1^t \in P$. Then

$$f(x) = x^t - \alpha_1^t \in P[x], \quad m = n = t,$$

and $\mathcal{K} = L_P^{\overline{0,n-1}}(f)$ is a **trivial** [n, n, 1]-MDS-code.

(iii) $B = \{\alpha_1, \alpha_2 = \alpha_1 \alpha, \dots, \alpha_m = \alpha_1 \alpha^{m-1}\}$ is a shortened group chain:

m = t - 1 where $t = \operatorname{ord} \alpha$, and $B = c (\langle \alpha \rangle \setminus \{e\}) = c\{\alpha, ..., \alpha^{t-1}\}, \text{ where } c = \alpha_1 \alpha^{-1} \in P.$ Then

$$f(x) = x^{t-1} + cx^{t-2} + \dots + c^{t-2}x + c^{t-1} \in P[x]$$

and for n = t we can state that $\mathcal{K} = L_P^{\overline{0,n-1}}(f)$ is a trivial [n, n-1, 2]-MDS code of parity check;

(iv)
$$B = \{\alpha_1, \alpha_2 = \alpha_1 \alpha, \dots, \alpha_m = \alpha_1 \alpha^{m-1}\}$$

is a **Georgiades chain** [2, 1982]:
 $Q = GF(q^2), \text{ ord } \alpha = t, \quad t | q+1, 1 < m < t, \alpha_1^{q-1} = \alpha^{m-1}$
Then

$$\alpha_i^q = \alpha_{m-i+1}, \quad i \in \overline{1, m}, \quad f(x) \in P[x]$$

and $\mathcal{K} = L_P^{\overline{0,n-1}}(f)$ is an MDS [n, m, n-m+1]-code for every $n \in \overline{m, t}$.

Our main result:

Theorem 2. Any invariant BCH-chain has one of the following types:

- (i) a degenerated chain;
- (ii) a group chain;
- (iii) a shortened group chain;
- (iv) a Georgiades chain.

The codes described in this Theorem we will call **recursive BCH-MDS-codes**.

However this result does not solve the problem of description of all recursive MDS-codes.

4 Examples and open questions

The family of recursive MDS-codes is very diverse.

1. Let P be a field of characteristic $p \ge n$. Then among the recursive $[n, 2, n - 1]_P$ -MDS-codes there exist Reed–Solomon codes, Georgiades codes and non BCH-codes, for example the code $\mathcal{K} = L_P^{\overline{0,n-1}}((x-e)^2)$.

2. All the recursive $[8, 4, 5]_8$ -MDS-codes are BCH-codes.

3. Although there are no recursive $[10, 7, 4]_8$ -BCH-codes.

But there exist exactly 42 other recursive MDS-codes with these parameters. Everyone of them has characteristic polynomial of the form $f(x) = (x - a)^3 g(x)$, where $a \in P^*$ and $g(x) \in P[x]$ is an irreducible polynomial of degree 4. 4. There are no recursive $[18, 15, 4]_{16}$ -BCH-codes.

For P = GF(16) we could not enumerate all recursive $[18, 15, 4]_P$ -MDS-codes with PC. Tveritinov (2009) has found 15 such codes. Their characteristic polynomials have decompositions over P of various types. The following table presents some properties of these polynomials

Number of polynomials	Number of irreducible factors	Number of roots in P
3	1	0
1	2	0
2	3	0
2	3	1
2	4	0
2	4	1
1	5	2
1	6	2
1	6	3 (inseparable)

So the problem of full description of linear recursive MDS-codes remains open.

References

- [1] W. Heise, P. Quattrocci, *Informations- und Codierungstheorie*. Springer, Berlin–Heidelberg, 1995.
- [2] J. Georgiades, Cyclic (q+1, k)-codes of odd order q and even dimension k are not optimal, Atti Sem. Mat. Fis. Univ. Modena, **30**, 284–285, 1982.