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Abstract. For an arbitrary monic polynomial f(z) of the degree m over the field
P = GF(q) the set K = L%"'(f) of all initial segments of length n > m of the
linear recurring sequences with the characteristic polynomial f(z) is a linear [n, m]-
code over P, called recursive. We describe some conditions sufficient for the code KC
to be MDS.

!This research is supported by the President of RF grant NSh-8.2010.10 and RFBR grant
08-01-00693-a



2 1 LINEAR RECURSIVE CODES

1 Linear recursive codes

Let P = GF(q). A sequence over P is a function
u: Ng — P. We will identify: v = (u(0), u(1), ..., u(i), ...).
Let us denote

PY = {4 : Ny — P}. For an arbitrary monic polynomial

F(a) = 2™ — fua™ — .~ fo € Pla]
we denote Lp(f) =
{fue PV uii+m)= fruli+m—1)+...+ fou(i),i > 0}

the set of all LRS with characteristic polynomial f(x).

For any n > m and any u € Lp(f) we consider its initial
segment of length n: u[ 0,n — 1] = (u(0),...,u(n —1)). The
set

=157 (f) = {u[0n=T]: we Lp(f)} (1)

is an [n, m],-code over P, called linear recursive [n, m|-code
with characteristic polynomial f(z).



The matrix

fo i oo fmer —e 0 ... 0
I O fo AL .. fmua —e ... 0
0O ... 0 f() fl fm—l —€
is a parity-check matrix of the code K = L%nil( f), and gen-
erating matrix of the linear [n,n —m|, code K° dual to K.
It is well known that the length n, dimension m and dis-
tance d of any code satisfy the following Singleton bound
1
m+d<n+1. (2)
Codes meeting this bound are called MIDS-codes. One of the

defining properties of an MDS-[n, m]-code K is that K£° is an
MDS-code. Our aim is to describe recursive MDS-codes.
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2 Generalized BCH-Theorem

There is not difficult generalization of a well-known BCH-
theorem from cyclic codes to the recursive ones.

Theorem 1. Let a polynomial f(x) € Plx|, deg f = m, has
in splitting field chain of r roots (BCH-chain)

a, g =aia,..., o =oa’t orda>n>m>r (3)
Then the code K° dual to IC = L%ni_l(f) satisfies the condition
d(K°) >r+1.

If r = m = deg f then both codes IC and KC° are MDS-codes.
Note that the last condition is equivalent to the equality
f@) = (& — o) (x = am),

which in view of f(z) € P[z] is equivalent to the condition of
invariance of the BCH-chain (3):

{od,...;al} ={ag,...,an} (4)



3 Invariant BCH-chains. Description.

Let P<Q, aj,acQ, t=ordla), m<t,
B(ag,a,m) = {ay, ay=aa, ..., a, =00 '}

be a BCH-chain and

f(x)=(x—ay) ...  (x — ay).

The problem of finding the recursive MDS-codes is partially
reduced to that of finding invariant BCH-chains:

B = B(af,a?,m) = B(a1, a,m),
or to the problem of finding conditions of the inclusion
f(z) € Plz].

It is well-known that B is invariant in the following 4 cases:
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- _ _ _ -1
(i) B={a1, v =, ...,qp, =™}
is a degenerated chain:

BCP, oral=a""=¢.
Then of course f(x) € P and under the condition
m<n<t=orda«

the code K = L%"'(f) is a
recursive Reed—Solomon [n,m,n —m + 1] MDS-code
with a generating matrix

e ay o ... o}t
2 n—1
e ay « o
G = 2 2
n—1
e apy o, ... o



(i) B={ai, as=aia, ...,an=aoa™ }isa
group chain:

m=t=orda and B=ao;<a>

is a coset by the cyclic subgroup < a > generated by a; € )
with property of € P. Then

flz)=2"-al € Plz], m=n=t,

and K = L%"'(f) isa trivial [n,n,1]-MDS-code.
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(iii) B = {1, o = aja, ...,q, = a@™ 1} is a
shortened group chain:

m=1t—1 wheret=orda, and

B=c(<a>\{e})=c{a,..,a" '}, where c=aja"' € P.
Then

flx)=a"" 42+ .+ 2w+ e Pla)

and for n =t we can state that I = L%n_l(f) is a
trivial [n,n — 1,2]-MDS code of parity check;



(iv) B={o1, as =, ..., =aa™ 1}
is a Georgiades chain [2, 1982]:

Q= CF(¢?), orda=t, tlg+l, 1<m<t, ol =a™"

Then
af = ayip1, 1€ 1,m, f(r)€ Pla]

and K = LY (f) is an MDS [n, m, n —m + 1]-code for every
nem,t.
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Our main result:

Theorem 2. Any invariant BCH-chain has one of the follow-
g types:

(i) a degenerated chain,

(i) a group chain;

(iii) a shortened group chain;

(iv) a Georgiades chain.

The codes described in this Theorem we will call recursive
BCH-MDS-codes.

However this result does not solve the problem of descrip-
tion of all recursive MDS-codes.
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4 Examples and open questions

The family of recursive MDS-codes is very diverse.

1. Let P be a field of characteristic p > n. Then among the
recursive [n,2,n — 1]p-MDS-codes there exist Reed-Solomon
codes, Georgiades codes and non BCH-codes, for example the
code K = L% ((z — e)?).

2. All the recursive [8,4, 5]s-MDS-codes are BCH-codes.

3. Although there are no recursive [10, 7, 4]s-BCH-codes.

But there exist exactly 42 other recursive MDS-codes with
these parameters. Everyone of them has characteristic poly-
nomial of the form f(x) = (z — a)3¢(x), where a € P* and
g(x) € Plx] is an irreducible polynomial of degree 4.
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4. There are no recursive [18, 15, 4];5-BCH-codes.

For P = GF(16) we could not enumerate all recursive
[18, 15, 4] p-MDS-codes with PC. Tveritinov (2009) has found
15 such codes. Their characteristic polynomials have decom-
positions over P of various types. The following table presents
some properties of these polynomials

Number of Numbe.r of Number  of
: irreducible .

polynomials factors roots in P

3 1 0

1 2 0

2 3 0

2 3 1

2 4 0

2 4 1

1 5 2

1 6 2

1 6 3 (inseparable)

So the problem of full description of linear recursive
MDS-codes remains open.
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