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Overview
We show how to construct new ternary linear codes
with parameters

[385, 6, 255]3, [389, 6, 258]3, [393,6,261]3, [398, 6, 264]3,
[402,6,267]3, [457,6,303]3, [466,6,309]3, [470,6,312]3

from a [406, 6,270]3 code which was found by Takenaka-
Okamoto-M (2008).
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1. Optimal linear codes problem

Fg = {(a1,a2,...,an) | ay,...,an € Fg}.

FOI’ a — (al, ...,an),b — (bl, ,bn) & Fn,

the (Hamming) distance between a and b is
d(a,b) = [{t | a; 7 bi}|.

The weight of a is wt(a) = |{i | a; # 0} = d(a,0).

An [n,k,d]; code C means a k-dimensional subspace
of Iﬁ‘g with minimum distance d,

d min{d(a,b) | a = b, a,b € C}

min{wt(a) | wt(a) # 0, a € C}.

The elements of C are called codewords.



A good [n,k,d]; code will have

small n for fast transmission of messages,

large k to enable transmission of a wide variety
of messages,

large d to correct many errors.

Optimal linear codes problem.

Optimize one of the parameters n, k, d
for given the other two.



Optimal linear codes problem.

Problem 1. Find ny(k,d), the smallest value of n for
which an [n, k,d]; code exists.

Problem 2. Find d4(n, k), the largest value of d for
which an [n, k,d]; code exists.

An [n,k,d]; code is called optimal if
n = ng(k,d) or d =dg¢(n,k).

As for the updated bounds on dq4(n, k) for small q, k,
n see the website maintained by Markus Grassl:

http://www.codetables.de/.



Optimal linear codes problem.

Problem 1. Find ny(k,d), the smallest value of n for
which an [n, k,d],; code exists.

Problem 2. Find dq(n,k), the largest value of d for
which an [n, k,d],; code exists.

An [n,k,d]; code is called optimal if
n = ng(k,d) or d =dy(n,k).
See also

http://www.geocities.jp/mars39geo/griesmer.htm
for ny(k,d) tables for some small ¢ and k.



T he Griesmer bound

k=171 4
nCJ(k7d) > gCI(kvd> = Z {Zl
i=0 | 4

where [z| is a smallest integer > x.

Griesmer (1960) proved for binary codes.
Solomon and Stiffler (1965) proved for all g.

A linear code attaining the Griesmer bound is called
a Griesmer code.
Griesmer codes are optimal.



Problem to determine nz(k,d) for all d

[k < 5]

n3(k,d) = g3(k,d) for all d for k =1, 2.
n3(3,d) = ¢g3(3,d) for all d # 3,
n3(3,3) = g3(3,3) + 1.

n3(4,d) = g3(4,d) + 1 for d = 3, 7-9, 13-15,
n3(4,d) = 93(4,d) for other d.

n3(5,d) = g3(5,d) + 1 for

d= 3, 7-9, 13-24, 32, 33, 37-51, 61-63, 94-99,
n3(5,d) = g3(5,d) + 2 for d = 25-27,
n3(5,d) = g3(5,d) for other d.



Problem to determine nz(k,d) for all d

[k < 5]
Hill-Newton (1992) solved for

k<4 for all d and kK = 5 for all but 30 values of d.
van Eupen, Bogdanova, Boukliev, Hamada, Helleseth,
etc. solved partially for k = 5 and Landjev (1998)
completed for the remaining values of d.
[k = 6]
Hamada (1993) tackled for d < 243.
Takenaka-Okamoto-M (2008) tackled for d > 243.
n3(6,d) is still undetermined for 136 values of d.



Put g = ¢g3(6,d). It is known that

n3(6,d) =g or g+ 1 for d = 175,200,253-267,
n3(6,d) =g+ 1 or g+ 2 for d =310-312,

g <nz3(6,d) < g+ 2 for d = 302,303,307-300.



Put g = ¢g3(6,d). It is known that

n3(6,d) =g or g+ 1 for d=175,200,253-267,
n3(6,d) =g+ 1 or g+ 2 for d =310-312,

g <nz3(6,d) < g+ 2 for d = 302,303,307-300.
We prove

n3(6,d) = g for d = 253-267,

n3(6,d) =g+ 1 for d = 175,200,310-312,
n3(6,d) = g or g+ 1 for d = 302,303,307-309



Put g = ¢g3(6,d). It is known that

n3(6,d) =g or g+ 1 for d=175,200,253-267,
n3(6,d) =g+ 1 or g+ 2 for d =310-312,

g <nz3(6,d) <g—+ 2 for d =302,303,307-309.
We prove

n3(6,d) = g for d = 253-267,

n3(6,d) = g+ 1 for d = 175,200,310-312,
n3(6,d) =g or g+ 1 for d = 302,303,307-309
by showing that

3[93(6, d), 0, d]3 for d = 253-267,

dlg3(6,d) + 1,6,d]3 for d = 302,303,307-312,
Alg3(6,d),6,d]3 for d = 175, 200.



Since dn,k,d]lq = 3n—-1,k,d— 1],

we construct

l93(6,d),6,d]3 for d = 255,258,261, 264,267
and

lg3(6,d) + 1,6,d]3 for d = 303,309, 312.

The nonexistence of [¢g3(6,d),6,d]3 for d = 175,200
will be shown in the next talk by Oya.

Note. We have recently proved

Alg3(6,d),6,d]3 for d = 302,303,308, 309.

This implies that

n3(6,d) = g3(6,d) + 1 for d = 302,303,308, 309.
Now n3(6,d) is still undetermined for 112 values of d.



2. A geometric approach

PG(r,q): projective space of dim. r over Fq
j-flat: j-dim. projective subspace of PG(r,q)

0, =|PG(j,q)| = (¢/ Tt —1)/(¢—1)
C: an [n,k,d]; code with By =0
Il.e. with no coordinate which is identically zero

GG: a generator matrix of C
The columns of G can be considered as a multiset of
n points in X = PG(k — 1,q) denoted also by C.

J; = the set of j-flats of >



> 3 P: -point <« P has multiplicity 7 in C

vo= max{: | AP : ¢-point in X}

Cii={PeX | P:i-point}, 0 <1<~

For VS C ¥ we define the multiplicity of S, denoted

by mg(S), as
Y0
me(S) = > ©|SNCy|.
i=1

Y0
Then we obtain the partition = ] C; s.t.
i=0

n

n—d

me (),
max{me(mw) | m € Fr._o}.

Conversely such a partition of > as above gives an
[n, k,d]q code in the natural manner.



For a t-flat Il in > we define
v;(M) = max{me(A) | ACN, AeF;}, 0<j<t

We denote simply by v; instead of ~;(X).

A line [ is called an i-line if mg(l) = 1.

An -plane, an -solid and so on are defined similarly.
a; = |{H c Fr_»o | mc(H) — Z}| = # of i-hps

List of a;'s: the spectrum of C

Lemm 1
(1) Zaz—9k 1- (2) Ziai—n% 2.

(3) zz@— a; = n(n — 1>9k 3+ ¢ %Y s(s— 1.

s>2



For a t-flat 1 in > we define
v (M) = max{me(A) | ACN, AeF;}, 0<j<t

We denote simply by +; instead of ’yj(Z).

A line [ is called an i-line if mg(l) = 1.

An -plane, an -solid and so on are defined similarly.
Recall that ~v._1=n, v._o>o=n—d.

v;'s are determined when C is Griesmer:

J d |
vi= 3y [qk_l_u] for0<j<k-—1.

u=0



For a t-flat 1 in 2 we define
v;(M) = max{me(A) | ACN, AeF;}, 0<j<t

We denote simply by v; instead of ~;(X).

A line [ is called an i-line if mg(l) = 1.

An i-plane, an ¢-solid and so on are defined similarly.
Recall that ~v._1=n, v._o=n—d.

Lemma 2.

n =741
Op—o_j—1

Vi < Vi1 — for 0 <3< k-3



3. Constructing new codes

Lemma 3.
C: [n,k,d]q code, Z =PG(k—1,q), 0<t<k—-2
U0 ,C;: the partition of < obtained from C.

Uizl(]z- O A t-flat, AH: hp s.t. H D (UZ-ZlCi) \ A
= 3C": [n— 0 k,d— q']q code

Proof. Define a new partition X = U,;C! by
Ci = (C; \ A) U (Cijp1NA) for all i

which gives an [n’ = n — 04, k,d']4 code (.
For VH € Fi._»>, HNA = 0;_1 or 0.
So, me/(H) <n' —d <n-—d—0;_1, giving d >d — q’.



3. Constructing new codes

Lemma 3.
C: [n,k,d]q code, Z =PG(k—1,q9), 0<t<k—2
UZ&OCZ-: the partition of > obtained from C.

UiZch' O A t-flat, AH: hp s.t. H D (Ui21ci) \ A
= 3C" [n — 04 k,d — qt]q code

Example.
C: simplex [0_1,k,q" 1], code
A: a hp of X
= (' Griesmer [¢" 1 Kk, ¢*=1 — ¢*~2], code



3. Constructing new codes

Lemma 3.
C: [n,k,d]q code, Z =PG(k—1,q9), 0<t<k—2
UZ&OCZ-: the partition of > obtained from C.

UiZch' O A t-flat, AH: hp s.t. H D (Ui21ci) \ A
= 3C" [n — 04 k,d — qt]q code

Note.
The converse of Lemma 3 holds if dA: t-flat s.t.
me(H) <n—d—6¢ for all hp H D A.



K: an n-set in PG(r,q), r > 3
K isan n-cap < |Knl| <2 for all line .
mo(r,q)= max{n | AK: n-cap in PG(r,q)}

The following results are known for ¢ = 3:

Lemma 4.

(1) mo(3,3) =10 (Bose, 1947)
(2) mo(4,3) =20 (Pellgrino, 1970)
(3) m~(5,3) =56 (Hill, 1973)



K: an n-set in PG(r,q), r > 3
K is an n-cap <« |K Nl <2 for all line I.
mo(r,q)= max{n | AK: n-cap in PG(r,q)}

The following results are known for ¢ = 3:

Lemma 4.

(1) mo(3,3) =10 (Bose, 1947)
(2) mo(4,3) =20 (Pellgrino, 1970)
(3) m~(5,3) =56 (Hill, 1973)



A set B in PG(2,q) is a blocking set if
INB % for any line [.
B is non-trivial if it contains no line.
b(q) := min{b | AB: non-trivial blocking set in PG(2,q)}



A set B in PG(2,q) is a blocking set if
INB % for any line [.
B is non-trivial if it contains no line.
b(q) := min{b | AB: non-trivial blocking set in PG(2,q)}
A set B in PG(r,q) is a blocking set w.r.t. s-flats if
SNB#£Q for any s-flat S in PG(r,q).
A blocking set in PG(r,q) with respect to s-flats is
non-trivial if it contains no (r — s)-flat.

Theorem 5 (Bose-Burton(1966), Beutelspacher(1980))
Let B be a blocking set w.r.t. s-flats in PG(r,q).
(1) |B| > 6,—s and
Bl =6,_s¢ < Bisan (r— s)-flat.
(2) |B| > 0,—s+ q" 57 1(b(q) — 671) if B is non-trivial.



We construct codes with parameters

(385, 6, 255]3, [389,6,258]3, [393,6,261]a,
(398, 6,264]3, [402,6,267]3

from a [406,6,270]3 code with spectrum
(ag2,a109,a136) = (1,12,351)
found by Takenaka et al. (2008).
a 109-hp «<—— a [109,5,72]3 code
a 136-hp +— a [136,5,90]3 code
We first investigate [109, 5, 72]3 and [136,5,90]3 codes.



Lemm 6.
C: [109,5,72]3 code
= o< 2and v; <5 by Lemma 2.
Assume a; = 0 for all + ¢ {1,10,19,28,37}.
Then the partition of X = PG(4,3) from C satisfies

(1) C1 UC> contains two skew lines.

(2) For any line l{ C C1 U C>5,
dl>, I3 C CLUC> s.t. [q1,lo,l3 are skew.



Lemm 6.
C: [109,5,72]3 code

= Y <2 and v; <5 by Lemma 2.
Assume a; = 0 for all ¢ ¢ {1,10,19,28,37}.

Proof.

Let \;, = |C;| for 0 < ¢ < 2.

From Ag 4+ A1 + Ao = 04, A\ + 2 > = n, we get
Ao = \g— 12.

C'> forms a A»-cap, for v < 5.

Hence \> < 20 (from mo(4,3) = 20) and \g < 32.



Lemma 1.
(1) Zaz—ek 1- (2) Ziai=n9k 2.

(3) zzu CD)a; = n(n - )03+ "2 Y (s — D

s>2

From Lemma 1, we get
6a1 + 3a10 t+ a9 = A2/3 -4

which implies 3|A>. Hence 3|A\g(= Ao + 12).
This improves \g < 32 to

|Col = Ao < 30.



Theorem 5.
Let B be a blocking set w.r.t. s-flats in PG(r,q).
(1) |B| = 0r—s

B: blocking set w.r.t. lines in PG(4,3) = B> 40
Hence Cy is not a blocking set w.r.t. lines
= di;1 C C7 UCh.
Since |CoUl1| <304 4 < 40,
dl>: a line which is disjoint from Cgp U l;.
Since |CoUl1 Uly| <34 4 4 < 40,
Jl3: a line which is disjoint from Cg U1 U l>.




Theorem 7 (Ward, 1998).
C: a Griesmer [n, k,d], code, p a prime.
p€ld = p°®lw for all Ay > 0.

Lemma 8.

C: Griesmer [136,5,90]3 code

Co U Cq1 UCs: the partition of X = PG(4,3) from C.
Then

(1) a; = O for all i ¢ {10,19,28,37,46}.

(2) C1UC(C5 contains a plane if \g = |Cp| < 18.



Lemma 8.

C: Griesmer [136,5,90]3 code

Co U C1UCC5: the partition of X = PG(4,3) from C.
(1) a; = O for all i ¢ {10,19,28,37,46}.

Proof.

(1) a; =0 for all i+ ¢ {1,10,19,28,37,46},

since 9w for all Ay > 0 by Theorem 7 (Ward).
Considering the solids through the 1-plane in a
putative 1-solid, one can get a contradiction.
Hence a; = 0.



Thm b5
(2) |B| > 0,_s+ q" 5 1(b(q) — 671) if B is non-trivial.

Lemma 8.

C: Griesmer [136,5,90]3 code

Co U C1UCC5: the partition of X = PG(4,3) from C.
(1) a; =0 for all i ¢ {10,19,28,37,46)}.

(2) C1UC(C5 contains a plane if \g = |Cp| < 18.

Proof.

(2) It can be checked: Cpy contains no plane.
Suppose C1 U C» contains no plane.

= () forms a non-trivial blocking set w.r.t. planes.

= |Cp| > 0>+ 3(6 —4) = 19, a contradiction.




C: Griesmer [406,6,270]3 code with spectrum
(ag2;a109,a136) = (1,12,351)

Co U CqUC5: the partition of X = PG(5,3) from C
= ()\0,>\1,)\2) = (51,220, 93), where \;, = ‘Cz|

Mg: a 136-hp «<—— a [136,5,90]3 code.
M1: a 109-hp «+— a [109,5,72]3 code
j € {10,19,28,37,46} for any j-solid in Mg
= j €4{1,10,19,28,37} for any j-solid in Iy
= 3l1,1l>: skew lines in M1N(C1UC%) (by Lemma 6(1))
= 3[402,6,267]3 and [398,6,264]5 (by Lemma 3)



We constructed C as a projective dual of a [14,6,6]3
code C* with a generator matrix

11 000001020110
0O001000011012¢0 2
G*200010000102122
O0001001100111
O0000102211200
O0000010022111

C* has spectrum
(a27 as, CL8) — (>‘27 >‘17 >‘O) — (937 2207 51)

Co={z1-w6 €T | wt(z191 + -+ z696) = 6}
where g; is the i-th row of G™.
Co in X = PG(5,3) is obtained from G* as follows.



Co = {100000, 010000, 001000, 011000, 121000,
012000, 000100, 010100, 001100, 011100, 100200,
010200, 001200, 011200, 012200, 000010, 100010,
010010, 001010, 101010, 012010, 000110, 001110,
120210, 010020, 010120, 001120, 000001, 010001,
001001, 010201, 000011, 010011, 001011, 011011,
000111, 001021, 100002, 120002, 001002, 012002,
000102, 010202, 001202, 101202, 010012, 000112,
011022, 000122, 010122, 001222},

b; == # of hps N of X with |NMNCy| =+
Then, we get



(bgp, bo7,b04,b01,b18,b15)
— (1,12,12,12,120,207). (1)

Recall (a82,a109,a136) = (1, 12,351).

M>: 82-hp (contains at least 39 0-points)

> contains exactly 42 0-points from (1).

We checked: the 109-hps contain exactly 27 0-points.
o H: hp, HNCp= 18 or 15

= H: 136-hp

= H has a plane contained in C7{ UC5 by Lemma 8
Since # of 4-flats through a fixed plane in 2 is 65,
dlM4: 136-hp through a plane 61 C 'y UC5 and

dlMo>: a 109-hp s.t. o N6 =1[01: a line.



Actually, taking
6 = (120000,001210,110111) C Cq U 5,

all of the 4-flats D 6 are 136-hps, and removing ¢
(Lemma 3) gives a [393,6,261]3 code with

(a7s,a105,a123,6132) = (1,12,13,338).

Since N> Nd = 11, we can take two lines I and I3 in
> s.t. [1,1lp,l3 are skew, [ UloUl3 C C7 UC5

by Lemma 6(2).

Hence we get [389,6,258]3 and [385,6,255]3 codes
applying Lemma 3 again.



Taking I, = (010101,100001),
we get a [389, 6,258]3 code with spectrum

(a77,a101,@104,@119,3122,G128,A131)
p— (1, 2,10,1,12,37, 301),

and taking I3 = (110000,000101)
gives a [385, 6,255]|3 code with spectrum

(a767 ag7,a103,4118,a121,0124,4127, a13o)
=(1,2,10,2,11,2,70,266).

[457,6,303]3 and [470,6,312]3 codes are obtained from
these codes applying the following lemma:



Lemma 9.

Ci: [n1,k,d1]lq, Co: [no,k— 1,do]q
Jec € C1 with wt(e) > dq + do

= 3C3: [n1 4+ no, k,d1 + dslq

C1 Co Cs
402,6,267]3 | [55,5,36]3 | [457, 6, 303]3
385, 6,255]3 | [81,5,54]3 | [466, 6, 309
389, 6,258]3 | [81,5,54]3 | [470,6,312]3

W
W
W

Note. The [385,6,255]|3 and [389, 6, 258]3 codes have
codewords with weight 309 and 312, respectively.



Since dn,k,d]lq = 3n—-1,k,d— 1],

we construct

[93(6,d),6,d]3 for d = 255,258,261,264,267
and

[93(6,d) + 1,6,d]3 for d = 303,309, 312.

The nonexistence of [¢g3(6,d),6,d]3 for d = 175,200
will be shown in the next talk by Oya.

Note. We have recently proved

Alg3(6,d),6,d]3 for d = 302,303,308, 309.

This implies that

n3(6,d) = g3(6,d) + 1 for d = 302,303,308, 309.
Now n3(6,d) is still undetermined for 112 values of d.



Thank you for your attention!



Lemma 10 (Takenaka-Okamoto-M, 2008).
A Griesmer [406,6,270]3 code exists and
its spectrum is one of the following:

(a) (ag2,a109,a136) = (1,12,351),
with ()\2,)\1,)\0> — (93,220,51),

(b) (ag2,a109,a136) = (2,10,352),
with (>\2, )\1, )\O) = (102, 202, 60),

(c) (a109,a136) = (14,350),
with (Ao, A1, A\g) = (84,238,42).



