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Overview

We show how to construct new ternary linear codes
with parameters

[385,6,255]3, [389,6,258]3, [393,6,261]3, [398,6,264]3,
[402,6,267]3, [457,6,303]3, [466,6,309]3, [470,6,312]3

from a [406,6,270]3 code which was found by Takenaka-
Okamoto-M (2008).

Contents

1. Optimal linear codes problem

2. A geometric approach

3. Constructing new codes



1. Optimal linear codes problem

Fnq = {(a1, a2, ..., an) | a1, ..., an ∈ Fq}.
For a = (a1, ..., an), b = (b1, ..., bn) ∈ Fnq ,
the (Hamming) distance between a and b is

d(a, b) = |{i | ai ̸= bi}|.

The weight of a is wt(a) = |{i | ai ̸= 0}| = d(a, 0).

An [n, k, d]q code C means a k-dimensional subspace

of Fnq with minimum distance d,

d = min{d(a, b) | a ̸= b, a, b ∈ C}
= min{wt(a) | wt(a) ̸= 0, a ∈ C}.

The elements of C are called codewords.



A good [n, k, d]q code will have

small n for fast transmission of messages,

large k to enable transmission of a wide variety

of messages,

large d to correct many errors.

Optimal linear codes problem.

Optimize one of the parameters n, k, d

for given the other two.



Optimal linear codes problem.

Problem 1. Find nq(k, d), the smallest value of n for

which an [n, k, d]q code exists.

Problem 2. Find dq(n, k), the largest value of d for

which an [n, k, d]q code exists.

An [n, k, d]q code is called optimal if

n = nq(k, d) or d = dq(n, k).

As for the updated bounds on dq(n, k) for small q, k,

n see the website maintained by Markus Grassl:

http://www.codetables.de/.



Optimal linear codes problem.

Problem 1. Find nq(k, d), the smallest value of n for

which an [n, k, d]q code exists.

Problem 2. Find dq(n, k), the largest value of d for

which an [n, k, d]q code exists.

An [n, k, d]q code is called optimal if

n = nq(k, d) or d = dq(n, k).

See also

http://www.geocities.jp/mars39geo/griesmer.htm

for nq(k, d) tables for some small q and k.



The Griesmer bound

nq(k, d) ≥ gq(k, d) :=
k−1∑
i=0

 d

qi


where ⌈x⌉ is a smallest integer ≥ x.

Griesmer (1960) proved for binary codes.

Solomon and Stiffler (1965) proved for all q.

A linear code attaining the Griesmer bound is called

a Griesmer code.

Griesmer codes are optimal.



Problem to determine n3(k, d) for all d

[k ≤ 5]

n3(k, d) = g3(k, d) for all d for k = 1,2.

n3(3, d) = g3(3, d) for all d ̸= 3,

n3(3,3) = g3(3,3) + 1.

n3(4, d) = g3(4, d) + 1 for d = 3, 7-9, 13-15,

n3(4, d) = g3(4, d) for other d.

n3(5, d) = g3(5, d) + 1 for

d = 3, 7-9, 13-24, 32, 33, 37-51, 61-63, 94-99,

n3(5, d) = g3(5, d) + 2 for d = 25-27,

n3(5, d) = g3(5, d) for other d.



Problem to determine n3(k, d) for all d

[k ≤ 5]

Hill-Newton (1992) solved for

k ≤ 4 for all d and k = 5 for all but 30 values of d.

van Eupen, Bogdanova, Boukliev, Hamada, Helleseth,

etc. solved partially for k = 5 and Landjev (1998)

completed for the remaining values of d.

[k = 6]

Hamada (1993) tackled for d ≤ 243.

Takenaka-Okamoto-M (2008) tackled for d > 243.

n3(6, d) is still undetermined for 136 values of d.



Put g = g3(6, d). It is known that

n3(6, d) = g or g +1 for d = 175,200,253-267,

n3(6, d) = g +1 or g +2 for d = 310-312,

g ≤ n3(6, d) ≤ g +2 for d = 302,303,307-309.

We prove

n3(6, d) = g for d = 253-267,

n3(6, d) = g +1 for d = 175,200,310-312,

n3(6, d) = g or g +1 for d = 302,303,307-309

by showing that

∃[g3(6, d),6, d]3 for d = 253-267,

∃[g3(6, d) + 1,6, d]3 for d = 302,303,307-312,

̸ ∃[g3(6, d),6, d]3 for d = 175,200.
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Put g = g3(6, d). It is known that
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by showing that
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̸ ∃[g3(6, d),6, d]3 for d = 175,200.



Since ∃[n, k, d]q ⇒ ∃[n− 1, k, d− 1]q
we construct

[g3(6, d),6, d]3 for d = 255,258,261,264,267

and

[g3(6, d) + 1,6, d]3 for d = 303,309,312.

The nonexistence of [g3(6, d),6, d]3 for d = 175,200

will be shown in the next talk by Oya.

Note. We have recently proved

̸ ∃[g3(6, d),6, d]3 for d = 302,303,308,309.

This implies that

n3(6, d) = g3(6, d) + 1 for d = 302,303,308,309.

Now n3(6, d) is still undetermined for 112 values of d.



2. A geometric approach

PG(r, q): projective space of dim. r over Fq
j-flat: j-dim. projective subspace of PG(r, q)

θj := |PG(j, q)| = (qj+1 − 1)/(q − 1)

C: an [n, k, d]q code with B1 = 0

i.e. with no coordinate which is identically zero

G: a generator matrix of C
The columns of G can be considered as a multiset of

n points in Σ = PG(k − 1, q) denoted also by C.

Fj := the set of j-flats of Σ



Σ ∋ P : i-point ⇔ P has multiplicity i in C
γ0= max{i | ∃P : i-point in Σ}
Ci:= {P ∈ Σ | P : i-point}, 0 ≤ i ≤ γ0
For ∀S ⊂ Σ we define the multiplicity of S, denoted

by mC(S), as

mC(S) =
γ0∑
i=1

i·|S∩Ci|.

Then we obtain the partition Σ =
γ0∪
i=0

Ci s.t.

n = mC(Σ),

n− d = max{mC(π) | π ∈ Fk−2}.

Conversely such a partition of Σ as above gives an

[n, k, d]q code in the natural manner.



For a t-flat Π in Σ we define

γj(Π) = max{mC(∆) | ∆ ⊂ Π, ∆ ∈ Fj}, 0 ≤ j ≤ t.

We denote simply by γj instead of γj(Σ).

A line l is called an i-line if mC(l) = i.

An i-plane, an i-solid and so on are defined similarly.

ai = |{H ∈ Fk−2 | mC(H) = i}| = # of i-hps

List of ai’s: the spectrum of C

Lemm 1

(1)
∑
i
ai = θk−1. (2)

∑
i
iai = nθk−2.

(3)
∑
i
i(i− 1)ai = n(n− 1)θk−3 + qk−2

∑
s≥2

s(s− 1)λs.



For a t-flat Π in Σ we define

γj(Π) = max{mC(∆) | ∆ ⊂ Π, ∆ ∈ Fj}, 0 ≤ j ≤ t.

We denote simply by γj instead of γj(Σ).

A line l is called an i-line if mC(l) = i.

An i-plane, an i-solid and so on are defined similarly.

Recall that γk−1 = n, γk−2 = n− d.

γj’s are determined when C is Griesmer:

γj =
j∑

u=0

⌈ d

qk−1−u

⌉
for 0 ≤ j ≤ k − 1.



For a t-flat Π in Σ we define

γj(Π) = max{mC(∆) | ∆ ⊂ Π, ∆ ∈ Fj}, 0 ≤ j ≤ t.

We denote simply by γj instead of γj(Σ).

A line l is called an i-line if mC(l) = i.

An i-plane, an i-solid and so on are defined similarly.

Recall that γk−1 = n, γk−2 = n− d.

Lemma 2.

γj ≤ γj+1 −
n− γj+1

θk−2−j − 1
for 0 ≤ j ≤ k − 3.



3. Constructing new codes

Lemma 3.

C: [n, k, d]q code, Σ = PG(k − 1, q), 0 ≤ t ≤ k − 2

∪γ0i=0Ci: the partition of Σ obtained from C.
∪i≥1Ci ⊃∆: t-flat, ̸ ∃H: hp s.t. H ⊃ (∪i≥1Ci) \∆
⇒ ∃C′: [n− θt, k, d− qt]q code

Proof. Define a new partition Σ = ∪iC′i by

C′i = (Ci \∆) ∪ (Ci+1 ∩∆) for all i

which gives an [n′ = n− θt, k, d
′]q code C′.

For ∀H ∈ Fk−2, H ∩∆ = θt−1 or θt.

So, mC′(H) ≤ n′ − d′ ≤ n− d− θt−1, giving d′ ≥ d− qt.



3. Constructing new codes

Lemma 3.

C: [n, k, d]q code, Σ = PG(k − 1, q), 0 ≤ t ≤ k − 2

∪γ0i=0Ci: the partition of Σ obtained from C.
∪i≥1Ci ⊃∆: t-flat, ̸ ∃H: hp s.t. H ⊃ (∪i≥1Ci) \∆
⇒ ∃C′: [n− θt, k, d− qt]q code

Example.

C: simplex [θk−1, k, q
k−1]q code

∆: a hp of Σ

⇒ C′: Griesmer [qk−1, k, qk−1 − qk−2]q code

Define a new partition Σ = ∪iC′i by C′i = (Ci \∆) ∪
(Ci+1 ∩∆) for all i



3. Constructing new codes

Lemma 3.

C: [n, k, d]q code, Σ = PG(k − 1, q), 0 ≤ t ≤ k − 2

∪γ0i=0Ci: the partition of Σ obtained from C.
∪i≥1Ci ⊃∆: t-flat, ̸ ∃H: hp s.t. H ⊃ (∪i≥1Ci) \∆
⇒ ∃C′: [n− θt, k, d− qt]q code

Note.

The converse of Lemma 3 holds if ∃∆: t-flat s.t.

mC(H) ≤ n− d− θt for all hp H ⊃∆.

⇒ C′: Griesmer [qk−1, k, qk−1 − qk−2]q code

Define a new partition Σ = ∪iC′i by C′i = (Ci \∆) ∪
(Ci+1 ∩∆) for all i



K: an n-set in PG(r, q), r ≥ 3

K is an n-cap ⇔ |K ∩ l| ≤ 2 for all line l.

m2(r, q)= max{n | ∃K: n-cap in PG(r, q)}

The following results are known for q = 3:

Lemma 4.

(1) m2(3,3) = 10 (Bose, 1947)

(2) m2(4,3) = 20 (Pellgrino, 1970)

(3) m2(5,3) = 56 (Hill, 1973)
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The following results are known for q = 3:
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(3) m2(5,3) = 56 (Hill, 1973)



A set B in PG(2, q) is a blocking set if

l ∩ B ̸= ∅ for any line l.

B is non-trivial if it contains no line.

b(q) := min{b | ∃B: non-trivial blocking set in PG(2, q)}
A set B in PG(r, q) is a blocking set w.r.t. s-flats if

S ∩ B ̸= ∅ for any s-flat S in PG(r, q).

A blocking set in PG(r, q) with respect to s-flats is

non-trivial if it contains no (r − s)-flat.

Theorem 5 (Bose-Burton(1966), Beutelspacher(1980))

Let B be a blocking set w.r.t. s-flats in PG(r, q).

(1) |B| ≥ θr−s and

|B| = θr−s ⇔ B is an (r − s)-flat.

(2) |B| ≥ θr−s + qr−s−1(b(q)− θ1) if B is non-trivial.
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We construct codes with parameters

[385,6,255]3, [389,6,258]3, [393,6,261]3,

[398,6,264]3, [402,6,267]3

from a [406,6,270]3 code with spectrum

(a82, a109, a136) = (1,12,351)

found by Takenaka et al. (2008).

a 109-hp ←→ a [109,5,72]3 code

a 136-hp ←→ a [136,5,90]3 code

We first investigate [109,5,72]3 and [136,5,90]3 codes.



Lemm 6.

C: [109,5,72]3 code

⇒ γ0 ≤ 2 and γ1 ≤ 5 by Lemma 2.

Assume ai = 0 for all i ̸∈ {1,10,19,28,37}.
Then the partition of Σ = PG(4,3) from C satisfies

(1) C1 ∪ C2 contains two skew lines.

(2) For any line l1 ⊂ C1 ∪ C2,

∃l2, l3 ⊂ C1 ∪ C2 s.t. l1, l2, l3 are skew.



Lemm 6.

C: [109,5,72]3 code

⇒ γ0 ≤ 2 and γ1 ≤ 5 by Lemma 2.

Assume ai = 0 for all i ̸∈ {1,10,19,28,37}.
—————————————————————

Proof.

Let λi = |Ci| for 0 ≤ i ≤ 2.

From λ0 + λ1 + λ2 = θ4, λ1 +2λ2 = n, we get

λ2 = λ0 − 12.

C2 forms a λ2-cap, for γ1 ≤ 5.

Hence λ2 ≤ 20 (from m2(4,3) = 20) and λ0 ≤ 32.



Lemma 1.

(1)
∑
i
ai = θk−1. (2)

∑
i
iai = nθk−2.

(3)
∑
i
i(i − 1)ai = n(n − 1)θk−3 + qk−2

∑
s≥2

s(s − 1)λs.

—————————————————————

From Lemma 1, we get

6a1 +3a10 + a19 = λ2/3− 4

which implies 3|λ2. Hence 3|λ0(= λ2 +12).

This improves λ0 ≤ 32 to

|C0| = λ0 ≤ 30.



Theorem 5.

Let B be a blocking set w.r.t. s-flats in PG(r, q).

(1) |B| ≥ θr−s
—————————————————————

B: blocking set w.r.t. lines in PG(4,3) ⇒ B ≥ 40

Hence C0 is not a blocking set w.r.t. lines

⇒ ∃l1 ⊂ C1 ∪ C2.

Since |C0 ∪ l1| ≤ 30+ 4 < 40,

∃l2: a line which is disjoint from C0 ∪ l1.

Since |C0 ∪ l1 ∪ l2| ≤ 34+ 4 < 40,

∃l3: a line which is disjoint from C0 ∪ l1 ∪ l2.



Theorem 7 (Ward, 1998).

C: a Griesmer [n, k, d]p code, p a prime.

pe|d ⇒ pe|w for all Aw > 0.

Lemma 8.

C: Griesmer [136,5,90]3 code

C0 ∪ C1 ∪ C2: the partition of Σ = PG(4,3) from C.
Then

(1) ai = 0 for all i ̸∈ {10,19,28,37,46}.
(2) C1 ∪ C2 contains a plane if λ0 = |C0| ≤ 18.



Lemma 8.

C: Griesmer [136,5,90]3 code

C0 ∪ C1 ∪ C2: the partition of Σ = PG(4,3) from C.
(1) ai = 0 for all i ̸∈ {10,19,28,37,46}.

Proof.

(1) ai = 0 for all i ̸∈ {1,10,19,28,37,46},
since 9|w for all Aw > 0 by Theorem 7 (Ward).

Considering the solids through the 1-plane in a

putative 1-solid, one can get a contradiction.

Hence a1 = 0.



Thm 5

(2) |B| ≥ θr−s + qr−s−1(b(q)− θ1) if B is non-trivial.

—————————————————————

Lemma 8.

C: Griesmer [136,5,90]3 code

C0 ∪ C1 ∪ C2: the partition of Σ = PG(4,3) from C.
(1) ai = 0 for all i ̸∈ {10,19,28,37,46}.
(2) C1 ∪ C2 contains a plane if λ0 = |C0| ≤ 18.

Proof.

(2) It can be checked: C0 contains no plane.

Suppose C1 ∪ C2 contains no plane.

⇒ C0 forms a non-trivial blocking set w.r.t. planes.

⇒ |C0| ≥ θ2 +3(6− 4) = 19, a contradiction.



C: Griesmer [406,6,270]3 code with spectrum

(a82, a109, a136) = (1,12,351)

C0 ∪ C1 ∪ C2: the partition of Σ = PG(5,3) from C
⇒ (λ0, λ1, λ2) = (51,220,93), where λi = |Ci|.

Π0: a 136-hp ←→ a [136,5,90]3 code.

Π1: a 109-hp ←→ a [109,5,72]3 code

j ∈ {10,19,28,37,46} for any j-solid in Π0

⇒ j ∈ {1,10,19,28,37} for any j-solid in Π1

⇒ ∃l1, l2: skew lines in Π1∩(C1∪C2) (by Lemma 6(1))

⇒ ∃[402,6,267]3 and [398,6,264]3 (by Lemma 3)



We constructed C as a projective dual of a [14,6,6]3
code C∗ with a generator matrix

G∗ =



1 1 0 0 0 0 0 1 0 2 0 1 1 0
0 0 1 0 0 0 0 1 1 0 1 2 0 2
0 0 0 1 0 0 0 0 1 0 2 1 2 2
0 0 0 0 1 0 0 1 1 0 0 1 1 1
0 0 0 0 0 1 0 2 2 1 1 2 0 0
0 0 0 0 0 0 1 0 0 2 2 1 1 1


.

C∗ has spectrum

(a2, a5, a8) = (λ2, λ1, λ0) = (93,220,51).

C0 = {x1 · · ·x6 ∈ Σ | wt(x1g1 + · · ·+ x6g6) = 6}
where gi is the i-th row of G∗.

C0 in Σ = PG(5,3) is obtained from G∗ as follows.



C0 = {100000, 010000, 001000, 011000, 121000,

012000, 000100, 010100, 001100, 011100, 100200,

010200, 001200, 011200, 012200, 000010, 100010,

010010, 001010, 101010, 012010, 000110, 001110,

120210, 010020, 010120, 001120, 000001, 010001,

001001, 010201, 000011, 010011, 001011, 011011,

000111, 001021, 100002, 120002, 001002, 012002,

000102, 010202, 001202, 101202, 010012, 000112,

011022, 000122, 010122, 001222},

bi := # of hps Π of Σ with |Π ∩ C0| = i

Then, we get



(b42, b27, b24, b21, b18, b15)

= (1,12,12,12,120,207). (1)

Recall (a82, a109, a136) = (1,12,351).

Π2: 82-hp (contains at least 39 0-points)

Π2 contains exactly 42 0-points from (1).

We checked: the 109-hps contain exactly 27 0-points.

∴ H: hp, H ∩ C0 = 18 or 15

⇒ H: 136-hp

⇒ H has a plane contained in C1 ∪ C2 by Lemma 8

Since # of 4-flats through a fixed plane in Σ is θ2,

∃Π1: 136-hp through a plane δ1 ⊂ C1 ∪ C2 and

∃Π2: a 109-hp s.t. Π2 ∩ δ = l1: a line.



Actually, taking

δ = ⟨120000,001210,110111⟩ ⊂ C1 ∪ C2,

all of the 4-flats ⊃ δ are 136-hps, and removing δ

(Lemma 3) gives a [393,6,261]3 code with

(a78, a105, a123, a132) = (1,12,13,338).

Since Π2 ∩ δ = l1, we can take two lines l2 and l3 in

Π2 s.t. l1, l2, l3 are skew, l1 ∪ l2 ∪ l3 ⊂ C1 ∪ C2

by Lemma 6(2).

Hence we get [389,6,258]3 and [385,6,255]3 codes

applying Lemma 3 again.



Taking l2 = ⟨010101,100001⟩,
we get a [389,6,258]3 code with spectrum

(a77, a101, a104, a119, a122, a128, a131)

= (1,2,10,1,12,37,301),

and taking l3 = ⟨110000,000101⟩
gives a [385,6,255]3 code with spectrum

(a76, a97, a103, a118, a121, a124, a127, a130)

= (1,2,10,2,11,2,70,266).

[457,6,303]3 and [470,6,312]3 codes are obtained from

these codes applying the following lemma:



Lemma 9.

C1: [n1, k, d1]q, C2: [n2, k − 1, d2]q
∃c ∈ C1 with wt(c) ≥ d1 + d2
⇒ ∃C3: [n1 + n2, k, d1 + d2]q

C1 C2 C3
[402,6,267]3 [55,5,36]3 [457,6,303]3
[385,6,255]3 [81,5,54]3 [466,6,309]3
[389,6,258]3 [81,5,54]3 [470,6,312]3

Note. The [385,6,255]3 and [389,6,258]3 codes have

codewords with weight 309 and 312, respectively.



Since ∃[n, k, d]q ⇒ ∃[n− 1, k, d− 1]q
we construct

[g3(6, d),6, d]3 for d = 255,258,261,264,267

and

[g3(6, d) + 1,6, d]3 for d = 303,309,312.

The nonexistence of [g3(6, d),6, d]3 for d = 175,200

will be shown in the next talk by Oya.

Note. We have recently proved

̸ ∃[g3(6, d),6, d]3 for d = 302,303,308,309.

This implies that

n3(6, d) = g3(6, d) + 1 for d = 302,303,308,309.

Now n3(6, d) is still undetermined for 112 values of d.



Thank you for your attention!



Lemma 10 (Takenaka-Okamoto-M, 2008).

A Griesmer [406,6,270]3 code exists and

its spectrum is one of the following:

(a) (a82, a109, a136) = (1,12,351),

with (λ2, λ1, λ0) = (93,220,51),

(b) (a82, a109, a136) = (2,10,352),

with (λ2, λ1, λ0) = (102,202,60),

(c) (a109, a136) = (14,350),

with (λ2, λ1, λ0) = (84,238,42).


