The nonexistence of $[265, 6, 175]_3$ codes and $[302, 6, 200]_3$ codes

Yusuke Oya

Department of Mathematics and Information Sciences

Osaka Prefecture University

(Joint work with T. Maruta)

Contents

- 1. The nonexistence of $[265, 6, 175]_3$ codes
- 2. Extendability and diversity
- 3. The nonexistence of $[302, 6, 200]_3$ codes
- 4. Results

0. Introduction

d	<i>g</i> ₃ (6, <i>d</i>)	n ₃ (6, d)
175	265	265-266
200	302	302-303

 $n_3(6,d) := \min\{n \mid \exists [n, 6, d]_3 \text{ code}\}$

$$g_{3}(6,d) := \sum_{i=0}^{5} \lceil d/3^{i} \rceil$$

0. Introduction

d	<i>g</i> ₃ (6, <i>d</i>)	n ₃ (6, d)
175	265	<mark>265</mark> -266
200	302	<mark>302</mark> -303

Problem. Do $[265, 6, 175]_3$ codes and $[302, 6, 200]_3$ codes exist ?

0. Introduction

d	$g_{3}(6,d)$	n ₃ (6, d)
175	265	<mark>265</mark> -266
200	302	<mark>302</mark> -303

Problem. Do $[265, 6, 175]_3$ codes and $[302, 6, 200]_3$ codes exist ?

If such codes exist, then they are projective, that is, any two columns of a generator matrix are linearly independent.

Contents

- 1. The nonexistence of $[265, 6, 175]_3$ codes
- 2. Extendability for diversity
- 3. The nonexistence of $[302, 6, 200]_3$ codes
- 4. Results

1 . The nonexistence of $[265, 6, 175]_3$ codes

Let C be a $[265, 6, 175]_3$ code.

The columns of a generator matrix of C can be considered as 265 points in $\Sigma = PG(5,3)$. Let C_1 be the 265-set of Σ . $C_0 := \Sigma \setminus C_1$ An *i*-pt is a point of C_i .

There exists an (n - d)-hp in Σ . [265, 6, 175]₃code $\rightarrow n - d = 90$ \rightarrow What is a code corresponding to a 90-hp?

1.1 The spectrum of a 90-hp

Lemma 1. Let Π be an *i*-hp through a *t*-secundum δ . $t = \max\{|\delta' \cap C_1| \mid \delta' \subset \Pi, \delta' \in \mathcal{F}_{k-3}\}$, then $t \leq \frac{i+q \cdot (n-d) - n}{q}$

And an *i*-hp corresponds to a $[i, k - 1, i - t]_3$ code.

Note. A secundum is a projective subspace of Σ of codimension 2.

Ex. A [265, 6, 175]₃ code

$$t \le \frac{i+3 \cdot 90 - 265}{3} = \frac{i+5}{3}$$

$$i = 90 \Rightarrow 90 - \left\lfloor \frac{90+5}{3} \right\rfloor = 59$$

A 90-hp corresponds to a Griesmer $[90, 5, 59]_3$ code.

Extendability

For an $[n, k, d]_q$ code C with a generator matrix G, C is extendable if [G, h] generates an $[n + 1, k, d + 1]_q$ code for some column vector $h, h^{\mathsf{T}} \in \mathbb{F}_q^k$.

Lemma 2 (Yoshida-Maruta, 2009). Every $[90, 5, 59]_3$ code is extendable. 0-pts and 1-pts in $\Sigma' = PG(4,3)$ for a [91, 5, 60]₃ code

The set of 1-pts in Δ forms a 10-cap.

Since a $[90, 5, 59]_3$ code is extendable, it is obtained by changing a 1-pt P to the 0-pt in Σ' .

(1)
$$P \in PG(4, 3) \setminus \Delta$$
.
(2) $P \in \Delta$.

○ : 1-pt● : 0-pt

(2)

Lemma 3. The spectrum of a $[90, 5, 59]_3$ code is one of the following:

(1)
$$(\tau_{10}, \tau_{27}, \tau_{28}, \tau_{30}, \tau_{31}) = (1, 10, 20, 30, 60)$$

(2) $(\tau_9, \tau_{27}, \tau_{28}, \tau_{30}, \tau_{31}) = (1, 3, 27, 36, 54)$

1.2 Proof

C : a $[265,6,175]_3$ code The spectrum of a 90-hp in Σ =PG(5,3) satisfies

$$au_j > 0 \Rightarrow \; j \in \{9, 10, 27, 28, 30, 31\}$$

by Lemma 3.

Hence the spectrum of C satisfies

 $a_i > 0 \implies i \in \{25, 55, 76-82, 85-90\}$

by Lemma 1 and the known $n_3(5, d)$ -table.

Lemma 4. Let Π be an *i*-hp through a *t*-secundum δ . Let c_j be the number of *j*-hps ($\neq \Pi$) through δ . Then

$$\sum_{j} ((n-d) - j)c_j = i + q \cdot (n-d) - n - qt$$

Suppose $a_{25} > 0$ and let π be a 25-hp.

Then π gives a $[25, 5, 15]_3$ code by Lemma 1. $\Rightarrow \pi$ has a 10-solid. (25 - 15 = 10)

Let Δ be a 10-solid in π , then the hps through Δ are as the next slide by using Lemma 4.

The hps through a 10-solid Δ in 25-hp

What is $\Delta \cap C_1$?

- C_1 : the set of 1-pts in $\Sigma = PG(5,3)$
- (a) Δ' : 10-solid \subset 90-hp $\Rightarrow \Delta' \cap C_1$: 10-cap (by Lemma 1)

What is $\Delta \cap C_1$?

```
C_1: the set of 1-pts in \Sigma = PG(5,3)
```

```
(a) \Delta': 10-solid \subset 90-hp

\Rightarrow \Delta' \cap C_1: 10-cap

(by Lemma 1)
```

```
(b) 10-solid \Delta \subset 25-hp in PG(5,3)
\Rightarrow \exists a 90-hp \supset \Delta
```

What is $\Delta \cap C_1$?

```
C_1: the set of 1-pts in \Sigma = PG(5,3)
```

```
(a) \Delta' : 10-solid \subset 90-hp

\Rightarrow \Delta' \cap C_1: 10-cap

(by Lemma 1)
```

```
(b) 10-solid \Delta \subset 25-hp in PG(5,3)

\Rightarrow \exists a 90-hp \supset \Delta

\Rightarrow \Delta \cap C_1: 10-cap, from (a)
```

 $\Delta \cap C_1$: 10-cap $\Rightarrow \Delta$ has 1-planes and 4-planes only.

Hence the spectrum of a 25-hp satisfies

 $au_i > 0 \; \Rightarrow \; i \in \{7, 8, 9, 10\}$

by Lemma 1 and the known $n_3(4, d)$ -table.

From Lemma 4 for i = 10, we obtain

$$3c_7 + 2c_8 + c_9 = 15 - 3t \qquad (1.1)$$

Then (1.1) has no solution for $\underline{t = 1}$, a contradiction. $\therefore a_{25} = 0$ Hence the spectrum of C satisfies

 $a_i > 0 \Rightarrow$

 $i \in \{2, 5, 76, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90\}$

Then, from Lemma 4 for i = 90, we obtain $35c_{55} + 14c_{76} + 13c_{77} + 12c_{78} + 11c_{79} + 10c_{80} + 9_{81}$ $+ 8c_{82} + 5c_{85} + 4c_{86} + 3c_{87} + 2c_{88} + c_{89} + 0c_{90} = 95 - 3t$ (1.2) The spectrum of a 90-hp is one of the following:

(1) $(\underline{\tau_{10}}, \tau_{27}, \tau_{28}, \tau_{30}, \tau_{31}) = (1, 10, 20, 30, 60)$ (2) $(\underline{\tau_9}, \tau_{27}, \tau_{28}, \tau_{30}, \tau_{31}) = (1, 27, 28, 30, 54)$ by Lemma 3.

Then (1,2) has no solution for t = 9, 10, a contradiction.

 \therefore There exists no $[265, 6, 175]_3$ code.

Contents

- 1. The nonexistence of $[265, 6, 175]_3$ codes
- 2. Extendablity and diversity
- 3. The nonexistence of $[302, 6, 200]_3$ codes
- 4. Results

2. Extendability and diversity

2.1 Definition of diversity

 $C : [n, k, d]_q \text{ code , } gcd(d, q) = 1$ The diversity (Φ_0, Φ_1) of C is given by

$$\Phi_0 = \frac{1}{q-1} \sum_{q|n-i} a_i , \quad \Phi_1 = \frac{1}{q-1} \sum_{i \neq n, n-d \pmod{q}} a_i$$

2.2 Extendability for diversity

Theorem 1 (Hill-Lizak, 1999) $C: [n, k, d]_q \text{ code , } gcd(d, q) = 1$ $\Phi_1 = 0 \Rightarrow C \text{ is extendable.}$

Theorem 2 (Maruta, 2005) $C : [n, 6, d]_3 \text{ code }, \gcd(d, 3) = 1$ C is not extendable $\Rightarrow (\Phi_0, \Phi_1) \in \{(121, 81), (94, 135), (121, 108), (112, 126), (130, 117), (121, 135), (148, 108)\}$

2.3 Definition of $(i, j)_t$ flat

C: projective $[n, k, d]_3$ code, $d \not\equiv 0 \pmod{3}$, $k \ge 3$ Σ^* : the dual space of $\Sigma = PG(k - 1, 3)$ \mathcal{F}_j^* : the set of *j*-flats in Σ^*

We define

 $F_{0} = \{ \Pi \in \mathcal{F}_{0}^{*} \mid |\Pi \cap C_{1}| \equiv n \pmod{3} \},$ $F_{1} = \{ \Pi \in \mathcal{F}_{0}^{*} \mid |\Pi \cap C_{1}| \not\equiv n, n - d \pmod{3} \},$ $F_{2} = \{ \Pi \in \mathcal{F}_{0}^{*} \mid |\Pi \cap C_{1}| \equiv n - d \pmod{3} \}.$ C: $[n, k, d]_3$ code, (Φ_0, Φ_1) : diversity of C Then $a_i = |\{ \Pi \in \mathcal{F}_0^* \mid |\Pi \cap C_1| = i \}|$, hence

 $\Phi_0 = |F_0|, \quad \Phi_1 = |F_1|$

Let S be a t-flat in Σ^* . S is an $(i, j)_t$ flat if $|S \cap F_0| = i, |S \cap F_1| = j$.

Especially, $(i, j)_1$ flats are (i, j)-lines $(i, j)_2$ flats are (i, j)-planes.

Contents

- 1. The nonexistence of $[265, 6, 175]_3$ codes
- 2. Extendability and diversity
- 3. The nonexistence of $[302, 6, 200]_3$ codes
- 4. Results

- **3** . The nonexistence of $[302, 6, 200]_3$ codes
- There exists no $[303, 6, 201]_3$ code. (Hamada, 1995) \downarrow
- A $[302, 6, 200]_3$ code is not extendable if it exists.
- Let C be a $[302, 6, 200]_3$ code.
- The columns of a generator matrix of C can be considered as 302 points in $\Sigma = PG(5,3)$.
- C_1 : the 302-set $\subset \Sigma$, $C_0 := \Sigma \setminus C_1$
 - \Rightarrow $\exists \Pi$: a 102-hp in Σ . (n-d=102).

3.1 The spectrum of a 102-hp

Let Π be a 102-hp. Then $\Pi \cap C_0$ contains a plane δ and there are two possibilities for $(\Pi \cap C_0) \setminus \delta$:

Lemma 5. The spectrum of a $[102, 5, 67]_3$ code is one of the following:

 $(1.1) (a_{24}, a_{26}, a_{30}, a_{31}, a_{32}, a_{33}, a_{34}, a_{35}) = (1, 3, 1, 6, 6, 11, 48, 45)$ $(1.2) (a_{25}, a_{26}, a_{30}, a_{32}, a_{33}, a_{34}, a_{35}) = (2, 2, 4, 9, 9, 52, 43)$ $(1.3) (a_{25}, a_{26}, a_{30}, a_{31}, a_{32}, a_{33}, a_{34}, a_{35}) = (2, 2, 1, 6, 6, 12, 46, 46)$ $(1.4) (a_{24}, a_{26}, a_{30}, a_{33}, a_{34}, a_{35}) = (1, 3, 4, 35, 27, 51)$ $(2.1) (a_{24}, a_{26}, a_{30}, a_{32}, a_{33}, a_{34}, a_{35}) = (1, 3, 4, 9, 8, 54, 42)$ $(2.2) (a_{25}, a_{26}, a_{30}, a_{33}, a_{34}, a_{35}) = (2, 2, 4, 36, 25, 52)$

C : a $[302, 6, 200]_3$ code The spectrum of C satisfies $a_i > 0 \implies i \in \{68, 69, 74, 80, 81, 86, 87, 89, 90, 91, 92, 95, 96, 98, 99, 100, 101, 102\}$

Let (Φ_0, Φ_1) be the diversity of *C*. *C* is not extendable $\Rightarrow \Phi_1 = a_{91} + a_{100} > 0$ by Theorem 1. **Lemma 6**. *C*: projective $[n, k, d]_3$ code a_i : the number of *i*-hps in $\Sigma = PG(k - 1, 3)$. Then

$$\sum_{i=0}^{n-d-2} {n-d-i \choose 2} a_i$$

= ${n-d \choose 2} \theta_{k-1} - n(n-d-1)\theta_{k-2}$ (3.1)

 θ_r denotes the number of points in PG(r,3),

$$\theta_r = (3^{r+1} - 1) / (3 - 1)$$

= 3^r + 3^{r-1} + ... + 3 + 1

Suppose $a_{91} > 0$, and let π be a 91-hp the spectrum of π : $(\tau_{10}, \tau_{28}, \tau_{31}) = (1, 30, 90)$ Let c_j be the number of j-hps $(\neq \pi)$ through a fixed t-solid in π , then

$$\sum_{j} ((n-d) - j)c_j = 95 - 3t \qquad (3.2)$$

for i = 91 by Lemma 4.

The solution of (3.2) maximizing LHS of (3.1):

$$t = 10 : (c_{68}, c_{74}, c_{99}) = (1, 1, 1)$$

$$t = 28 : (c_{95}, c_{99}, c_{101}) = (1, 1, 1)$$

$$t = 31 : (c_{100}, c_{102}) = (1, 2)$$

Estimating (3.1) of Lemma 6,

$$2262 \le 942 \cdot 1 + 24 \cdot 30 + 1 \cdot 90 + 55 = 1807$$

a contradiction. Hence $a_{91} = 0$ in Σ

 $\therefore \Phi_1 = a_{100} > 0.$

Let \square be a 100-hp in Σ .

100-hp $[100, 5, 66]_3$ code (by Lemma 1).

 \Rightarrow The spectrum of Π is one of the following :

(a)
$$(\tau_{19}, \tau_{28}, \tau_{31}, \tau_{34}) = (1, 3, 27, 90)$$

(b)
$$(\tau_{25}, \tau_{28}, \tau_{31}, \tau_{34}) = (4, 1, 24, 92)$$

Let P be the point in the dual space Σ^* of Σ corresponding to Π .

Assume that the 100-hp Π has spectrum (a) $(\tau_{19}, \tau_{28}, \tau_{31}, \tau_{34}) = (1, 3, 27, 90)$

Since *C* is not extendable, the diversity (Φ_0, Φ_1) of *C* satisfies $(\Phi_0, \Phi_1) \in \{(121, 81), (94, 135), (121, 108), (112, 126), (130, 117), (121, 135), (148, 108)\}$ by Theorem 2. The spectrum of Π : $(\tau_{19}, \tau_{28}, \tau_{31}, \tau_{34}) = (1, 3, 27, 90)$

Let c_j be the number of j-hps ($\neq \Pi$) through a fixed *t*-solid. Then by Lemma 4

$$\sum_{j} ((n-d) - j)c_j = 104 - 3t \quad (3.3)$$

The solution of (3.3) maximizing LHS of (3.1):

- t = 19: $(c_{68}, c_{92}, c_{99}) = (1, 1, 1)$
- $\cdot t = 28 : (c_{86}, c_{99}, c_{101}) = (1, 1, 1)$
- t = 31: $(c_{92}, c_{101}, c_{102}) = (1, 1, 1)$

The spectrum of Π : $(\tau_{19}, \tau_{28}, \tau_{31}, \tau_{34}) = (1, 3, 27, 90)$

Let c_j be the number of j-hps ($\neq \Pi$) through a fixed *t*-solid. Then by Lemma 4

$$\sum_{j} ((n-d) - j)c_j = 104 - 3t \quad (3.3)$$

· t = 34 : The solutions of (3.3) are only two : (c_{100}, c_{102}) = (1,2) (c_{101}, c_{102}) = (2,1) The spectrum of Π : $(\tau_{19}, \tau_{28}, \tau_{31}, \tau_{34}) = (1, 3, 27, 90)$

Let c_j be the number of j-hps ($\neq \Pi$) through a fixed *t*-solid. Then by Lemma 4

$$\sum_{j} ((n-d) - j)c_j = 104 - 3t \quad (3.3)$$

· t = 34 : The solutions of (3.3) are only two : (c_{100}, c_{102}) = (1,2) (0,2)-line (c_{101}, c_{102}) = (2,1) (2,1)-line Lemma 6. (Yoshida-Maruta, 2009)

The number of (i, j)-lines through $P \in F_1$ in a 5-flat is the following :

	(1, 3)-line	(0, 2)-line	(2, 1)-line
$(121, 81)_5$	13	54	54
$(94, 135)_5$	40	54	27
$(121, 108)_5$	31	45	45
$(112, 126)_5$	40	45	36
$(130, 117)_5$	40	36	45
$(121, 135)_5$	49	36	36
$(148, 108)_5$	40	27	54

The spectrum of Π : $(\tau_{19}, \tau_{28}, \tau_{31}, \tau_{34}) = (1, 3, 27, \underline{90})$

•
$$t = 34$$
: The solutions of (3.3) are only two :
(c_{100}, c_{102}) = (1,2) (0,2)-line
(c_{101}, c_{102}) = (2,1) (2,1)-line

Hence the number of 34-solids contained in two 100hps and two 102-hps is at most 54. Estimating (3.1) under this condition,

```
2262 \le 609 \cdot 1 + 123 \cdot 3 + 45 \cdot 27 + 1 \cdot \frac{54}{54} + 0 \cdot \frac{36}{36} + 1 = 2248
```

a contradiction.

 \therefore There exists no 100-hp with spectrum (a).

Assume that the 100-hp Π has spectrum (b) $(\tau_{25}, \tau_{28}, \tau_{31}, \tau_{34}) = (4, 1, 24, 92).$

Then, $\Pi \cap C_0$ is a disjoint union of a plane δ and two lines ℓ_1, ℓ_2 .

The solids containing δ in Π are 25-solids. ($\tau_{25} = 4$)

Assume that $P \in F_1$ and the (s, t)-plane δ^* in Σ^* correspond to Π and δ in Σ , respectively.

The lines through P in δ^* correspond to the 25-solids containing δ in Π .

- \rightarrow What are the lines corresponding to the 25-solids?
- \rightarrow What is the (s,t)-plane δ^* ?

Δ: a 25-solid in Π, $c_j = \#$ of j-hp (≠ Π) ⊃ Δ Since $c_{80} = c_{81} = c_{87} = c_{90} = 0$, Lemma 4 gives $28c_{74} + 16c_{86} + 13c_{89} + 10c_{92} + 7c_{95}$ $+ 6c_{96} + 4c_{98} + 3c_{99} + 2c_{100} + c_{101} = 29$ (3.4) which has no solution with $c_{100} > 0$. Since Φ₁ = a_{100} ,

the lines through P in δ^* are (2,1)-lines.

Lemma 7. (Yoshida-Maruta, 2009) The number of (i, j)-lines through $P \in F_1$ in a plane is the following :

	(1, 3)-line	(0, 2)-line	(2, 1)-line
(1, 6)-plane	1	3	0
(4,3)-plane	0	2	2
(4,6)-plane	2	1	1
(7,3)-plane	1	0	3
(4,9)-plane	4	0	0

There exists no plane in Σ^* containing four (2, 1)-lines through $P \in F_1$ by Lemma 7.

 \Rightarrow a contradiction.

Hence $a_{100} = 0$, which contradicts $\Phi_1 > 0$.

 \therefore There exists no $[302, 6, 200]_3$ code.

Contents

- 1. The nonexistence of $[265, 6, 175]_3$ codes
- 2. Extendability and diversity
- 3. The nonexistence of $[302, 6, 200]_3$ codes
- 4. Results

4. Results

 \downarrow

Thank you for your atention!

References

[1] N. Hamada, A characterization of some [n, k, d; q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry, Discrete Math. 116 (1993) 229–268.

[2] R. Hill, An extension theorem for linear codes, *Des. Codes Cryptogr.* **17** (1999), 151–157.

[3] T.Maruta, Extendability of ternary linear codes, Des. Codes Cryptogr. **35** (2005) 175-190.

[4] Y. Yoshida, T. Maruta, Ternary linear codes and quadrics, Electronic J. Combinatorics 16 (2009), #R9 (pp. 1-21).

[5] N. Hamada, The nonexistence of [303, 6, 201; 3]-codes meeting the Griesmer bound, Technical Report OWUAM-009(1995), Osaka Women's University.