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General definitions

Let Fn be the vector space of length n over the binary field F.

Any subset of F n is called a code of length n.

Denote by 0 the all-zero vector.
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General definitions

Let Sn be the symmetric group of permutations of length n.

Two binary codes C1 and C2 of length n are said to be isomorphic
if there exists a coordinate permutation π ∈ Sn such that
C2 = {π(x) : x ∈ C1}.

They are said to be equivalent if there exists a vector y ∈ Fn and a
coordinate permutation π ∈ Sn such that
C2 = {y + π(x) : x ∈ C1}.
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Given a binary code C and a subcode C ′ of C , the support of C ′ is
the set of coordinates where not all codewords of C ′ are zero, and
is denoted by supp(C ′).
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C is called perfect if for any vector x ∈ F n there exists exactly one
vector y ∈ C such that d(x , y) ≤ 1.

The linear 1-perfect codes are unique up to equivalence and are
the well known Hamming codes.

The columns in the parity check matrix Hn of a binary Hamming
code Hn of length n, n = 2m − 1, are all the nonzero vectors in Fm.
We can associate each one of the elements in the set
N = {1, 2, . . . , n} to each one of the columns in Hn.
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Consider the (m − 1)-dimensional projective geometry over F,
denoted by PG (m − 1, 2).
The points of PG (m − 1, 2) are the 1-dimensional subspaces of
Fm, so they can be associated with the columns in Hm, or
equivalently, the elements of N.

The lines in PG (m − 1, 2) are the set of points such that the
corresponding columns conform 2-dimensional subspaces in Fm.
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A line (ab) through two distinct points a, b ∈ N will be denoted by
(a, b, c).
The (k − 1)-flats in PG (m − 1, 2) correspond to the sets of
columns conforming k-dimensional subspaces in Fm. A 1-flat is a
line and a 0-flat is a point.
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Any Hamming subcode of the code can be defined by some
subbasis of the basis of the code from the codewords of weight 3.
The same is true for the corresponding projective geometries.

It is well known that all codewords of weight 3 from any binary
1-perfect code Cn of length n containing the all-zero vector define
a Steiner triple system of order n, called briefly STS(Cn).
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Josep Rifà, Faina Solov’eva, Merce Villanueva Hamming codes avoiding Hamming subcodes



Preliminaries
Hamming codes avoiding Hamming subcodes

Conclusion

General definitions
Problem formulation

Definition (STS(n))

Steiner triple system of order n is a family of 3-element subsets
(also called blocks or triples) of the set N, such that each not
ordered pair of elements of N appears in exactly one subset.

For a Hamming code Hn, we denote the corresponding Steiner
triple system by STS(Hn).

A codeword x ∈ Hn of weight 3 with
supp(x) = {a, b, c} corresponds to the line (ab) in the
corresponding PG (m − 1, 2). This codeword will also be denoted
by the triple (a, b, c).
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Problem formulation

Given a binary Hamming code Hn of length n = 2m − 1, m ≥ 3, or
equivalently a PG (m − 1, 2), find permutations π ∈ Sn, such that
Hn and π(Hn) do not have any Hamming subcode with the same
support.
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We will further call such a pair of Hamming codes, Hn and π(Hn),
Hamming codes avoiding Hamming subcodes, and the
corresponding pair of projective geometries, PG (m − 1, 2) and
π(PG (m − 1, 2)), projective geometries avoiding flats.

This problem can be also reformulated as follows: Given a
Hamming Steiner triple system STS(Hn), find a permutation
π ∈ Sn, such that STS(Hn) and π(STS(Hn)) do not have any
common supports for subsystems, which are STS(Hr ) for all
r = 2k − 1, 1 < k < m.
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Josep Rifà, Faina Solov’eva, Merce Villanueva Hamming codes avoiding Hamming subcodes



Preliminaries
Hamming codes avoiding Hamming subcodes

Conclusion

General definitions
Problem formulation

Note that if the Hamming codes do not have common triples, then
they do not have common Hamming subcodes, but they can have
different Hamming subcodes with the same supports.
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We will prove that given a binary Hamming code Hn of length
n = 2m − 1, m ≥ 3, there exists a permutation π ∈ Sn, such that
the Hamming codes Hn and π(Hn) avoid Hamming subcodes.
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We use the iterative Vasil’ev construction 1962 for a binary
Hamming code Hn of length n, given by

Hn = {(x + y , |x |, x) : x ∈ F
n−1

2 , y ∈ H
n−1

2 },

where H
n−1

2 is a Hamming code of length (n − 1)/2, n = 2m − 1,
m ≥ 2.

The first Hamming code in this family of Hamming codes is

H3 = {(0, 0, 0), (1, 1, 1)}.
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The binary Hamming code of length n constructed by (5) has the
following parity check matrix Hn, given in lexicographical order:

Hn =

[
0 · · · 0 1 1 · · · 1
H n−1

2
0 H n−1

2

]
.
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For n = 7:

π1 = (1, 2, 3, 4, 5, 6), π5 = (3, 4, 5, 6),

π2 = π−1
1 = (6, 5, 4, 3, 2, 1), π6 = (3, 4, 5, 7),

π3 = (1, 7)(2, 5)(3, 6), π7 = (3, 4, 6, 5),
π4 = (1, 7)(2, 3)(5, 6), π8 = (3, 4)(5, 6, 7).
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Lemma 1.

Let N = {1, 2, . . . , n} and N ′ = {1, 2, . . . , (n − 1)/2)}, where
n = 2m − 1, m ≥ 3. The support of any Hamming subcode of
length r = 2k − 1, 1 < k ≤ m, in the Hamming code Hn contains
either all r coordinate positions in N ′, or (r − 1)/2 coordinate
positions in N ′ and the others (r + 1)/2 coordinate positions in
N \ N ′.
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Lemma 2.

Let (a, b, c) be a triple in the Hamming code H(n−1)/2, where
n = 2m − 1, m ≥ 3. Then, the triples in the Hamming code Hn are

(a, b, c), (a, b + n+1
2 , c + n+1

2 ),
(a + n+1

2 , b, c + n+1
2 ), (a + n+1

2 , b + n+1
2 , c);

and (s,
n + 1

2
, s +

n + 1

2
) for any s ∈ {1, 2, . . . , n − 1

2
}.
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Lemma 3.

Let Hr be a Hamming subcode of length r ≥ 3, in the Hamming
code Hn of length n = 2m − 1, m ≥ 3, such that n ∈ supp(Hr ). If
a ∈ supp(Hr ) ∩ N ′, where N ′ = {1, 2, . . . , (n − 1)/2}, then
n − a ∈ supp(Hr ).
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Let π1 be the permutation

π1 = (1, 2, . . . , n − 1)(n). (1)

Proposition 1.

Consider the permutation π1 defined above. Then, the Hamming
codes Hn and π1(Hn) do not have common triples.
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Corollary 1.

If the Hamming codes do not have common triples, then they do
not have common Hamming subcodes.

Remark. It should be noted that the Hamming codes mentioned
in the last corollary can have different Hamming subcodes with the
same supports.
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Theorem.

For any Hamming code of length n = 2m − 1,m ≥ 3, there exists
another Hamming code of the same length such that they avoid
Hamming subcodes.
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Corollary 2.

For any projective geometry PG (m − 1, 2), m ≥ 3, there exists
another projective geometry with the same points and the same
dimension such that they avoid flats.

Corollary 3.

For any Hamming Steiner triple system STS(Hn) of order
n = 2m − 1,m ≥ 3, there exists another Hamming Steiner triple
system π(STS(Hn)) such that they do not have any common
subsystems, which are STS(Hr ) for some r = 2k − 1, 1 < k < m.
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Proposition 2.

Consider the permutation π1. Then, the linear code Hn ∩ π1(Hn)
of length n = 2m − 1, has dimension n − 2m and minimum
distance 4, for all m ≥ 4.

Proposition 3.

Let σ be a permutation such that the Hamming codes Hn and
σ(Hn) avoid Hamming subcodes. Then, the Hamming codes Hn

and σ−1(Hn) avoid Hamming subcodes.

The permutation
π2 = π−1

1 = (1, 2, . . . , n− 1)−1 = (n− 1, n− 2, . . . , 1) also satisfies
that the Hamming codes Hn and π2(Hn) avoid Hamming
subcodes by Proposition 3.
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We showed the existence of Hamming codes avoiding Hamming
subcodes for any admissible length. The problem of finding such
pairs of Hamming codes
(or pairs of finite geometries of the same dimension avoiding flats,

or pairs of corresponding Hamming Steiner triple systems not
having any common subsystems) is interesting not only from
coding, combinatorial, geometrical point of view, but also from
cryptographic.
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Conclusion

The codes Hn ∩ πi (Hn), i ∈ {1, 2} of length n = 2m − 1, have
dimension n − 2m and minimum distance 4, for all m ≥ 4.
Therefore, these permutations π1 and π2 are not APN (almost
perfect nonlinear) functions.
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Let F : Fm −→ Fm be any bijective function such that F (0) = 0.
Let HF be the matrix

HF =

(
Hm

H
(F )
m

)
=

(
· · · x · · ·
· · · F (x) · · ·

)
, (2)

where 0 6= x ∈ Fm, and let CF be the linear code admitting HF as
a parity check matrix. Note that CF is a subcode of the Hamming
code H\ (defined by the parity check matrix Hm).
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APN function

Let F : Fm −→ Fm be any function such that F (0) = 0. Let CF be
the linear code admitting HF , defined in (2), as a parity check
matrix.

Definition

A function F is called APN (almost perfect nonlinear) if all
equations:

F (x) + F (x + a) = b; a, b ∈ Fm; a 6= 0

have no more than two solutions in Fm.
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We proved that the bijective APN functions give the Hamming
codes avoiding Hamming subcodes for m ≤ 6. For m = 7 we
showed that there exists APN function which give the Hamming
codes which do not avoid Hamming subcodes.
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Conclusions We showed in the paper the existence of
Hamming codes avoiding Hamming subcodes for any admissible
length,

pairs of finite geometries of the same dimension avoiding flats
or pairs of corresponding Hamming Steiner triple systems not
having any common subsystems.
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Thank you for your attention!
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