Light-Weight Key Predistribution Scheme with Key Renewal

Alexey V. Urivskiy

ourivski@mail.ru

JSC Infotecs, Moscow

Set-intersection key predistribution schemes

- \blacktriangleright a network of N nodes
- ▶ a set of secret keys \mathcal{K} the key pool of V keys
- ▶ a set of node's keys $\mathcal{S}_j \subset \mathcal{K}$ the node's key block of r keys

► a pairwise key
$$\kappa_{j_1 j_2} = KDF(\mathcal{S}_{j_1} \cap \mathcal{S}_{j_2})$$

Definition: A set-intersection key predistribution scheme is *w*-secure if for $\forall j_1, j_2$ and $\{k_1, \dots, k_w\}$: $\{j_1, j_2\} \cap \{k_1, \dots, k_w\} = \emptyset$ it holds

$$\mathcal{S}_{j_1} \bigcap \mathcal{S}_{j_2} \nsubseteq \bigcup_{i=1}^w \mathcal{S}_{k_i}$$

 \blacktriangleright w-secure SIS is equivalent to (2, w) cover-free family

Incidence Matrix

An incidence matrix of a SIS is a binary $V \times N$ matrix $\mathbf{A} = [a_{ij}]$: $a_{ij} = 1$ if $\kappa_i \in S_j$, $a_{ij} = 0$ otherwise.

Example: An incidence matrix of 2-secure SIS for 4 nodes:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

٠

For a given N and wconstruct w-secure SIS with a smallest size r of node's key block.

Definition: A binary half-weight column b is an *m*-column: $w_H(b) = \frac{m}{2}$.

Collect half-weight columns into matrix B:

- > at most $\frac{1}{2} \binom{m}{m/2}$ half-weight columns of length m
- all columns are different
- \blacktriangleright no complementary columns in ${\bf B}$

 $\overline{\mathbf{B}}$ is complementary to $\mathbf{B}.$

Example:

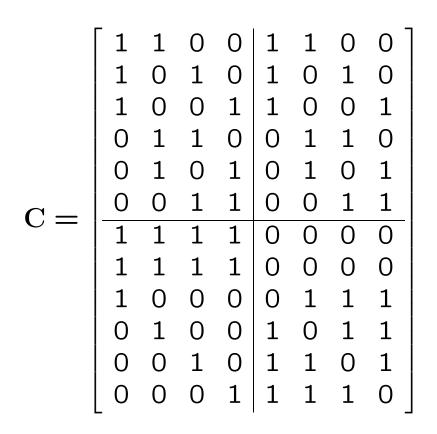
Theorem: Let a $V_0 \times n_0$ incidence matrix **A** define

at least a 1-secure SIS for n_0 nodes. Then

$$\mathbf{C} = \begin{bmatrix} \mathbf{A} & \mathbf{A} \\ \mathbf{B} & \overline{\mathbf{B}} \end{bmatrix}$$

is an incidence matrix of a 1-secure SIS for $2n_0$ nodes.

Here **B** and $\overline{\mathbf{B}}$ are $m \times n_0$ complementary matrices of half-weight columns of even length m, such that $\binom{m}{m/2} \ge 2n_0$.



Practical Properties

Storage: Node's block size

$$r(N) = r_0 + \frac{\lg^2 N}{4} + O(\lg N \lg \lg N)$$

Key computation: a column of C can be computed in $O(\lg^2 N)$ operations on $O(\lg N)$ -bit numbers \Rightarrow non-interactive key computation

$$\mathbf{C} = \begin{bmatrix} \underline{\mathbf{A} \mid \mathbf{A} \mid \mathbf{A} \mid \mathbf{A} \mid \mathbf{A} \mid \cdots \cdots \cdots \mid \mathbf{A} \mid \mathbf{A} \mid \mathbf{A} \mid \mathbf{A} \mid \mathbf{A} \mid \mathbf{A} \\ \underline{\mathbf{B}_2 \mid \overline{\mathbf{B}_2 \mid \mathbf{B}_2 \mid \overline{\mathbf{B}_2 \mid \overline{\mathbf$$

On Double-Complement Construction

Is Double-Complement construction useful for producing *w*-secure schemes?

- ▶ w = 1 this presentation
- ▶ w = 2 construction due to Kim H. K. & Lebedev V.
- ▶ $w \ge 3$ open question

Security

What to do when w is not large enough?

► Larger w: a known lower bound

$$r(N) \ge \max\left\{w\left(\log_2(N-1) - \log_2 w\right), \min\left\{\frac{1}{2}(w+1)(w+2), N-1\right\}\right\}$$

For $w \gtrsim \sqrt{2N}$ only the trivial scheme useful with r(N) = N - 1.

▶ Probabilistic key predistribution: $\exists j_1 \text{ and } j_2 \text{ s.t. } S_{j_1} \cap S_{j_2} = \emptyset$.

- \triangleright shared key discovery protocol to find $\mathcal{S}_{j_1} \cap \mathcal{S}_{j_2}$ if any
- a path-key establishment protocol to find a sequence of nodes between j₁ and j₂ so that every two adjacent nodes has a common key

► Key renewal

Key Renewal

If some c nodes k_1, \ldots, k_c are compromised and for every $j \notin \{k_1, \ldots, k_c\}$

$$\mathcal{S}_j \nsubseteq \bigcup_{i=1}^c \mathcal{S}_{k_i},$$

then a key update K^* can be sent to every innocent node via a key from

$$\mathcal{S}(j, k_1, \dots, k_c) = \mathcal{S}_j \setminus \bigcup_{i=1}^c \mathcal{S}_{k_i}$$

Key renewal process:

- ▶ broadcast $E_{\ell} = E_{\kappa_{\ell}}(K^*)$ for every j and $\kappa_{\ell} \in \mathcal{S}(j, k_1, \dots, k_c)$
- ▶ renew all keys: $\kappa^* = KDF(\kappa, K^*)$ on every node

Definition: The key renewal threshold is the largest *s* for which $S_j \nsubseteq \bigcup_{i=1}^s S_{k_i}$ for any $\{k_1, \ldots, k_s\}$ and any $j \notin \{k_1, \ldots, k_s\}$.

Combinatorial Problem

For a given N, w and s construct a (2, w)-cover-free family which is also a (1, s)-cover free family.

What is the relation between N, w, s and r?

Coverings

Definition: A covering S_c with respect to $\{k_1, \ldots, k_c\}$ is a set such that $S_c \cap S(j, k_1, \ldots, k_c) \neq \emptyset$ for every $j \notin \{k_1, \ldots, k_c\}$

Results:

- ► The key renewal threshold is 2 given construction defines (2,1) and (1,2) cover-free family
- ► The cardinality of a minimal covering $\chi \le \chi_A + \log \frac{N}{n_0}$
- The complexity of finding a covering is O(lg N) bitwise operations on O(lg N)-bit vectors

Thank you!

Questions?