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Summary. For arbitrary Steiner systems
S(v, k, k − 1) we introduce a concept of compo-
nent, a subset of system, which can be switched
(i.e. some positions can be permuted) without
missing a property to be a Steiner system. Thus a
component permits to build new Steiner systems
(of the same orders) from the old ones. Two re-
cursive constructions of such components for arbi-
trary systems S(v, k, k − 1) are derived. Compo-
nents for the case k = 3 and k = 4 are considered
in more details. In particular, for these cases new
systems can have larger ranks. This approach per-
mits to show that Steiner systems S(v, k, k − 1)
with k ≥ 5 have always maximum possible ranks
over F2.



1. Introduction. A Steiner system S(n, k, t)
is a pair (J,B) where J is a v-set and B is a col-
lection of k-subsets (blocks) of J such that every
t-subset of J is contained in exactly one block of
B. A system S(v, 3, 2) is called a Steiner triple
system and a system S(v, 4, 3) is called a Steiner
quadruple system.

This paper is a natural continuation of our pa-
per [ZZ] where we introduced a transformation of
Steiner quadruple systems S(v, 4, 3), which in fact
was a permutation of two positions in some sub-
set of the system, i.e. a typical switching con-
struction. Here, for an arbitrary Steiner system
S(v, k, k − 1), we introduce a concept of compo-
nent, as a special small subset of vectors of a sys-
tem, which can be slightly modified, for example,
by some permutation of several positions, without
missing a property to be a Steiner system.



2. Preliminary results. Let E = {0, 1}.
A binary code of length n is an arbitrary subset
of En. Denote a binary code C with length n,
with minimum distance d and cardinality N as a
(n, d,N)-code. Denote by wt(x) the Hamming
weight of vector x over E. For a (binary) code C
denote by 〈C〉 the linear envelope of words of C
over F2. The dimension of space 〈C〉 is called the
rank of C over F2 and is denoted rank(C).

Denote by (n,w, d,N) a binary constant weight
code C of length n, with weight of all codewords
w, with minimum distance d and cardinality N .
Let J = {1, 2, . . . , n} be the coordinate set of
En. For a vector v = (v1, ..., vn) ∈ En denote by
supp(v) its support:

supp(v) = {i : vi 6= 0}.
For any set X ⊆ En define its support supp(X),
as a set

supp(X) =
⋃
x∈X

supp(x).



For any (n, d,N)-code (linear, nonlinear, or con-
stant weight) denote by C⊥ its dual code:

C⊥ = {v ∈ Fn2 : (v · c) = 0, ∀ c ∈ C},
where (v · c) is the inner product in Fn2 . Clearly

C⊥ is a linear [n, n− k, d⊥]-code with some min-
imum distance d⊥, where k = rank(C).

For arbitrary sets X ⊂ En and Y ⊂ Em, define

X ×Y = {(x |y) : x ∈ X, y ∈ Y } ⊂ En+m.



A binary incidence matrix of a Steiner system
S(v, k, k − 1) is a constant weight (v, k, 4, Nv,k)-
code C of cardinality

Nv,k =
v(v − 1) · · · (v − k + 2)

k(k − 1) · · · 2
.

In our notation the connection between the system
(X,B) and the code C is:

B = {supp(v) ⊂ J : v ∈ C}.
Here the Steiner system S(v, k, k − 1) is identi-
fied with the constant weight (v, k, 4, Nv,k)-code,
which uniquely defines this system.



3. Components of S(v, k, k − 1). For any
set X ⊂ En of vectors of weight l < n, define by
D(X) ⊂ En the set of all vectors of weight l− 1,
which are covered by vectors from X . Clearly for
two disjoint sets X ⊂ En and Y ⊂ En

D (X ∪ Y ) = D(X) ∪ D(Y ).

If π is any permutation, thenD(π(X)) = π(D(X)).
Then for any two arbitrary sets X ⊂ En and
Y ⊂ Em, we have

D(X × Y ) = (D(X)× Y ) ∪ (X ×D(Y ))

= D(X)× Y ∪ X ×D(Y ). (1)

Definition 1 . Let K = K(n, k,N) ⊂ En

be a set of vectors of weight k and cardinality
N , with minimum distance d ≥ 4. Call K a
component, if there exists another set L ⊂ En,
such that

D(K) = D(L), K ∩ L = ∅.



Theorem 1 (Component structure). Let K ⊂
En be some component with words of weight k,
π = (1 . . . r) be the cyclic permutation of the
first r positions. Let K contain the subset

l⋃
i=1

xi × Y (xi),

for some l > 0, i.e. words of type

(xi|y) ∈ Er × En−r

with weight wt(xi) equal to maximum value,
i = 1, . . . , l. Let

X = {x1, . . . ,xl} ⊂ Er.

Then:
1). The set X, under action of π is partitioned
into orbits, with length larger 1, which divides
r.
2). If x′ ∈ Orb(x), then D(Y (x)) = D(Y (x′)).



4. Two recursive constructions.
Set

e1 = (10 . . . 0), e2 = (01 . . . 0), . . . , er = (00 . . . 1),

and let π be a cyclic permutation π = (1 . . . r)
(which acts on the first r coordinates).

Theorem 2 (Construction I) Let

K1 = K(n, k− 1, , N), . . . , Kr = K(n, k− 1, N)

be r mutually disjoint components of order n
cardinality N of words of weight k − 1. Then
the set L, where

L =

r⋃
i=1

ei ×Ki =

r⋃
i=1

{(ei |x) : x ∈ Ki},

is a component K(n + r, k, rN) of order n + r
cardinality r ·N of weight k, and

D(L) = D(π(L)).



Theorem 3 (Construction II). Let

Y1 = K(n, k − 2, N), Y2 = K(n, k − 2, N)

be two disjoint components of order n cardinal-
ity N of weight k − 2. Let r be even. Let X1,
X2 be two different parallel classes (cardinal-
ity r/2) of vectors of length r of weight 2, such
that

X1∩X2 = ∅, π(X1) = X2 and π(X2) = X1,

where π ∈ Sr. Then the set

L = X1 × Y1 ∪ X2 × Y2,

is a component K(n + r, k, rN) of order n + r
cardinality r ·N of weight k, i.e.

D(L) = D(π(L)).



4. Components of Steiner systems
S(v, 3, 2) and S(v, 4, 3).

Definition 2 . Let M1 be a component of
even order n such that

M2 = M1 + e, where wt(e) = 2.

Let (e · x) = 1 for every x ∈M1. Say that the
components M1 and M2 are normal, if for any
vector u ∈M⊥1 , such that

(e · u) = 1,

the following condition is satisfied:

wt(u) = n/2.



Direct application of Theorem 2 with the fol-
lowing initial parallel classes of vectors of weight
2:

(1 1 0 0 . . . 0 0 0 0)
(0 0 1 1 . . . 0 0 0 0)

. . . . . . . . .
(0 0 0 0 . . . 1 1 0 0)
(0 0 0 0 . . . 0 0 1 1)

,

(1 0 . . . 0 0 1 0 . . . 0 0)
(0 1 . . . 0 0 0 1 . . . 0 0)

. . . . . . . . . . . .
(0 0 . . . 1 0 0 0 . . . 1 0)
(0 0 . . . 0 1 0 0 . . . 0 1)

,

covering all vectors of weight 1, gives the following

components K
(i)
1 and K

(i)
2 , i = 1, 2, 3 for Steiner

triple systems S(v, 3, 2):

K
(1)
1 =

(1 0 | 1 1 0 0)
(1 0 | 0 0 1 1)
(0 1 | 1 0 1 0)
(0 1 | 0 1 0 1)

K
(1)
2 =

(0 1 | 1 1 0 0)
(0 1 | 0 0 1 1)
(1 0 | 1 0 1 0)
(1 0 | 0 1 0 1)

K
(2)
1 =

(1 0 | 1 1 0 0 0 0)
(1 0 | 0 0 1 1 0 0)
(1 0 | 0 0 0 0 1 1)
(0 1 | 1 0 0 1 0 0)
(0 1 | 0 1 0 0 1 0)
(0 1 | 0 0 1 0 0 1)

K
(2)
2 =

(0 1 | 1 1 0 0 0 0)
(0 1 | 0 0 1 1 0 0)
(0 1 | 0 0 0 0 1 1)
(1 0 | 1 0 0 1 0 0)
(1 0 | 0 1 0 0 1 0)
(1 0 | 0 0 1 0 0 1)



and

K
(3)
1 =

(1 0 | 1 1 0 0 0 0 0 0)
(1 0 | 0 0 1 1 0 0 0 0)
(1 0 | 0 0 0 0 1 1 0 0)
(1 0 | 0 0 0 0 0 0 1 1)
(0 1 | 1 0 0 0 1 0 0 0)
(0 1 | 0 1 0 0 0 1 0 0)
(0 1 | 0 0 1 0 0 0 1 0)
(0 1 | 0 0 0 1 0 0 0 1)

K
(3)
2 =

(0 1 | 1 1 0 0 0 0 0 0)
(0 1 | 0 0 1 1 0 0 0 0)
(0 1 | 0 0 0 0 1 1 0 0)
(0 1 | 0 0 0 0 0 0 1 1)
(1 0 | 1 0 0 0 1 0 0 0)
(1 0 | 0 1 0 0 0 1 0 0)
(1 0 | 0 0 1 0 0 0 1 0)
(1 0 | 0 0 0 1 0 0 0 1)

.



The components K
(1)
1 and K

(1)
2 are well known

and were considered under the name of Pasch con-
figurations by Fisher [F]. These components are
contained in 79 out of all 80 non-isomorphic sys-
tems S(15, 3, 2) [CCW]; the system, which does
not contain such component, has number 80 [F].
Furthermore, the distribution of these components
on coordinates is different for all 80 non-isomorphic
systems S(15, 3, 2) [F].

It is easy to see that the component K
(1)
1 can

be switched by changing every vector x ∈ K
(1)
1

by the complementary vector x̄, preserving the
property of S to be a Steiner system. Under the
action of this switching all 79 systems S(15, 3, 2),
which contain a Pasch configuration, form a sin-
gle orbit [G]. Many papers were devoted to such
switching of Steiner systems S(v, 3, 2) (see [GGM]
and references there).



It is interesting that components K
(2)
1 and K

(2)
2

are also contained almost in all systems S(15, 3, 2),
namely, in systems with numbers 11, 12,19, 20, . . . 80.

These components K
(2)
1 and K

(2)
2 are also con-

tained in systems S(19, 3, 2).

Remark that the components K
(1)
1 , K

(1)
2 and

K
(3)
1 , K

(3)
2 are normal.

Theorem 4 . Let S be a Steiner system S(v, 3, 2).
Assume that S contains a normal component
K1 of even order n, 6 ≤ n ≤ (v + 1)/2, and
the vector e of length v and weight 2 transforms
K1 to K2, i.e. K2 = K1 + e. Let

S∗ = (S \K1) ∪K2

be a new system S(v, 3, 2). If the initial system
S has a rank r ≤ v−1 over F2, then the rank r∗

of new system S∗ increases by 1, i.e. r∗ = r+1,
if and only if the vector e does not belong to the
linear envelope 〈S〉.



The following two normal components M
(1)
1 and

M
(1)
2 of minimal order 8 and weight 4, obtained

by Theorem 2 from components K
(1)
1 and K

(1)
2 ,

were introduced in [ZZ]:

M
(1)
1 =

(1 0 | 1 0 | 1 1 0 0)
(1 0 | 1 0 | 0 0 1 1)
(1 0 | 0 1 | 1 0 1 0)
(1 0 | 0 1 | 0 1 0 1)
(0 1 | 0 1 | 1 1 0 0)
(0 1 | 0 1 | 0 0 1 1)
(0 1 | 1 0 | 1 0 1 0)
(0 1 | 1 0 | 0 1 0 1)

M
(1)
2 =

(0 1 | 1 0 | 1 1 0 0)
(0 1 | 1 0 | 0 0 1 1)
(0 1 | 0 1 | 1 0 1 0)
(0 1 | 0 1 | 0 1 0 1)
(1 0 | 0 1 | 1 1 0 0)
(1 0 | 0 1 | 0 0 1 1)
(1 0 | 1 0 | 1 0 1 0)
(1 0 | 1 0 | 0 1 0 1)

.



The component, given above, occurs to be very
useful for Steiner systems S(16, 4, 3) [ZZ]. For ex-
ample, all 708103 non-isomorphic systems S(16, 4, 3)
of rank 14 contain at least 295488 different com-
ponents M

(1)
1 . All possible different switching

of these components give at least 314198 non-
isomorphic systems S(16, 4, 3) of rank 15 over F2.

Theorem 5 Let S be a Steiner system S(v, 4, 3)
of order v ≥ 16. Assume that S contains a nor-
mal component M1 of order n, where n is a
multiple of 8 and 8 ≤ n ≤ v/2, and the vector
e of length v and weight 2 transforms M1 to
M2, i.e. M2 = M1 + e. Let

S∗ = (S \M (1)
1 ) ∪M (1)

2 ,

be a new Steiner system S(v, 4, 3). If the initial
system S has the rank r ≤ v − 2 over F2, then
the rank r∗ of the new system S∗ increases by
1, i.e. r∗ = r + 1, if and only if the vector e
does not belong to the linear envelope 〈S〉.



If now apply Theorem 2 to components K
(2)
1

and K
(2)
2 , then we obtain the following two com-

ponentsM
(2)
1 andM

(2)
2 of order 10 and cardinality

12:

M
(2)
1 =

(1 0 | 1 0 | 1 1 0 0 0 0)
(1 0 | 1 0 | 0 0 1 1 0 0)
(1 0 | 1 0 | 0 0 0 0 1 1)
(1 0 | 0 1 | 1 0 0 1 0 0)
(1 0 | 0 1 | 0 1 0 0 1 0)
(1 0 | 0 1 | 0 0 1 0 0 1)
(0 1 | 0 1 | 1 1 0 0 0 0)
(0 1 | 0 1 | 0 0 1 1 0 0)
(0 1 | 0 1 | 0 0 0 0 1 1)
(0 1 | 1 0 | 1 0 0 1 0 0)
(0 1 | 1 0 | 0 1 0 0 1 0)
(0 1 | 1 0 | 0 0 1 0 0 1)

,



M
(2)
2 =

(0 1 | 1 0 | 1 1 0 0 0 0)
(0 1 | 1 0 | 0 0 1 1 0 0)
(0 1 | 1 0 | 0 0 0 0 1 1)
(0 1 | 0 1 | 1 0 0 1 0 0)
(0 1 | 0 1 | 0 1 0 0 1 0)
(0 1 | 0 1 | 0 0 1 0 0 1)
(1 0 | 0 1 | 1 1 0 0 0 0)
(1 0 | 0 1 | 0 0 1 1 0 0)
(1 0 | 0 1 | 0 0 0 0 1 1)
(1 0 | 1 0 | 1 0 0 1 0 0)
(1 0 | 1 0 | 0 1 0 0 1 0)
(1 0 | 1 0 | 0 0 1 0 0 1)

.

It is interesting that these components M
(2)
1 and

M
(2)
2 are also contained in Steiner systems S(16, 4, 3).

In particular, about 1800 systems S(16, 4, 3) of

rank 14 contain the component M
(2)
1 . The next

components M
(3)
1 and M

(3)
2 of order 12 and cardi-

nality 16, which are built by Theorem 2, are also
contained in systems S(16, 4, 3) of ranks 13 and
14.



6. Ranks of Steiner systems S(v, k, k −
1) for k ≥ 5. The same approach, which was
used for proofs of two previous theorems, permits
to make conclusion on the value of rank of any
Steiner systems S(v, k, k − 1) for values k ≥ 5.

Theorem 6 . Let S be a Steiner system
S(v, k, k − 1) and let k ≥ 5. Then this system
has a full rank over F2. Namely, if r is a rank
of this system over F2. Then:

r =

{
v − 1, if k ≥ 6 even,

v, if k ≥ 5 odd.

Note that this result has been obtained by
Dehon [D1, D2]. Our proof seems to be simpler.

We thank Faina Solov’eva who pointed out pa-
pers [F] and [GGM].
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