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Description of Traces for Sobolev Spaces Defined on
Piecewise Smooth Surfaces

V. L. Burenkouv!
School of Mathematics, Cardiff University

Let Q={z€eR":0< z, <1, s=1,...,n} be the unit open cube in R"
and Ty ={x eR":2;=a, s=1,...,i—1,i+1,...,n}, wherei =1,...,n,
a = 0,1, be its open faces. Moreover, let, for [ € Nand 1 < p < 00, trag Wzl,(Q)
be the space of all traces on 0Q of functions in Sobolev space WZI,(Q) Given a
function f € trag Wé(Q), let f;o denote the restriction of f to I';,.

Theorem. Letl e Nyn=2and 1 <p<oo,orn>2andl <p<n. Then
f € trag Wé(Q) zlf and only if

l)fiaEW;ziig(r )Z—l n,a=0,1;
2)ifl>1,orl=1andp> 2, then for all adjacent faces Iy, and I';jz

trmﬂ Fj[-} fi(y = trfm ﬂm fjﬂ a.e. on Fia N Fjﬁ;

3) ifl=1 and p = 2, then for all adjacent faces I';o and T'ja

/1 /(/If (0 =ce) =l = 4 g o,
0 0

n—2

where T = (T1,..., i1, Tit1,- s Tjm1,Tjgls - Tn).

For n = 2 much more complicated descriptions of trag Wl(Q) were given by
G. N. Yakovlev [1] and M. Yu. Vasﬂ’chlk [2]- In [1] the descrlptlon involves the
existence of functions fi ,m € Wp ~ (Tia), m =1,...,1—1, satisfying certain
conditions. In the description given in [2] only the functions f;, are used, but
the pasting conditions are more complicated and involve the derivatives of the
functions f;o. For n > 2 no descriptions of trag Wé(Q) were known in terms of

1—1
restrictions f;, € W), *(I'i,) and some pasting conditions.
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The following simple example confirms that pasting of the derivatives of the
restrictions f;, to the faces I';, of a function f defined of JQ is not required
for the function f to belong to the space trgg Wé(Q) Let n = 2 and f =

{fia}i,a=0,1, where fio(z2) = z2 + ... + xl{l, fii(xe) =1+ 20+ ... + xl{l,
fao(x1) = b, far(x1) = 2} +1—1. Then f10(0) = f20(0), fi0(1) = f21(0),

F11(0) = f21(1), f11(1) = fa1(1), but, say, f{5”(0) # £557(0), m=1,....1—1.
However, f € trog W(Q) because f = trog(z} + 2 +...+ a5 ').

For n = 2 we give two proofs. One of them continues the proof given in
paper [1]: under the assumptions of the Theorem functions figm, m=1,...,1—
1, are explicitly constructed which satisfy the conditions required in paper [1].
Another proof is a continuation of the proof given in [2]: it is proved that the
pasting conditions of that paper can be essentially simplified and reduced to
conditions 1) and 2) of the Theorem.

The case n > 2 requires much further work. First a special partition of the
unity via, ¢ = 1,...,n,a = 0, 1, for the cube @ is constructed such that vio|r,, =
1, IVia|Fj/j =0if (jvﬂ) 7é (iaa); Dk’yia|FJ‘ﬁ =0,0< |k| <= 1, for all (jvﬂ)a
and the derivatives D*v;,(x) have the minimal possible growth as = approaches

.. . . l-m—2
Ol Next it is assumed that there exist functions fia.m € Wp " " (Tia),

m =1,...,1 — 1, satisfying the conditions similar to those in [1] and functions
Ui € W;(Q) are considered such that trr, o = fio and trr,, dax# = fiam,

n 1
m = 1,...,1 — 1. After that it is proved that v = 21 Zom-aum e WiQ)
i=1a=
and trpgu = f. The last part of the proof is dedicated to construction of
functions fiq,m, for a function f satisfying the assumptions of the Theorem,

which is much more difficult than for n = 2.

Let, form=1,...,n,

H™) ={zeR":|zs|<1, s=1,....m, 0<as<1, s=m+1,...,n}
and QU™ = H(™) \ Q. A statement similar to the Theorem holds also for Q™).
Finally, an analogue of the Theorem holds for bounded domains  C R™ with

piecewise smooth boundaries satisfying the following condition: for of each point
x € 0f) there exists a neighbourhood U, such that U, N can be transformed

_— m p—
by a ‘good’ transformation v, to Q or Q™ and vy (U, NON) = ) Tio-
i=1
The results presented above were obtained jointly with Dr. S. Al-Mezel.
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Asymptotic Geometry of Metric Spaces
Sergei Buyalo!

Petersburg Department of
Steklov Institute of Mathematics RAS

I plan to discuss a number of key results in geometry of hyperbolic spaces
and in asymptotic geometry.

The proofs of results in hyperbolic geometry are based on the hyperbolic
approximation of metric spaces, a new construction of a hyperbolic space with
prescribed boundary at infinity. This construction will be described in details.

Using hyperbolic approximation I’ll give new proofs of

1. The extension theorem of Paulin—-Bonk—Schramm that any quasi-symmet-
ric homeomorphism between the boundaries at infinity of Gromov hyperbolic
spaces is induced by a quasi-isometry of that spaces.

2. The Assuad’ embedding theorem that any (compact) doubling metric
space can be biLipschitz embedded in an Euclidean space after taken any power
p € (0,1) of the metric.

3. The Bonk-Schramm’ embedding theorem that any Gromov hyperbolic
space having a bounded growth rate at some scale can be quasi-isometrically
embedded in some hyperbolic space H™.

Next, I'll discuss some embedding and nonembedding results in asymptotic
geometry when the target space is usually not hyperbolic. I plan to explain as
some known constructions as well as some new ones, e.g., the quasi-isometric
embedding of the hyperbolic space H™ into the n-fold metric product of metric
trees.

Finally, I'll discuss 4 quasi-isometry invariants which give most of known
at the moment obstacles to quasi-isometric embeddings of metric spaces. These
are Gromov’ hyperbolic rank, subexponential corank, t-rank and hyperbolic
dimension. The definitions, properties and proofs of two key results on the
invariants will be given as well as number of interesting applications.
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O nmepecTaHOBOYHO-MHBAPUAHTHOUW 000JIOYKE MPOCTPAHCTB
Becosa, Kanpaepoua u CobosieBa

M. JI. Toavdman*

Poccuiickuit yaHuBepcuTeT JapyKOBI HAPOIOB

Hesb nukiTa JIEKIHUi: TO3HAKOMHUTD CIyITaTe el ¢ HEKOTOPHIMYU COBPEMEH-
HBIMY KOHIENIUIMHA U Pe3yJIbTaTaMi Teopur (PyHKIHOHATHHBIX MPOCTPAHCTB.

BynyTt paccmoTpenbr obIie MeTo /bl OTTUCAHNS HHTErPAJTHHBIX CBOMCTB (PYyHK-
Uil Ha OCHOBE MOHATHI OaHaxoBa (DYHKIMOHATIHLHOIO MPOCTPAHCTBA U IEPe-
CTAHOBOYHO-UHBAPUAHTHOTO MPOCTPAHCTBA, & TAK¥KE CITOCODBI Omucanus aud-
depeHnmaIbHBIX CBOWCTB ¢ UCIOIB30BAHIEM ODOBIIEHHBIX MTPOU3BOAHBIX (IIPO-
crpancrBa CobosieBa), pa3sHOCTHBIX WJIM AlNNPOKCUMATHBHbBIX XapaKTEPUCTUK
rianakocru (npocrpancrsa becosa u Kasbaepona).

Bynyr pazobpambl 1Be HEJABHO PeIIEHHBbIE BAXKHbBIE TPOOJIEMbI TEOPUU BJTO-
KeHuil pas3Hbx Merpuk s mpocrpancts CoboseBa, Becosa u Kambmepona:
YCTaHOBJIEHUE KPUTEPUEB BJIOKEHUS ITUX MPOCTPAHCTB B MEPECTAHOBOYHO-UH-
BAPUAHTHBIE MTPOCTPAHCTBA, U HAXOXKJIEHWE WX MTEPECTAHOBOYHO-WHBAPUAHTHBIX
060J104€eK (OlUCAHIE MUHUMAJIBHOIO [IEPECTAHOBOYHO-MHBAPUAHTHOI'O IPOCTPAH-
CTBa, B KOTOpOe BJIOXKeHO JanHoe npocrpanctso Cobonesa, Becora, nin Kaib-
Jepona). Jlamubie pe3yIbTaThl BOUPAIOT B €05l Psijl KOHKPETHBIX TOYHBIX TEOPEM
BJIOYKEHUST PA3HBIX METPUK JJIs STUX MPOCTPAHCTB. Uucio mybaukanmii mo 3ot
TeMaTuke OrpoMHO. IIpuBenEHHDIN B KOHIE CIUCOK JINTEPATYPHI 3aBEIOMO HE
nosion. OH 3aTparuBaeT JIMIib HECKOJIBKO MOHOrpaduii 1 HEOOJIBIITOE YUCIIO Pa-
60T, HarbOIee TECHO CBA3AHHBIX C OOCYKIAEMBIMU BOIIPOCAMH.

1. XapakTepusanusga MHTeTPaJbHbIX CBOUCTB (DYHKITIIA.

1.1. BanaxoBsl pyHKIuoHaabHbIe npocrpancrsa (BP®II). B swurepa-
Type UCIIOIB3YIOTCH OJIN3KMe MOHATHS /15 0DIIeil XapaKTepu3allud HHTerpab-
HBIX CBOICTB (DYHKIWMIi: OHATHE UudeanbHo20 npocmparcmea (6exmophol pe-
wemgu), cM., nanpumep, kaury C. I'. Kpeitna, FO. U. Ilerynuna u E. M. Cemé-
HOBa [2], & TakyKe HECKOJILKO GOJiee y3KOe MOHSATHE 0aHAT064 PYHKUUOHAALHOZO
npocmpancmea (kparko: BOII), cm., nanpumep kuury K. Bennerra u P. [ITapn-
s [8]. B uuciio akcuom BOII Bkioveno csoiicrso Pary, obecredunBaroliee cupa-
BeITNBOCTH ODOOIMIEHHOrO HepaBeHCTBa MUHKOBCKOTO JjisI OECKOHEYHBIX CYMM
U WHTErpajoB. ITO He CyKaeT HADOP MHTEPECYIOIUX HAC MPUMEPOB U IIPUIIO-
xennit reopun B®II, #Ho memaer Teopuio 60JIee KOMIAKTHON W TTPO3padHoil. Mbl

Poccuitckuit yrupepcurer apysk6e1 Hapogos, yia. Muxmyxo-Maxiras, 6, Mocksa 117198,
Poccus.
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Oymem ciemoBaTh akcnomaruke teopun b®II, pazsuroit B kuure K. Bennerra u
P. Tapmam.

Bynyr BBesenbr: nousirue 6aHaT080U PYHKUUOHAALHOT HOPMbL, OCHOBAHHOE
Ha ueii nougrue BOII, nousitue accoyuuposarnozo npocmpancmea k BOII (upo-
CTPAHCTBA JMHEHHBIX MHTErPaIbHbIX (QYHKIMOHAIOB). BynyT paccMorpenbl oc-
HoBHBIE CBOMicTBA B®II (mpeme/bHblil mepexos, Mpu MOHOTOHHOMW CXOAMMOCTH,
obobmEnHoe HepaBeHcTBo [énbaepa, npunyun deoticmeeHHocmuy: COBIAIEHNE
ucxoauoro B®II ¢ nBakibl acCONUUPOBAHHBIM IPOCTPAHCTBOM). Jljisi KOHYCOB
HEOTPUIATEbHBIX U3MEPUMbBIX (DYyHKIUI OyayT 00CYKAEHBI IOHATUS NO2A0ULE-
HUA U IKBUBAAEHTMHOCTNY KOHYCO8 U UX CBA3b C BJOKeHusiMmu KOHycoB B BOII.

1.2. IlepecTaHOBOYHO-UHBAapUaHTHbBIE IIPOCTPAHCTBAa. ByyT BBE1€HbI
MOHATHS PYHKEYUY pacnpedesenusn  Yoveawed nepecmanosKy st 3MEePUMOit
dbyHKIMY 1 00CYKIEHBI UX OCHOBHBIE CBOWCTBA: PABHOM3MEPUMOCTH (DYHKITUN U
ee MepPecTaHOBKHU, SKBUBAJEHTHOCTh X MWHTETPAJIBHBIX CBONCTB M IKCTPEMAJIb-
Hble CBOACTBA yOBIBAIOIIMX HepecTaHoBOK (Teopema Xapau u Jlurriasyzaa). By-
JIeT BBEJIEHO LIOHATUE 8MOopoti nepecmanosky (CpeaHero 3HadeHust yOobIBAOIIEl
nepecranoBku ua unrepsadie (0,t)), pacCMOTPEHbI €€ OCHOBHbBIE CBONCTBA U IIPU-
BEJIEH BAXKHBII PE3ysIbTAaT 00 YKBUBAJEHTHOCTU BTOPOI MTEPECTAHOBKY (DY HKITHH
U yOBIBAIOIIEH MEPECTAHOBKU €€ MaKCUMAJIbHOU dbyHKmun Xapanm — JIuTTiaBy-
na. Bynmer BBeneHO moHsTHE NEpecMaro080UHO-UHBAPUAHMHOZ20 NPOCTMPAHCMEN
(kparko: ITHUII), kak rakoro B®II, nHopma B KOTOPOM MHBAPUAHTHA OTHOCHU-
tenbHO mepectanoBOK. Ilonstue ITUII Heckonmbko ykKe pacCMOTPEHHOrO B KHHU-
re [2] HOHATHS CUMMEMPUHOZO NPOCMPAHCMBA, TIOCTPOSHHOTO HA Ha3e Maealh-
HBIX mpocTpaHcTB. g mamux meneit mousarue ITUII mocraTowuno, MOCKOIBKY
BKJIFOYA€T OCHOBHBIE TPUMEPHI TEOPUY CUMMETPUIHBIX MPOCTPAHCTB: MPOCTPAH-
crBa L,, knaccudaeckue npocrpancTsa Jlopenma, Mapiunkesuda, Opinaa u ux
0000111eHHd.

Bynyr npusenennst Beipazkenune HOpMBI GyHKIuu B [IUII wepe3 nHopmy eé
yObIBaIOILEeli IepecTanoBKY (Teopema mpeacrapienus JIrokcemMOypra) u Bbipazke-
Hue 178 HopMbl accomuupoBanuoro [TUIl. Byner BBemeno monsitue @yrdamer-
maavhol Pynrxyuy IINTL paccMoTpeHbr €€ CBOWCTBA W MPUBEIEHBI IPUMEDHI €€
BBIUUCJIEHUSI.

Byner npuBeneno BaxxHoe I JAJLHEHRINEr0 PEIIeHre 331a491 O MOCTPOSHUN
vuanMasabaoro IIUTI, comepxkainero JaHHBIN KOHYC HEOTPUIIATEIBHBIX YOBIBA-
fomux Gyaknuii. OHO OCHOBaHO Ha npuHLuIe AsoiicrBennoctu s ITHTI.

2. XapakTepu3zaiuga auddepeHnuaIbHbIX CBONCTB OYyHKITHII.

2.1. XapakTepusanug ¢ HOMOIIbIO 0000MIEHHBIX MPOU3BOJIHBIX. by-
IyT 0DCY2KIEHbI olnpejeseHns Kiaaccuaeckux mpocrpancts CoboseBa, Teopus
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Koropbix n3noxeHa B kuurax C. JI. Cobonesa [5], P. Anamca [7], O. B. Becosa,
B. II. Unbuna, C. M. Hukonsckoro [1], B. 1. Bypenkosa [9], B. I. Masbu [3],
C. M. Hukonsckoro [4], I. Tpubesus [6] u ap., a Takzke ux ob6obieHus, CBsA3aH-
HBIE ¢ HUCmoab3oBanneM Tex wian uHbix [INIT B kagecTBe 6A30BBIX MPOCTPAHCTB
(nanpumep, npocrpancrsa Cobonesa — Opsnua). Ux Teopus pa3sBuBajach B
paborax B. C. Kuumosa (cMm., nanpumep, [19]), A. Ubanku u JI. Tluka (cm.,
Hanpumep, [27,28]) u MHOIUX APYrux.

Kparko OyayT o0cyKaeHbr 0000IIEH ST, CBSI3AHHBIE C UCIIOJIb30BAHUEM IPO0-
HBIX MTPOU3BOIHBIX, KOTOPHIE MPUBEJN K KOoHIennuu mpocrpaucts CoboseBa —
JluyBusis (GeccesieBblX NOTEHIMANIOB), & 3areM U Oojee ODIIEH IIKaJbl IPO-
crpancrs Jluzopkuna — Tpubesns (cm., nanpumep, kaury . Tpubens [6], pa-
Gorer I1. . JIuzopruna [20], I'. A. Kana6una [18] u ap.). [Ipocrpancrsa Jlu-
3opkuna — Tpubess, mocrpoerubie Ha 0a3e ITUII, u nx 00600IIEHNS aKTHBHO
uccaenoBavch B nocaeanune roasl FO. B. Herpycoswim (cM., Hampumep, [22]).

2.2. Xapakrepusanus ¢ MOMOMIbI0O pa3HOCTeill U MoayJieil Hempe-
pPBIBHOCTU. ByayT oOCyKIeHbI ompeaeaeHnst KJIaCCHIeCKuX mpocrpancTts Hu-
KoJIbCcKOro u Becosa (B Tepmunax pasnocmeti u modyaeti HENPePbLEHOCAU), T10-
CTPOEHHBIX Ha Oa3e mpocrpaHcTB Ly, n ux obobmienuit Ha 6aze IINII. Bymyr
BBEJIEHBI TPOCTPAHCTBA BecoBa ¢ 0OOOIIEHHON I IKOCTHIO U 00CY XK IeHa, OoJtee
obrmast KoHuenus npocmpancme Kaavdepona (cM. [26]), n eé paseuTie B pabo-
rax K. K. Tonoskuna, FO. A. Bpyauoro u B. K. ITanamosa, M. JI. Tonpnmana
(cm. [12-14]).

2.3. ANmpokcuMaTHUBHBbIE XapaKTepPUCTUKHU TJIAAKOCTU. Byner pac-
cMoTpeHo cemeiictBo moanpoctpancTs B [TUI, cocrogmux u3 yeans dyHryul
axcnonenyuasvnozo muna (Kkparko: II®IT) u BBEAEHO MNOHATHE HAUAYHULEC-
20 npubausicenus yurmmii mo wHopme I[TUIT ¢ momormpio ®IT. Ckopocrs
yObIBAHUST HAMIYUIIAX TPUOIMKEHUI TPU PACIIMPEHUN TPUOIUIKAIONUX IO/
[MPOCTPAHCTB TO3BOJISIET XapPAKTEPU30BATH CBOUCTBA TJIAJIKOCTU MPUOIUKAEMO
GyHKIMM, TPUIEM B OUEHDb MIMPOKOM IUANA30HE. ByIyT HaHbI SKBUBAJIEHTHHIE
OMMCAHUS KIACCUIECKUX U ODODIEHHBIX MPOCTPAHCTB becoBa B aTux TepMuHax
u 0bCcykIeHa 0oJtee 00IAsi KOHIIEMIUsT COOTBETCTBYIOMUX mpocTpancTs Kajb-
JIEPOHA U CBsI3b AMMPOKCUMATUBHBIX U PA3HOCTHBIX XAPAKTEPUCTHK TJIAJIKOCTH.

2.4. KoHCTPYKTUBHBIE XapaKTepUCTUKu riaagkoctu. C anmpokcuma-
TUBHBIMU XaPAKTEPUCTUKAMH TECHO CBA3AHBI KOHCTPYKTUBHBIE XaPAKTEPUCTUKHI
B TepmuHax paznoxkenuii dyukuit 3 [IUII B pagpr mo IPIT. Byayr mnpu-
BeJeHbI KBUBAJIEHTHDBIE OMUCAHUS KJIACCUYECKUX MPOCTPAHCTB BecoBa B 3TMX
TepMHUHAX U 0DCY2K/IeHA KOHIIEIIHs COOTBETCTBYOMuUX npocrpancts Kanbaepo-
Ha. Mbl He CMOXKEM 3aTPOHYTH 3/1eCh APYIUX TUIIOB Pa3jioxkeHuil (0 cucreMam
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BCILIECKOB, AaTOMaPHbBIX U T. JI.), OTChLIag UHTEpecylomuxcsa K kuuram . Tpu-
6ens, crarbsim FO. B. Herpycosa, @passe u dBeprca u ap.

3. O TeopeMax BJIOXKEHUsI PA3HbIX METPUK.

Bynyr o6cy»kaeHbl 1Be CIeayole OCHOBHbIE TPOOJIEMbl TEOPUH BJIOYKEHHS
pasHbIX MeTpuk. PaccmarpuBaercss dyHKIMOHANIBHOE TPOCTPAHCTBO (0603HA-
unm ero A(E, F)). Ono nocrpoeno ua ochose IINIT E u cocrouT n3 Tex ero
dbyHKIMIT, KOTOPBIE 0BIAJAIOT OMPEeIeIEHHBIMA JAONOJIHATEIbHBIMA CBOACTBAME
[JIQJKOCTH B €ro HOpMe (4T0 OTPaXKeHo cuMBOsioM F).

IIpo6aema 1. Ins upoussosbhoro ITNIT X waiitu Tounbie (Heysydmia-
eMble) yCJIOBHs B3aMMOCB#A3M CBOiCTB riagkoctu F ¢ wopmamu B E u B X,
obecrieunBatomiye Bioxenne A(E, F) C X (BioXKeHWe Pa3HBIX METPUK).

IIpo6aema 2. Ins maunsoro npocrpadctsa A(E, F') HaifiTh MHHHMAIHHOE
(camoe y3koe) I[TUIT X | B KOTOPOE OHO BJIOXKEHO, T. €. OIUCATH TaK HA3BIBAEMYIO
NEPECMAH080YHO-UHBAPUAHMHYI0 000a0wKky tpocTparcTtBa A(FE, F).

JL71s1 TOJTHOTO PEITeH s TOCTABIEHHBIX 3344 KJIIOUEBBIM SBJISIETCS HAX0XK Ie-
HPE SKBUBAJEHTHOIO ONMUCAaHUs KOHyca M yOBIBAIOIINX IIEPECTAHOBOK (PYHKITHI
u3 npocrpancrsa A(E, F') (Bo MmHOrux paborax, /e [0y YeHbl TOYHbIE TEOPEMbL
BJIOXKEHUSI PA3HBIX METPHUK, [I0J00HOE ONUCAHUE COAEPKUTCS B HEABHON (dopme).
[Tpu HaMYMKM TAKOTO ONMUCAHWS KPUTEPUIl PEIeHNs MepBOU MpOoOIeMBbl COCTO-
ur B cupasemuBocTu Bioxkenus M C X. Pemenwem BTOpoit mpobsieMbr Oymer
vuanMaabaoe [TUIL X | comepxxkarmee kornyc M.

Mpbr He OymeM KacaTbCsl 37€Ch €Ile OIHONH OCHOBHOM MPOOIEeMbI BIIOXKEHUS
Pa3HBIX METPHUK: 00 OIMUCAHUHU CBOMCTB IMTaAKOCTH B HOpMe X (DYHKIHIT U3 TIpo-
crpancrea A(E, F).

4. O6 onmTUMaJIIbHOM BJIOXKeHWU 0000mEHHBIX npocrpancts Cobo-
JeBa.

4.1. Kparknii 0630p U3BeCTHBIX Pe3yJabTaToB. ByIyT IpuBeIeHb Kaac-
cuaeckue TeopeMsl Biaoxkenus pasuerx Merpuk C. JI. Cobomesa [5], ycranasin-
Balomue Kpurepun Baoxkenus npocrpancrsa Cobonesa B L, u B mpoCTPaHCTBO
OrpaHUYCHHBIX HEeNpepbIBHLIX (ByHKIuil. B mpemensHOM ciaydae OymyT Ipube-
nenbl pesyiabrarel B. . FOmosuua [24], C. 1. Tloxoxkaena [23], H. Tpyaurre-
pa [35] o Biokenun B mpocTpancTBo Opinda v OTMeUeHbI TATbHEHIINe YCUIeH s
sTux pe3yabraroB B paborax K. Xanccona [33], . Bpesunca — C. Beitarepa [25],
O’Heiina [34], B. . Masbu [3], M. Ilsukeas u E. U. [lycrbuibauka [30], A. Ubsn-
ku u JI. ITuka [27, 28] u ap.

4.2. Perenue 3aauu 06 onTuMaJbHOM BJIOXKeHUU. Byner momydeHo
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perenue 3a1a41 06 SKBUBAJIEHTHOM OIMCAHUU KOHYCa
My, ={h=u":1ueCy(Q), V"u|" € E}, meN,

yOBIBAIOIINX MMEPECTAHOBOK (DUHUTHBIX (DYyHKIWI n3 mpocrpancTea CobosieBa B
orpanrdeHnoii obaactu @ C R™ (¢ mepoii [€2]), nocrpoernoro aa ocHose ITUII E.

IMokazauo, aro M, = Cp,, m =1,3,...; My, =~ K, m =2,4,..., e
1]
Cm =1 h(t) = /gsm/"*lds 2920, g"€E,, te(0,|Q];

t
t 9]

h(t):tm/"fl/gd“/gsm/"*lds2920, g €E
0 t

K

Ha ocHOBe JaHHOrO OMUCAHWS TIOJYYEHBI PEIEHWUs YIOMSHYTBIX BBIIIE TPO-
OJ1eM BJIOXKEHMST PA3HBIX METpHK i mpocTpanHcTs CoboseBa. Mbl pas3bepém
ps IPUMEPOB U MPUJIOKEHU. B OCHOBY 3THX MOCTPOEHWI TTOJIOKEHBI MOJIU-
dunuposannbie (1 YACTUIHO CKOPPEKTUPOBAHHBIE) Pe3yJibTarhl padorst . Di-
mynzaca, P. Kepmana u JI. Tluka [31]. Byayr ormedenbl Tak:ke pe3ysbrarbl
FO. B. HerpycoBa 06 onTuMaIbHBIX BJIOXKEHUSX B MPOCTPAHCTB JIu3opkuna —
Tpubesisi, BKIIOYAIONINX TPOCTPAHCTBA, ApobHON riaakoctu Cobomesa — Jlu-
yBusus (cm. [22]).

5. O6 onrumaapHOM BJIOKeHHU npocrpaHcTB BecoBa m Kanbne-
poHa.

5.1. KpaTkuit 0630p U3BECTHBIX PE3yJIbTATOB. ByIyT MpuBeIeHbI KIIac-
CHYEeCKUe TeopeMbl Bjoykenus pasubix merpuk C. M. Hukosawsckoro, O. B. Be-
coBa (cM. [10,1,4]) u oTMedeHO UX Pa3BUTHE B HCCJIEJOBAHUAAX IO OOOOIEHHOM
ruagarocru I1. JI. YibsaroBa u ero mkosibl (B HEpBYIO O4€pe/b OTMETHM 3/€eCh Pa-
6orbl B. 1. Kousapr), a rakxke B paborax M. 3. Bepkouaiiko, A. B. Byxsasiosa,
M. JI. Tonbamana, I'. A. Kans6una, FO. B. Herpycosa u 1p.

5.2. O6 onTuMaJJIbHOM BJIOKeHUU TMpocTpaHcTB Kaabaepona. Byayr
paccMorpensl ipocrpatcTBa Kanbnepona A(E, F), tne E — ITNTL. duddepen-
nuasibibie cBoiicrBa dynkiwmii f € A(E, F') OnuchbIBaIOTCA B TEDMUHAX TPUHA-
JIEXKHOCTHU UX HawIydrux npubuxkenuii e;( f) g mo Hopme E ¢ momonsio [T
(kak dynkuumit napamerpa npubsuxenus t > 0) 3agannomy BOII F = F(0, c0).
Takum obpazowm,

fEAE,F) < fe ER"), e(f)r € F(0,00).
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OHu BKITIOYAIOT KJIACCHIECKHUE pocTpaHcTBa BecoBa u pasnudubie ux 0606-
menns. Jas Hux OyZerT MpUBEIEeHO peleHne 3374a49n 00 SKBHUBAJTEHTHOM OIIH-
CAHUU KOHYCa yOBIBAIOIINX [EPECTAHOBOK M PEIIEHUs /IBYX OCHOBHBIX TPOHIEM
BJIOYKEHUST PA3HBIX METPUK, YIOMSIHYTHIX BbIMIe. B yacrHOCTH, OymeT mosIydeHo
OMMCAHUE WX MEPECTAaHOBOYHO-MHBAPUAHTHON 000/10uku. BaxkHyio posb 31ech
UrPAIOT MOAMDUIMPOBAHHBIE BTOPBIE MEPECTAHOBKY U3MEPUMbBIX (DYHKITUH, OI1-
penessiemble GynnamenTanbaoil gpyukuueii [T E (oru coBuagaror ¢ kiaaccu-
YEeCKUMU BTOPBIMU IlepecTaHoBKamu, eciu B = Lq).

5.3. Ilpuioxkenud Jjigd o600IIEHHBIX pocTpaHcTB BecoBa. Bosbimoe
BHUMaHIE Oy/IeT yIeaeHO KOHKPEeTH3AIuN ITUX MOCTPOEHH B cirydae 0O600IIEH-
HBIX pocTpaHcTB BecoBa (B TepMuHAX HAMIIYYIIMX OPUOIMIKEHUH), [TO3BOJIs-
IOIIEH TOJIyYUTh OMUCAHUE IEPECTAHOBOUYHO-UHBAPUAHTHON 000JI0YKY B ABHOM
Buzie. i 9TOro UCIOMB3yeTcs psijl HEJABHUX PE3YJILTATOB 00 OIEHKAX HOPM
HUHTErPAJILHBIX ONEPATOPOB TUMA Xap/IU Ha KOHYCaX MOHOTOHHBIX (DYHKIIHU, 10~
sy4eHHbIx B paborax A. Torarmmsuim u JI. Iuka [32], M. JI. Tonsamana [15],
M. Kappo u X. Copua [29] u ap. OrMerum, 410 Jjisi PA3HOCTHBIX BAPUAHTOB
0000IIEHHBIX TPOCTPAHCTB BecoBa ONTUMAJIbHBIE BJIOKEHUS ObLIU TOJIYYEHbI
FO. B. Herpycossim [21].

Pesynbrarel, npusenéunsie B . 5.2, 5.3, noaydennr B paborax [16] (u3o0-
TPONHBIH ciaydail) u [17] (aHu30TponHbIH Ciyvail).

Iliran nmukJia JieKiuii.

1-2. Xapakrepusanusi HHTErPAJIbHBIX CBONCTB (DYyHKIIWIA.

BanaxoBbr dhyHKIMOHAIBHBIE IPOCTPAHCTBA, UX 00IIME CBOMCTBA. Y ObIBAO-
[Iue epecTaHoOBKY (DyHKIUN u ux cBoiicTBa. IlepecTaHOBOYHO-MHBAPUAHTHBIE
MPOCTPAHCTBA, WX OCHOBHBIE XapakTepucTuku. [IpuMepbr mepecTaHOBOYHO-UH-
BAPUAHTHBIX MTPOCTPAHCTB: MPOCTPAHCTBA, Jlebera, Jlopenma, Opiya.

3—4. Xapakrepuzarnus guddepeHIuagIbHbIX CBONCTB (DyHKINANA.

O606mmErnHbIe TPOU3BOAHbIE U Kiaaccudeckue npocrpancrea Cobonesa. Mx
000DIIEHNST ¢ UCHOJB30BAHUEM EPECTAHOBOYHO-MHBAPUAHTHBIX MPOCTPAHCTB.
Hpobubie npoussomubie u npocrpancrsa Cobomesa — JIuysumis (GecceseBbix
norenruasos). [lIkana npocrpaucrs Jluzopkuna — Tpubesis.

Pazmoctn u momynu HempepwsiBHOCTH. IIpocTrpancrsa BecoBa u mekoTopbie
ux 0006menus. Koumnemnmus npocrpancrs Kajbaepona.

Hannyqmme npubamKeHns ¢ MOMOIIBIO HMEeAbIX (PYHKITNAH SKCIOHEHITHATHLHO-
ro runa (ANIPOKCUMATUBHBIE XaPDAKTEPUCTUKU [JIaJIKOCTH).

[MoBenenue pazyiokeHuit B PsAbI IO MEJIbIM (DYHKIIUAM IKCIOHEHITHATBHOTO
runa (KOHCTPYKTUBHBIE XAPAKTEPUCTUKU [JIAIKOCTH )
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5. O6 onTHMaJIbHOM BJIOXKEHUH OO0OOIIEHHBIX ImpocTpaHcTB Cobo-
JeBa.

Onucanve KOHyca yOBIBAIOIIWX MMEPECTAHOBOK (DYHKIWN U3 TPOCTPAHCTBA
Cobosena. Kpurepnit Bioxkenusi mpocrpancrsa CoboeBa B MepecTaHOBOYHO-
HHBAPUAHTHOE TPOCTPAHCTBO. O TIepecTaHOBOYHO-UHBAPUAHTHON 000JI0YKE TTPO-
crpancrBa Cobomnena.

6. O6 onTMMaJILHOM BJIO2KeHUHM HpocTpaHcTB BecoBa m Kaibae-
poHa.

Onucanve KOHyca yOBIBAIOIIWX MMEPECTAHOBOK (DYHKIWU U3 TPOCTPAHCTBA
Kaabaepona. Kpurepnii Biioskenus npoctpancTsa KaabaepoHa B mepecTaHOBOY-
HO-MHBAPUAHTHOE MpocTpancTBo. O mepecraHOBOYHO-UHBAPUAHTHON 0OOIOUKE
npocrpancrBa Kanbaepona. Ilpunoxkenus: mjs 0OOOIIEHHBIX TPOCTPAHCTB be-
COBA.
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Null Lagrangians
Tadeusz Twaniec '

Syracuse University

The term null Lagrangian pertains to a nonlinear differential expression
whose integral mean over any domain depends only on its boundary values, like
integrals of exact differential forms. Because of that it may very well be right
to call null Lagrangians exact nonlinear differential forms. An important special
case is furnished by the Jacobian determinant J(z, f) = det[D f(z)] of a Sobolev
mapping f. One rather surprising discovery, that brought null Lagrangians to
the theory of nonlinear PDEs, is the higher integrability phenomenon. In this
category of important results we include the L'-estimates of J(z, f) under weak-
est possible regularity hypotheses on the mapping f. Recently, these estimates
became critical in formulating a theory of mappings with finite distortion. Yet,
within somewhat wider context vast progress has been made in understanding
the role of null Lagrangians in the study of so-called very weak solutions of
nonlinear elliptic PDEs. The present lectures will certainly fresh light on these
issues. Every effort will be made to reduce to a minimum the technical aspects
of the subject in the interest of mathematical insights.

It is a special pleasure and honor for me to address these lectures at the
Sobolev Institute of Mathematics in Novosibirsk, the town of Yurii Grigor’evich
Reshetnyak.

IDepartment of Mathematics, Syracuse University, 215 Carnegie Bldg., Syracuse, NY
13244, USA.
E-mail: tiwaniec@mailbox.syr.edu
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Composition of Functions in Besov Spaces with Critical
Exponent and Spaces of Functions of Bounded p-Variation

(Based on joint work with
Gérard Bourdaud (Paris VII) and Winfried Sickel (Jena).)

Massimo Lanza de Cristoforis!
Universita di Padova (Italy)

We introduce the space BV,) (R) of the real-valued Lipschitz continuous func-
tions g on the real line R whose first order derivative equals almost everywhere
a function with bounded p-variation (in the sense of Wiener), and we charac-
terize the set of functions f of R to itself such that the (nonlinear) superposi-
tion operator Ty which takes g to the composite function T¢[g] = f o g maps
BV,}(R) to itself. Then by using Peetre’s Imbedding Theorem, we deduce that
if f € BV, (R) and f(0) = 0, then Ty maps the Besov space B;j(l/p)(R) to

ByEYP)(R). Finally, we prove that BV} (R) is contained in a class U} (R) intro-

duced by Bourdaud and Kateb, and that if f € Ul} (R) and f(0) = 0, then T

maps Bll)_l(l/p) (R) to B},,ﬁél/”) (R). Corresponding results are also obtained for

functions ¢ defined in R”.

IDipartimento di Matematica Pura ed Applicata, Universita di Padova, Via Belzoni 7,
Padova 35131, Italy.
E-mail: mldc@math.unipd.it
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KBa3zukoH(pOpMHO MJjI0CKHE IIOBEPXHOCTH
B PUMAaHOBBIX MHOTr0o00Opa3mgax

B. M. Muxaroxos *

Boarorpaackwuit rocyiapcTBeHHBIT YHUBEPCATET

B repmunax usomepumerpuu u OcHOBHO#I wacrorbl cedenuit X \ II reoume-
3udeckuMu cepamu Sy (a,t) OMUCHIBAIOTCS HEKOTOPHIE MIOBATIBHBIE CBOMCTBA
JIOKAJIbHO KBAa3MKOH(OPMHO MJIOCKUX MOBEPXHOCTEN B PUMAHOBBIX MHOr000Opa-

3UAX

N O U W N

o0111ero BuIa.

. ITocranoska 3a1a4u.

. Huddepenrmanvubie popmbl. CBsi3b ¢ ypaBHEHUSIMHU.

. Jlemma Jlebera — KypanTa Ha MHOrOOOpa3umu.

. Hepapemncrso I'apraka Ha MHOT0OOpa3nm.

. D-cBoiicTBo kBa3ukoHMOPMHBIX oToOpaxkenuii f: X' — R”.

. N3onepumerpudeckuiit mpoduib MHOT0OOpa3Us.

. OcHoBnas wacrora u N-cpennue reonesudeckoii cdepol Sy (a,t).

8.

Onenku mocrostHHOl B HepaBeHcTBe [lyankape mis mud depennuaabHbIX

dopM Ha MHOTOOOpA3HH.

9.

OneHku WHTErpasIa SHEPTHUHN.

10. KBazukondopmMHbIe TAMEPILIOCKOCTH.
11. KBazurtockoctu kopasmepaoctu > 1.

I Boarorpaackuii rocyqapCTBeHHBIH YHHBEpCHTeT, yia. 2-ag Ilpomompmas, 30, Bosrorpasn
400062, Poccus.

E-mail: miklyuk@vlink.ru
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On the Sasaki Distance Between Directions in a Metric

Space and Solution of a Problem by A. D. Aleksandrov
on Synthetic Description of Riemannian Manifolds

1. G. Nikolaevt

University of Illinois

1. Field and Metric Definition of Riemannian Manifold.

It is customary to define Riemannian space as a pair (R, g) of a C3-smooth
connected differentiable manifold i of dimension greater than one and a C?-
smooth metric tensor g on it. This definition that came to us from Riemann is
called the field definition of Riemannian space; a priori existing metric tensor
field g completely determines all geometric characteristics of Riemannian ge-
ometry: length, angle, parallel translation, curvature etc. In contrast, the metric
description of Riemannian geometry assumes that all basic features tradition-
ally postulated in the field definition (differentiable structure, existence and
smoothness of the metric tensor, etc.) can be derived from purely metric axioms
combined with simplest topological assumptions. From metric point of view, a
Riemannian space is a metric space which, in some sense, admits a continuous,
metrically defined, sectional curvature.

2. Two-Dimensional Results.

A. Wald [10] obtained a metric characterization of two-dimensional Rieman-
nian spaces. K. Menger described Wald’s theorem as follows: “I venture to pre-
dict that the theorem just stated (Wald’s Theorem) will become a cornerstone
in the geometry of the future... This result should make geometers realize that
(contrary to the traditional view) the fundamental notion of curvature does not
depend on coordinates, equations, parametrizations, or differentiability assump-
tions...” [4].

A. D. Aleksandrov [1] used a very different approach, based on his stud-
ies of non-regular convex surfaces, to obtain an independent characterization
of two-dimensional Riemannian spaces. Aleksandrov’s theorem combined with
classical results by Yu. G. Reshetnyak [9] gives a complete solution of the metric
description of 2-dimensional Riemannian spaces.

We emphasize that the 2-dimensional case is very special because the curva-
ture is defined on the space itself rather then on its Grassman manifold G(2, n).

LUniversity of Illinois at U-C, Department of Mathematics, 273 Altgeld Hall, MC-382,
1409 W. Green Street, Urbana, IL 61801, USA.
E-mail: inik@math.uiuc.edu
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3. Aleksandrov’s Problem.

A. D. Aleksandrov conjectured that it is possible to find a purely metric
curvature-like conditions on the distance function of a metric space which en-
sure that such metric space is isometric to a C?-smooth Riemannian manifold,
that is, a Riemannian manifold with continuous curvature tensor. In the mul-
tidimensional case, first progress towards solving Aleksandrov’s conjecture was
done by V. N. Berestovskii [3] who proved that so called Aleksandrov spaces
of two-sided bounded curvature, are in fact C'-differentiable manifolds whose
metric is given by a continuous metric tensor. Later, the author established
that such spaces are almost Riemannian: they are C3-differentiable manifolds
and their metric is given by a metric tensor of class Wp2 NCYe, for every p > 1
and a € (0,1), see [5-7]. These results give a partial solution of Aleksandrov’s
conjecture: there is a metric description of “almost Riemannian” spaces. In 1982
A. D. Aleksandrov included the conjecture on metric characterization of classical
multidimensional C2-Riemannian spaces into the list of unsolved problems in
synthetic geometry. Solution of Aleksandrov’s conjecture requires a new notion
of the generalized tangent “bundle” of a metric space with the Sasaki distance
on it.

4. Sasaki Distance and T%(M)

— —
The Sasaki distance between a pair of bound vectors AB and CD in a
Euclidean space is

\/(dist(A,C))2 +|AB - AD'?,

where ﬁ is the result of the parallel translation of the vector 55 to the
point A. Hence, the tangent bundle of a Euclidean space can be viewed as the
space of bound vectors furnished with the Sasaki distance. The construction of
the Sasaki distance in a Riemannian space uses the Levi—Civita parallelism. Let
(M, g) be a C*°-Riemannian space. The length of a smooth path

t— E(t) = [C(t),f(t)] € Tc(t)(M)a a<t<h,
in the tangent bundle T'(M), in the Sasaki metric, is given by

b

5(2) = [ IOF + VP .

a

Below we introduce the quadrilateral cosine that plays a key role in our work.
It enables us to construct a metric substitute for |V.4)&(t)| and eventually
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introduce generalized tangent “bundles” T*(M) of an arbitrary metric space
—
M. If A,B € M, then AB denotes the ordered pair (A, B). The quadrilateral
cosine is defined by
_ p2(A7 D) + PQ(B, C) B p2(A7 C) B PQ(B, D)

(AB,CD)
cos , = .
d 20(4, B)p(C, D)

As one expects, M can be isometrically imbedded into T'(M), and for a Rie-
mannian space with at least twice continuously differentiable metric tensor our
construction produces the standard tangent bundle and the standard Sasaki
distance on it. Our construction makes sense for any metric space, in particular,
for non-manifolds. As an example, we consider the generalized tangent bundle
of a graph.

5. Solution of Aleksandrov’s Problem.

For metric spaces, the concepts of geodesic segment, a curve of minimal
length joining a given pair of points, angle between geodesic segments, “tangent”
direction and triangle made up of geodesic segments are defined. Let Qp(M)
denote the space of directions at the point P € M and Mp denote the space
of tangent elements.

Now let (M, p) be a metric space. Let Qp(M) # &. Consider two pairs
of directions (¢, ¢) and (¢’,¢’) at the point P. We define the distance between
these pairs by ¥((£,¢),(¢,¢") = max{£(£,¢), £(¢,(’)}. A pair of directions
o = (&) is said to be a section at P if 0 < £(&,¢) < m; Q%(M) denotes the
set of all sections at P.

Let {7, = PBiCr}r=1,2,.. be a sequence of non-degenerate triangles with a
common vertex P and o = (£,() € Q%(M). Let & and ¢, denote the directions
of geodesic segments PBy, and PCy, respectivey. We let o(7) be the pair (&, (x),
k=1,2,.... The sequence {7y }r=1,2,... is said to be o-convergent to the point P
(notation: 7, % P) if By, Cyx — P and o(7;) — o as k — oc.

A metric space (M, p) admits sectional curvature K, in the direction of the
section o € Q% (M) if

(i) There is a sequence {7 = PByCk}r=1,, .. of non-degenerate triangles
in M, which is o-convergent to the point P;

(i) For every o-convergent sequence {7, = PBjCi},_, ,  of non-degene-
rate triangles in M the limit lim 5(T’“:)

%P s(7¥)

A metric space (M, p) possesses sectional curvature at the point P if Q% (M)

# @ and it admits K, for every o € Q%(M). Finally, the curvature of a metric

exists and equals K, = K,(P; M).
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space (M, p) exists at a point P € M if (M, p) possesses sectional curvature
at the point P and the lower and upper curvatures at P satisfy the following
inequalities: K ,,(P) > —oc and K q(P) < +o0. The construction of the Sasaki
distance on T'(M) enables us to introduce the condition of continuity and Holder
continuity of the curvature of a metric space. Solution of Aleksandrov’s problem
is given by the following theorem (see, [8]).

Theorem 1. A locally compact metric space with intrinsic metric and Hoél-
der-continuous, with exponent o € (0,1), curvature which admits local geodesic
extandability is isometric to a C%-Riemannian manifold.

Further we have:

Theorem 2. Any locally compact metric space M with intrinsic metric,
which is not linear at one of its points, in which geodesics are locally extendable
and such that, for some m =0,1,2,..., the curvature of the generalized tangent
bundle T™(M) is Héolder-continuous with exponent o € (0, 1), is isometric to a
C™*+2_smooth Riemannian manifold.

As a corollary, we derive the following metric description of C*°-Riemannian
manifolds.

Corollary 3. Let (M, p) be a locally compact metric space with intrinsic
metric and which admits local geodesic extandability. Suppose that the curvature
of T™(M) is Hélder-continuous for arbitrarily large m and that M is not linear
at one of its points. Then (M, p) is isometric to a C*°-Riemannian manifold.

6. Curvature and Quadrilateral Cosine.

In conclusion we mention two results representing an interplay between the
curvature condition and the notion of the quadrilateral cosine [2].

Theorem 4. A Riemannian space (R, g) is of non-positive sectional curva-
ture if and only if each point P € M has a neighborhood such that, for each
quadruple { A, B, C, D} of distinct points in this neighborhood the absolute value
of their quadrilateral cosine is bounded by 1.

Theorem 5. Let (M, p) be a metric space such that every pair of points can
be joined by a geodesic segment. For every quadruple {A, B,C, D} of distinct
points, let the absolute value of their quadrilateral cosine is bounded by 1. If for
some quadruple {P,Q, R, S} of distinct points their quadrilateral cosine is equal
to 1, then the geodesic convex hull of the set {P,Q, R, S} is either isometric to
a quadrilateral in a FEuclidean plane or a segment of straight line.
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Nonlinear Capacities and
Blow-Up Solutions to Nonlinear PDE’s

Stanislav I. Pohozaev?
Steklov Institute of Mathematics

The plan of the lectures:

1. Nonlinear Capacity and Blow-Up for Nonlinear PDE’s Equations and
Inequalities. (Introduction.)

2. Nonlinear Elliptic Capacity Blow-Up for Nonlinear Elliptic Problems.

3. Nonlinear Parabolic Capacity and Blow-Up for Nonlinear Parabolic Prob-
lems.

4. Nonlinear Hyperbolic Capacity and Blow-Up for Nonlinear Hyperbolic
Problems.

(and if there will be time)

5. Integral Capacity and Blow-Up for Nonlinear Nonlocal Problems.
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A New Pointwise Selection Principle for Mappings of
One Real Variable

V. V. Chistyakov !

State University Higher School of Economics, and
Institute of Mathematics, Technical University of L6dz

The well known Helly selection principle [6] asserts that any uniformly
bounded sequence of monotone real functions on the closed interval T = [a, b
of the real line R contains a pointwise convergent subsequence. This result im-
plies several pointwise selection principles for functions and mappings of one
real variable of various types of uniformly bounded and bounded generalized
variations including numerous applications [7,8,3,1,4].

The aim of this work is to present a general selection principle with no
condition of uniform boundedness of variations of any kind [5].

Let X be a metric space with metric d(-,) and X be the set of all map-
pings from the interval 7 into X. Given a positive integer n and f € X7, we

set v(n, f) =sup > d(f(b:), f(ai)), where the supremum is taken over all num-
=1

bers a;, b; (i = 1,...,n) from T such that ¢ < a; < b1 < ag < by < ... <
apn, < by, < b. The sequence {v(n, f)}32,, called the modulus of variation of f,
was introduced by Chanturiya in [2]. He has shown that a mapping f € X7
(with complete X) has left and right limits at all points of T' if and only if
v(n, f) =o(n) (that is, nh_{{.lo vin, f)/n =0).

Our main result is the following pointwise selection principle:

Theorem. Suppose a sequence of mappings {fj}]‘?‘;l Cc X7 is such that

(i) limsupv(n, f;) = o(n), and (ii) for each t € T the closure in X of the
j—oo

set {fj(t)}32, is compact. Then there exists a subsequence of {f;}32,, which

converges in X pointwise on T to a mapping f € XT satisfying v(n, f) = o(n).

We also prove that: 1) conditions (i) and (ii) are essential; 2) condition (i)

is not necessary, but it is necessary for the uniform convergence; 3) all point-

!Department of Mathematics, State University Higher School of Economics, Bol’shaya
Pechérskaya Street 25, Nizhny Novgorod 603600, Russia.

Current address: Institute of Mathematics, Technical University of LédZ, ul. Wélczariska
215, 93-005 Lodz, Poland.

E-mail: czeslaw@mail.ru

This work is supported by the Russian Foundation for Basic Research (Grant 03—01-00473)
and J. Mianowski Fund / Foundation of Polish Science (2004).
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wise selection principles referred to above are consequences of our Theorem;
4) variants of the Theorem hold for the almost everywhere convergence and
weak pointwise convergence if X is a reflexive separable Banach space (cf. [5]).
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Capacity and its Applications
Mikhail Shubin !

Northeastern University

Abstract. Capacity appears in electrostatics as a characteristic of a body
made of conducting material: it is the maximal charge that can be put on this
body so that the electric potential of the field created by this charge is bounded
by 1. In 1924 Norbert Wiener introduced capacity in mathematics as a positive
function of compact sets. It is not additive as a measure but subadditive. Start-
ing with Wiener’s famous work, the theory was fast developed and applied in
many problems of analysis, partial differential equations, mathematical physics
and geometry.

This paper presents a short summary of my lectures given in Summer 2004
for graduate students in Northeastern University (Boston) and in Conference-
School on Analysis and Geometry (Novosibirsk). It starts with a definition and
simplest properties of the Wiener capacity. Then we describe some classical ap-
plications of capacity in partial differential equations: removable singularities of
bounded harmonic functions and regularity of boundary points for the Dirich-
let boundary value problem (Wiener). In the last section we formulate a recent
result by V. Maz’ya and M. Shubin on two-sided estimates for the bottom of
the spectrum of the Laplacian with the Dirichlet boundary conditions in open
subsets of R™. We comment on corollaries of this result and formulate unsolved
problems.

1. Introduction to Capacity.

In this section we describe definition and simplest properties of the Wiener
capacity. The detailed proofs and more details can be found e.g. in [2].

Capacity is a function on sets

cap: { Borel subsets of (R")} — [0, +oc]

where for simplicity we only consider the case n > 3.

We will only need compact sets F' C R™. In this case 0 < cap(F) < +oo.
The notion of capacity comes from electrostatics, where a unit of capacity is
called Farad, in memory of a great English scientist Michael Faraday (1791-
1867). Faraday first was a bookbinder. Though being self-trained and having no

IDepartment of Mathematics, Northeastern University, 360 Huntington Ave., Boston, MA
02115, USA.
E-mail: shubin@neu.edu
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grasp of mathematics, he became interested in electricity and eventually became
a great physicist. He discovered electromagnetic induction and introduced the
notion of field. His picture is printed on 20 British Pounds banknotes.

Capacity characterizes an electric device which is called capacitor and used
to store electric energy by accumulating imbalance of electric charge. 1 coulomb
of charge causes a 1 volt difference of potentials across 1 farad capacitor. We
can formulate this as the relation

V= c

where V' is the voltage drop, @ is the charge of the body and C is the capacitance
or capacity of the capacitor. V' can also be considered as the work which is needed
to drag a unit charge through the capacitor. Since farad is a very big unit (SI),
generally we use smaller units: microfarad QF, nanofarad nF and picofarad pF'
which are equal to 1076F, 107°F, 10~ '2F respectively.

It is known from electrostatics that a charge ¢ at zo € R? creates electric
field E = —VV at any point 2 € R3. Here

q
Vi) = ————
() dr|x — z0|’
hence by an easy calculation
q z - Eo

:Eﬁ_zop’

which corresponds to the inverse squares law of interaction discovered in elec-
trostatics by Coulomb (and earlier in gravitation by Newton). Since the force
acting on a charge e at z is eE(z), then the work done over a test charge e to
drag it along a curve v: [0, 1] — R3 against the field is

/ (—¢E) - d7 = / edV = e(V(x(1)) - V(1(0)),

Y Y

In particular, we see that this work is independent of the curve, provided that
the initial and terminal points of the curve are fixed.

In n-dimensional case (n > 3) a natural generalization of the potential above
is obtained if we take V(x) = ¢€(z) where

1
(n — 2)wy |z — 2|2’

E(z) =

x € R™,
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which is the fundamental solution for the operator (—A) in R"”, n > 3. In this
formula w,, is the (n — 1)-dimensional volume of the (n — 1)-dimensional unit
sphere.

If we have several charges ¢1,q2,...,qn at the points y1,yo,...,yn respec-
tively, then we can use so called superposition principle which is equivalent to
the linearity of the electrostatics equations (or, more generally, Maxwell equa-
tions, which describe electrodynamics): if charges are added, then the forces and
potentials are added too. So we get

N
1 di 3
Viz) = — — x €R”
) 4”; |z — yil
and more generally
N
V(z) = Zqif)(m —yi), w€R™ n>3.

i=1

In case when the charge distribution is not discrete and given by a density
function p(x) (say, continuous and compactly supported), then we need to take
the potential in the form

V() = [ &= o) v
R"L
or more generally if distribution is given by a compactly supported measure
(possibly signed) u:

V() = [ &6~ v dut).
R?L

Note that AV(x) = 0 outside the support of the measure p. If du(z) =
p(z) dz, where p € Ct, then AV (z) = —p(z).

Now let us turn to a precise definition of capacity which is due to Norbert
Wiener (1894-1964). He contributed to many areas of mathematics and applied
mathematics. (In particular, he is known as the father of cybernetics.) He once
said: “One of the chief duties of the mathematician in acting as an advisor to
scientists is to discourage them from expecting too much from mathematics”.
Wiener gave the following definition of capacity:

Definition 1.1. Capacity of a compact set F C R™, n > 3, is

cap(F) = s&p{u(Fﬂ /E(x —y)du(y) < 1 for all x € R"\ F'}, (1.1)
F
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where p is a measure on F' (possibly signed), supremum is taken over all such
measures.

In fact, maximum or maximizing measure on F' exists and it is unique. It
is positive and supported on the boundary of F, which is OF = F \ Int(F),
where Int(F) is the set of all interior points of F. The maximizing measure
is called equilibrium distribution of charges. When the total measure u(F) is
fixed, then the equilibrium distribution of charges minimizes the energy of the
system of charges. The corresponding potential (the integral in (1.1)) is called
the equilibrium potential.

It was Faraday who demonstrated that in equilibrium the charges only reside
on the exterior boundary of a charged conductor, and an exterior charge had no
influence on anything enclosed within a conductor (this shielding effect is used
in what is now known as the Faraday cage). This means that V' (z) is constant
on every connected component of Int(F') (so V' = const on Int(F) if Int(F') is
connected). This property is equivalent to saying that E(z) = 0 on Int(F).

Let us also provide an alternative definition of the Wiener capacity:

Definition 1.2. Capacity of a compact set F C R™, n > 3, is
cap(F) = inf /|Vu|2 de | u=1lon F, u(z) = 0as |z o0 p. (1.2)
u

Here the infimum is taken over all v € C*°(R") satisfying the conditions
n (1.2). It is easy to see that instead we can take infimum over functions from
u € C§°(R™), such that v = 1 in a neighborhood of F' (with the neighborhood
depending upon ). In yet another convenient version instead of requiring u €
C* (or C§°) we can take Lipschitz functions i.e. functions u satisfying

|u(x)—u(y)| <C'|‘(E_y|a x,yéR”,

with C' depending upon u. Such functions are known to be differentiable almost
everywhere with the derivatives coinciding with the corresponding distributional
derivatives (so that we can integrate by parts).

Definition 1.2 is equivalent to Definition 1.1 but we will not prove this now.
Let us only mention that the minimizing function in (1.2) in fact coincides
with the equilibrium potential for any set F' as in Definition 1.1, provided F' is
sufficiently regular (e.g. if every connected component of F' is the closure of an
open set with a smooth boundary).

Proposition 1.3. The capacity as a function on compact sets with values
in [0,+00) has the following properties:
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1. Monotonicity: Fy C Fy implies that cap(Fy) < cap(Fy).

2. Continuity: for every compact F and every € > 0, there exists an open set
U D F, such that for every compact F' with U D F' D F, we have

cap(F') < cap(F) +e.

3. Choquet inequality: for any compact sets Fy, Fo C R™
cap(Fy U Fy) + cap(Fy N Fy) < cap(Fy) + cap(F).
In particular, the capacity is subadditive i.e.
cap(Fy U Fy) < cap(Fy) + cap(Fy)
for any compact sets Fy, F» C R™.

Proof. Monotonicity follows immediately from Definition 1.2. Continuity
easily follows from the same definition of cap(F') if we use the test functions
from C§°(R™) which are equal to 1 near F.

To prove the Choquet inequality we can use test functions u, v € C§°(R™)
which have compact support and are almost minimizing for Fy, F» in (1.2), and
then take ¢ = max{u,v}, ¥» = min{u,v} (which are Lipschitz functions with
compact support). Then ¢, can be test functions for Fy U Fy, Fy N Fy, and

cap(Fy U Fy) + cap(F1 N Fy) </|Vg0|2 dx+/|V1/)|2dx
=/|Vu|2dx+/|Vv|2dx<cap(F1)+cap(F2)+e, (1.3)

where ¢ > 0 can be made arbitrarily small.
In this calculation we used the fact (which follows from the implicit function
theorem) that for any function f € C*°(R") the set

{z: f(z) =0, Vf(x) # 0}

has measure zero (we should apply this to f = u — v). The resulting inequality
in (1.3) holds for every € > 0, hence for ¢ = 0, which ends the proof. O

It can be shown that the Choquet inequality allows to extend capacity to all
Borel sets, like a measure. We can start with the following two functions of sets
which are related to capacity and defined for any set in R™ (unlike capacity):
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Definition 1.4.

e Internal capacity of any set £ C R"™ is defined as

cap(E) = sup cap(K)
KCE, K compact

e FEaxternal capacity of any set F C R" is defined as

cap(FE) = inf .
Cap( ) GDE,I% open @(G)

As in measure theory the best sets are the ones where the above two defini-
tions coincide. There is enough of them due to the following Choquet theorem:

Theorem 1.5. cap(E) = cap(E) for any Borel set E (and even any analytic
set).

Let us recall that the Borel sets are sets from a minimal o-algebra which
contains all open (or closed) sets. Analytic sets form a bigger o-algebra which
we will not define here.

Any set F satisfying the above condition in Theorem 1.5 is called capacitable.
In particular, all open and closed sets are capacitable, as well as all sets which
are obtained from them by arbitrarily many countable unions and intersections.

The following theorem establishes a relation between Lebesgue measure and
capacity:

Theorem 1.6. For any Borel set F C R", n > 3,

n

mes(F) < ¢, (cap(F))=-2,

with equality for any closed ball.

The constant ¢, can be found from the explicit values of the measure and
capacity of the unit ball.

Corollary 1.7. If F C R™ and cap(F) = 0, then mes(F') = 0.

Note that the converse is not always true. For example, for any open ball B,
with the radius r we have

cap(B,) = cap(0B,) = (n — Z)wnr”_Q,

but mes(9B,) = 0. Here B, means the closure of B,, i.e. the corresponding
closed ball.
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2. Applications to Partial Differential Equations.

We will describe without proofs two important applications of capacity in
partial differential equations. In these applications the language of capacity is
clearly relevant, in particular because they give necessary and sufficient condi-
tions of some important properties to hold. For the proof we refer the reader
to [2].

2.1. Removable Singularity Property.

Definition 2.1. Let E be a compact subset in R™. Suppose that for any
open set 2 C R™, such that Q D F, and any u € C*°(Q \ E) such that Au =0
in Q\ E and w is bounded on Q\ E, there exists U € C*°(Q2), such that AU =0
in Qand U = v on Q\ FE (i.e., any bounded harmonic function in Q \ E can
be extended to a harmonic function in Q). Then E is said to have removable
singularities property.

It is proved in PDE textbooks that a set consisting of one point satisfies the
removable singularity property.

The following theorem completely characterizes all compact sets in R™ which
have the removable singularity property.

Theorem 2.2. A compact set E has the removable singularity property if
and only if cap(E) = 0.

Note that if F is a submanifold then

cap(F) =0 <= codim E > 2.

2.2. Solvability of the Dirichlet Problem.
Consider the Dirichlet problem stated in the classical form as follows:

Au=0in Q C R", ulon = ¢ € C(09), (2.1)

where (2 is a bounded open subset of R™, 92 its boundary, ¢ is a given continuous
function on 00 and we are looking for a solution u € C2(Q) N C(Q). (Then v is
called a classical solution.) By the maximum principle such solution is unique.
If 00 is smooth or piecewise smooth, then the classical solution exists for all ¢.
But for general 2 the solution u may not exist for some .

N. Wiener discovered a necessary and sufficient condition on € such that
the classical solution exists for all ¢. We will now describe this result which is
called Wiener Criterion.

Let us start by presenting €2 in the form of a union of domains with smooth
boundaries:

Q=J % %,
k=1
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and assume that ¢ = ®[sq where ® € C(Q), i.e. ® is a continuous extension
of ¢ to Q. Let us construct a harmonic function wug in Qj such that

ug loq, = P loq,

Clearly,
|lug| < M = max ®.
Q

It follows that the set of all uy’s is precompact in C'(K) for any compact K C .
Therefore, passing to a subsequence if necessary, we can assume that up, — U €
C*°(Q) uniformly on any compact set K C €.

It is easy to see that U does not depend on ® and if (2.1) is solvable, then
u = U. However, in general, it is not necessarily true for all points x € 9f) that

lim U(z) = ().

TEQ,x—T

The points z where this is true for all ¢ are called regular. (We will also call a
point érreqular if it is not regular.) The Dirichlet problem (2.1) is solvable for
all ¢ if and only if all points x € 02 are regular.

The following theorem gives a regularity criterion:

Theorem 2.3 (Wiener). A point T € 0N is reqular if and only if

5220 (s \ Byecs) 0 (B, ) = 426,
k=1

where B, = B,.(Z) (the open ball of radius r centered at T), B, is the closure of
this ball.

The following theorem asserts that there are sufficiently many regular points:
Theorem 2.4 (Kellogg). For any bounded open set Q) C R”

cap{irregular points on 00} = 0.

It can be shown that then (n — 1)-dimensional Hausdorff measure of the set
of irregular points is 0. In particular, the set of regular points is dense in 0.

3. An Application of Capacity in Spectral Theory
In this section we describe a recent application of capacity to spectral theory,
based on ideas of [1].
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Let © be a bounded open set in R™ with a smooth (C*) boundary 0f.
Consider the operator —A on the domain

D(=A) = {u € C2(Q), ulsq = 0}.

Now let A be an eigenvalue of the operator (—A) with a corresponding eigen-

function wu, i.e. u € D(—A), u # 0, and (—A)u = Au in . It is convenient

to consider —A as an (unbounded) linear operator in the Hilbert space L?({2)

with the scalar product (u,v) = [ud dz. Then for an eigenfunction u with the
Q

eigenvalue \ we obtain, integrating by parts (or using the Green formula):

Mu,u) = (—Au,u) —Q/|Vu|2dx—ﬂ/jz_:l

2
dx,

ou
81‘]'
which implies

J|Vul?dx
Q

A= = 0.

[l °
Q
It can be proved that there exists a complete orthonormal system 1,1, ...
of eigenfunctions of —A in D(—A), with the eigenvalues A\, \a,..., so that
—Aw; = A\j4p;. The eigenvalues form a discrete set with the only accumulation
point at +00, so we can enumerate them in the increasing order:

A< A< A3

Here each eigenvalue is listed the number of times which is equal to its multi-
plicity. (In fact, it can be proved that the lowest eigenvalue is simple, so that
A< )\2) Then

J|Vul?dx
(3.1)

. . Q
mind; = A =minTrono
Q

where the minimum is taken over all v € D(—A). To show this note first that

A1 is obviously greater or equal than the right hand side of (3.1) because we can

take u = 1. For the inverse inequality we should prove that the ratio in the

right hand side of (3.1) is always greater or equal than A\, for any u € D(—A).

To this end let us expand u over the system {1;}: v =>_ ¢;9;, where c¢; are the
J
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corresponding Fourier coefficients. Then (u,u) =Y |c;|? and
J

(—Au,u) =D Ajle;* > (mjinAj) > el = M(u, ),
J i

which proves the desired inequality.

It can be shown that instead of taking minimum over u € D(—A) in (3.1) we
can take infimum over all functions u € C5°(£2). (To prove this we need to ap-
proximate any function u € D(—A) by functions from C§°(€2), multiplying u by
appropriate cut-off functions which vanish near the boundary, and then smooth-
ing them to put them into C5°(£2).) But then the corresponding infimum is well
defined for any open set @ C R™ (possibly unbounded and having non-smooth
boundary). So for any such Q we can define its invariant

JIVul?dx

MQ) = inf T — 3.2
) uEé‘rOic(Q) [ |u|? da (32)
Q

In fact, A(Q) is also the bottom of the spectrum of a self-adjoint operator
which can be obtained by the Friedrichs construction from the quadratic form
which is the Dirichlet integral (the numerator in (3.2)). We will not describe
the Friedrichs construction. The corresponding operator does not necessarily
have discrete spectrum (or even eigenvalues) in L?(€2). It may have continuous
spectrum like in the case of ) = R™. In general the spectrum may have a com-
plicated nature instead, and investigating it is an important problem of spectral
theory.

For general unbounded € it is important to know whether the spectrum is
separated from 0, i.e. whether A\(Q) is strictly positive. Clearly, positivity of
A(Q) is equivalent to the inequality

/|Vu|2 de > /\/ w2 de, ue CPQ), (3.3)
Q Q

to hold with A\ > 0 (independent of u), or in other words,

/|u|2 dr < c/ Vul?dz, ue CR(Q), (3.4)
Q Q

where C' = C(Q) is independent of u (the best possible C is A(Q)71).
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Example 3.1. In 1 dimensional case, let Q@ = R, and take u = uy € C*(R)
such that uy = 1on [-N, N],uy =0on [—oo, —-N—-1)U(N+1, 4], |un| < 1,
and |u)y| < C for some C > 0 (independent of N). Then

[ |Vun|?dzx < c?
[lun|?dz = N

so the estimate (3.4) is impossible (hence A(R) = 0).

Example 3.2. Now let us consider the case of a finite interval Q = (0, ¢),
where ¢ > 0. Let v € C1([0,£]), u(0) = 0. Then we can write

—0 as N — oo,

so by the Cauchy—Schwarz inequality

x Y/
(@) <« / ! (£)? dt < ¢ / W ()2 d,
0 0

hence integrating it over (0, ¢), we obtain

¢ ¢
/|u|2dx<£2/|u'(t)|2dt.
0 0

This means that we can take C' = ¢ in (3.4) and A = /=2 in (3.3), so we should
have
A(0,6)) = 72

Note that in this case the eigenfunctions can be explicitly found: they are sin ”T’f’”,
k =1,2,..., and the eigenvalues are ”252. So the smallest eigenvalue for (0, )

is in fact A((0,¢)) = 72 /¢%.

In this example we were able to obtain the estimate of the form (3.4) for
Q = (0,¢) with the only condition u(0) = 0. o

Now we will try to characterize compact sets F' C B, (here B, means a fixed

open ball with an arbitrary center in R™, B, its closure), such that the following
estimate holds

/|u|2 dz < C/ |Vu?dz, uwe C>®(B,), ulr =0,
B, B,
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where C'is independent of u. The following example shows that for the dimension
n > 3 it is not enough to take F consisting of a single point.

Example 3.3. Let B, = B,(0), F = {0} in R™, n > 3. Let us show that the
estimate

/|u|2da: < C/|Vu|2da:, we C=(B,), u(0) =0,
B, B,

does not hold. To this end take u = u. = u.(|z|), where u. = 1 if |z]| > e,
ue(0) =0, [Vu| < Cre~t. Then [ |u|?>dz > Cy > 0, but
B,

/|Vu|2 de < Cse 2" =C3¢"2 -0, ase\,0,

B,
which contradicts the estimate above.
In fact, it can be shown that the estimate
/|u|2 dr < c/ Vul?dz, e C®(B,), ulr =0,
B B,

holds if and only if cap(F') > 0. More precisely,

/|u|2 dr < Cur™ /|Vu|2 dr, ueC™(B,), ulp=0

~ Cap(F) ) ) )
B, B,

where C), depends on the dimension n only.

Now let us try to estimate A(Q2) for an arbitrary open set 2 C R™ in geometric
terms. To this end we will first notice that A(£2) has the following monotonicity
property:

If Q' C Q, then A\(Q2) C A(©).

This immediately follows from (3.2) because the supply of functions for taking
the infimum is larger and therefore the infimum is smaller for 2 compared
with Q.

Now let us compare 2 with a ball B, C Q. By a scaling (a similarity trans-
formation of variables reducing the ball B, to a unit ball B;), we easily obtain
that

MNB,) = ¢, 2,
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where ¢, = A(B1). By monotonicity we get then:
MQ) < epr?.

This estimate becomes stronger if r increases, so we should take a ball of the
maximal radius to get the best estimate. Since the biggest ball B, C {2 may not
exist, we can define the interior radius of 2 by

ro = sup{r | 3B, C Q}. (3.5)

Clearly, 0 < rq < +oo for any non-empty Q (and it can be indeed +oo for
unbounded 2). From the previous arguments we easily conclude that

MQ) < Cprg® (3.6)

This gives the best result which we can get from monotonicity. But it is still far
from being precise. In particular, the opposite estimate is not true. This can be
seen from the following example. Let

a=r"\ |J B..()

zEL™

where r, — 0 sufficiently fast as |2| — oo (e.g. 7, = 271#| is sufficient). Obviously,
ro < 00, but it can be proved (e.g. from a more precise estimate given below)
that A(Q2) = 0.

However by modifying the definition of rq in (3.5), we can improve (3.6) and
get a two-sided estimate for A\(Q2). This modification consists of ignoring sets of
“small” capacity, which we will refer to as negligible sets. In fact the definition
of negligibility includes a parameter v, 0 < v < 1. We will call a compact set
F C B, negligible in B,., or, more precisely, v-negligible in B,., if

cap(F) < «ycap(By).
Now we can modify the definition of rq by introducing a new quantity
rq~ = sup{r | 3B, C R", B, \ Q is y-negligible in B, }.

So here we allow not only balls B, C € but balls which are in 2 up to a
set of “small” capacity. (Note, however, that here “small” may mean set which
is allowed to take 99% os capacity of B, if v = 0.99.)

The quantity rq , is called interior capacitary radius of Q.
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We will now formulate a result which is essentially contained in [1] and gives
the desired two-sided estimate for A(£2).

Theorem 3.4. Let us fix v € (0,1). Then there exist ¢ = c(y,n) > 0 and
C =C(vy,n) > 0 such that

cr;ﬁ/ <A < C’r;ﬁ/. (3.7)

Let us formulate some interesting corollaries of Theorem 3.4.
Corollary 3.5. A\(2) > 0 if and only if rq -, < co.

This corollary gives necessary and sufficient condition of strict positivity
of the operator —A (with the Dirichlet boundary conditions) in €. (Here the
operator should be understood as the Friedrichs extension from C§°(€2).)

Since the condition A(€2) > 0 does not contain v, we immediately obtain

Corollary 3.6. Conditions rq ., < 0o, taken for different v’s, are equivalent.

Denoting F' = R™ \ © (which can be an arbitrary closed subset in R™), we
obtain from the previous Corollary (comparing v = 0.01 and v = 0.99):

Corollary 3.7. Let F be a closed subset in R™, which has the following
property: there exists r > 0 such that

cap(By \ ©) > 0.01 cap(B,)
for all B,.. Then there exists r1 > 0 such that
cap(By, \ ) > 0.99 cap(B,,)

for all By, .

This is a new property of capacity which is proved by spectral theory argu-
ments.

Let us formulate two open problems related with the topics discussed in this
section.

1. Find precise dependence of ¢ = ¢(y, D) and C' = C(v,n) from (3.7) upon v
and n.

2. Extend the results formulated in this section to the Laplacian on Rieman-
nian manifolds.

Once upon a time Marc Kac formulated a fundamental and fascinating ques-
tion: “Can you hear the shape of a drum?" The precise meaning of this
question is as follows: is it possible to reconstruct the drum (a bounded domain
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in R?) up to an isometry by the spectrum of its Dirichlet Laplacian (i.e. Lapla-
cian with the Dirichlet boundary conditions)? Now, decades and hundreds (if
not thousands) papers after this formulation first appeared, this question and its
generalizations are still in the focus of attention for many researchers in spectral
geometry.

Theorem 3.4 suggest formulation of a question, which is roughly inverse to
the question of Marc Kac: “Can you see the fundamental frequency of a
drum?" More precisely, can you find a simple visual image related to a domain
in R? (or R™), such that it allows to recover the lowest eigenvalue of the Dirichlet
Laplacian in this domain? Assuming that our eye can filter out the sets of small
capacity, a partial answer to this question is given by Theorem 3.4.

I will finish with a quote which I borrowed from a preface by Michel Haze-
winkel to one of the books which he edited (and which is published by Kluwer
Publishers): “Approach your problems from the right end and begin
with the answers. Then one day, perhaps you will find the final ques-
tion.” (From “The Hermit Clad in Crane Feathers” in R. van Gulik’s “The
Chinese Maze Murders”.)
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