Program (225 Kb)

 

Courses:

E. Balzin. Families of categories in geometry, algebra, and homotopy theory.

S. Barannikov. Noncommutative Hodge structures, Batalin -Vilkovisky geometry and mirror symmetry.

A. Efimov. Introduction to the category theory.

T. Milanov. Lecture 1: Frobenius manifolds in singularity theory;

             Lecture 2: Mirror symmetry for orbifold quotients of the Fermat type Calabi--Yau hypersurfaces;

             Lecture 3: Analytic continuation of Gromov--Witten invariants.

A. Mironov. Integrable systems and algebraic geometry.

T. Panov. Geometry and topology of toric varieties.

V. Przyjalkowski. Weighted complete intersections.

A. Takahashi. Singularities and Mirror Symmetry.

A. Sheshmani. Enumerative geometry of Calabi-Yau manifolds: Gromov-Witten and Donaldson-Thomas theories in dimensions 2,3,4.

K. Shramov. Severi-Brauer varieties and their automorphisms.

A. Szenes. Localization techniques and the structure of the cohomology ring of the moduli spaces of Higgs bundles.


 

Short talks:

S. Abramyan. Higher Whitehead products in toric topology.

A. Basalaev. Mirror symmetry for smooth toric varieties and Saito canonical filtration.

I. Fedorov. How to compute the ring structure on the cohomology of Joyce's $G_2$ manifolds via intersections of embedded cycles.

A. Kazhymurat. Geometry of Lagrangian submanifolds in CP^2.

N. Kirilova. On Non-uniqueness of Cycles in Some Nonlinear Dynamical Systems.

V. Kulikov. TBA.

A. Lushin. Toric Cycles in the Complement to a Complex Curve in C^2.

G. Papayanov. Coherence of higher direct images for superconnections.

M. Ovcharenko. On Hamiltonian-minimal isotropic homogeneous tori in C^n and CP^n.

 

© Институт математики им. С. Л. Соболева, 2018