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Short History

Higher integrability of the gradient or Boyarsky�Meyers estimate

has the form

∫

Ω

|∇u|2+δdx 6 C

∫

Ω

|f |2+δ dx ,

where u is a solution to a boundary value problem for the seond

order linear ellipti equation with �right-hand side� f , in bounded

strongly Lipshitz domain Ω and for p-Laplaian

∫

Ω

|∇u|p+δdx 6 C

∫

Ω

|f |p
′(1+δ/p) dx ,

1

p
+

1

p′
= 1.
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Short History

The following paper

[1℄ B.V. Bojarskii, Generalized solutions to a system of �rst-order

di�erential equations of ellipti type with disontinuous

oe�ients // Math. Sbornik, V. 43(85) (4, 1957). P. 451�503.

is the �rst publiation in the topi. In this artile the author showed,

that the gradient of the solution to the Dirihlet problem for the

divergent uniformly ellipti equations with measurable oe�ients

in bounded domain, is integrable in the power greater than two.
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Short History

Later, in the multidimensional ase for equations of the same type,

the inreased summability of the gradient of the solution of the

Dirihlet problem in a domain with a su�iently regular boundary

was established in the work

[2℄ N. G. Meyers, An Lp�estimate for the gradient of solutions of

seond order ellipti divergene equations // Annali della Suola

Normale Superiore di Pisa, Classe di Sienze 3-e s�erie. T. 17, (3,

1963). P. 189�206.

Subsequently, similar results were obtained for the Neumann

problem.
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Short History

We also note that the inreased summability of the gradient of

solutions to the Dirihlet problem in a domain with a Lishitz

boundary for the p-Laplae equation with a variable exponent p(x)
satisfying speial onditions on the modulus of ontinuity was

obtained in the paper

[3℄ V.V. Zhikov, On some Variational Problems // Russian Journal

of Mathematial physis, V. 5 (1, 1997). P. 105�116.

Note that V.V. Zhikov's study of the Meyers estimates was

stimulated by the problem of a thermistor, whih gives a joint

desription of the eletri �eld potential and temperature. Systems

of the same kind arise in the hydromehanis of quasi-Newtonian

�uids.
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Short History

Later, in the papers

[4℄ E. Aerbi, G. Mingione. Gradient estimates for the

p(x)-Laplaian system. // J. Reine Angew. Math. 2005. V. 584. P.

117�148.

[5℄ L. Diening, S. Shwarzsaher. Global gradient estimates for the

p(.)-Laplaian. // Nonlinear Anal. 2014. V. 106. P. 70�85.

this result was strengthened and extended to systems of ellipti

equations with variable summability exponent.
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Short History

For the Laplae equation, the mixed Zaremba problem formulated

by W. Wirtinger, in a three-dimensional bounded domain with a

smooth boundary and inhomogeneous Dirihlet and Neumann

onditions was �rst onsidered in the work

[6℄ Zaremba, S.: Sur un probl�eme mixte relatif �a l'�equation de

Laplae (Frenh). Bulletin de l'Aad�emie des sienes de Craovie,

Classe des sienes math�ematiques et naturelles, serie A, 313�344

(1910)

The lassial solvability of the problem was established by the

methods of potential theory under the assumption that the

boundary of the open set on whih the Neumann data are given

also has a ertain smoothness.
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Short History

The study of the properties of solutions to the Zaremba problem for

seond-order ellipti equations with variable regular oe�ients

goes bak to the work

[7℄ G. Fihera. Sul problema misto per le equazioni lineari alle

derivate parziali del seondo ordine di tipo ellittio (Italian) // Rev.

Roumaine Math. Pures Appl. 1964. V. 9. P. 3�9.

In it, in partiular, it was established that at the juntion of the

Dirihlet and Neumann data, the smoothness of the solutions is

lost.
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Short History

For divergent uniformly ellipti seond-order equations with

measurable oe�ients, integral and pointwise estimates for

solutions of the Zaremba problem under fairly general assumptions

about the boundary of the domain are given in

[8℄ V.G. Mazya. Some estimates for solutions of seond-order

ellipti equations. // The USSR Aademy of Sienes. Doklady.

Mathematis. 1961. V. 137. No 5. P. 1057�1059.
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Short History

In the papers

[13℄ Yu.A. Alkhutov, G.A. Chehkin. Inreased Integrability of the

Gradient of the Solution to the Zaremba Problem for the Poisson

Equation. // Russian Aademy of Sienies. Doklady Mathematis

103 (2, 2021): 69�71.

[14℄ Yu.A. Alkhutov, G.A. Chehkin, The Meyer's Estimate of

Solutions to Zaremba Problem for Seond-order Ellipti Equations

in Divergent Form // CR M�eanique, T. 349 (2, 2021). P. 299�304.

for the linear ellipti equation of the seond order, an estimate is

obtained for the higher integrability of the gradient of solutions to

the Zaremba problem in a domain with a Lipshitz boundary and a

rapid hange of the Dirihlet and Neumann boundary onditions.
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Short History

[15℄ Yu.A. Alkhutov, G.A. Chehkin, V.G. Maz'ya. On the

Boyarsky�Meyers Estimate of a Solution to the Zaremba Problem

// Arh Rational Meh Anal, V. 245, No 2 (2022). P. 1197�1211.
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Linear equations

Linear equation
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Setting of the problem

We prove estimates of solutions to the Zaremba problem for ellipti

equation in bounded Lipshitz domain D ∈ R
n
, where n > 1, of the

form

Lu := div(a(x)∇u) (1)

with uniformly ellipti measurable and symmetri matrix

a(x) = {aij(x)}, i.e. aij = aji and

α−1|ξ|2 6
n

∑

i ,j=1

aij(x)ξiξj 6 α|ξ|2 for almost all x ∈ D and all ξ ∈ R
n.

(2)

We assume that F ⊂ ∂D is losed and G = ∂D \ F .
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Setting of the problem

Consider the Zaremba problem







Lu = l in D,
u = 0 on F ,
∂u
∂ν = 0 on G ,

(3)

where

∂u
∂ν is the outer onormal derivative of u, and l is a linear

funtional on W 1
2 (D,F ), the set of funtions from W 1

2 (D) with
zero trae on F .
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Setting of the problem

By the solution of the problem (3) we mean the funtion

u ∈ W 1
2 (D,F ) for whih the integral identity

∫

D

a∇u · ∇ϕ dx =

∫

D

f · ∇ϕ dx (4)

holds for all test-funtions ϕ ∈ W 1
2 (D,F ), the omponents of the

vetor-funtion f = (f1, . . . , fn) belong to L2(D). Here f appears

from the representation of the funtional l .
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Auxiliaries

We are interested in the question of inreased summability

(integrability) of the gradient of solutions to the problem (3). The

onditions on the struture of the set of the Dirihlet data support

F playes the key role.

For the ompat K ⊂ R
n
we de�ne the apaity Cq(K ), 1 < q < n,

by the formula

Cq(K ) = inf

{
∫

Rn

|∇ϕ|q dx : ϕ ∈ C∞
0 (Rn), ϕ > 1 on K

}

. (5)
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Auxiliaries

Suppose Bx0
r is an open ball of the radius r entered in x0, and

mesn−1(E ) is (n − 1)-measure of the set E . Assume also that

q = 2n/(n+ 2) as n > 2 and q = 3/2 as n = 2. We suppose one of

the following onditions is ful�lled: for an arbitrary point x0 ∈ F as

r 6 r0 the inequality

Cq(F ∩ B
x0
r ) > c0r

n−q
(6)

holds true or the inequality

mesn−1(F ∩ B
x0
r ) > c0r

n−1
(7)

holds, the positive onstant c0 does not depend on x0 and r .

Condition (7) is universal (even for nonlinear equations).
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Auxiliaries

The ondition (7) is stronger, than (6), but it is learer. Note that

under any of these onditions, the funtions v ∈ W 1
2 (D,F ) satisfy

the Friedrihs inequality

∫

D

v2 dx 6 K

∫

D

|∇v |2 dx ,

whih, by the Lax-Milgram theorem, implies the unique solvability

of the problem (3).
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Main result

Theorem

If f ∈ L2+δ0(D), where δ0 > 0, then there exist positive onstants

δ(n, δ0) < δ0 and C , suh that for a solution to the problem (3) the

estimate

∫

D

|∇u|2+δdx 6 C

∫

D

|f |2+δ dx , (8)

holds, where C depends only on δ0, the dimension n, onstant c0
from (6) and (7), and also the onstant r0.
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p-Laplaian

p-Laplaian

Results from

[17℄ Yu.A. Alkhutov, A.G. Chehkina. Many-Dimensional Zaremba

Problem for an Inhomogeneous p-Laplae Equation // Russian

Aademy of Sienes. Doklady Mathematis, V. 106, No 1 (2022).

P. 143�146.
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Settings

To formulate the Zaremba problem, we introdue the Sobolev

funtion spae W 1
p (Ω,F ). A priori the funtions v ∈ W 1

p (Ω,F ) are
assumed to satisfy the Friedrihs inequality

∫

Ω

|v |pdx 6

∫

Ω

|∇v |pdx . (9)
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Settings

Consider the following problem in bounded strongly Lipshitz

domain

∆pu := div(|∇u|p−2∇u) = l in Ω,

u = 0 on F ,
∂u

∂ν
= 0 on G .

(10)
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Settings

By the solution of problem (10), we mean a funtion satisfying the

integral identity

∫

Ω

|∇u|p−2∇u · ∇ϕdx− = l(ϕ) (11)

for all test funtions ϕ ∈ W 1
p (Ω,F ). Hear

l(ϕ) =

n
∑

i=1

∫

Ω

fiϕxidx , (12)

where fi ∈ Lp′(Ω) for i = 1, . . . , n and p′ = p
p−1 .
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Conditions

Let us remind the de�nition. For the ompat K ⊂ R
n
we de�ne

the apaity Cq(K ), 1 < q < n, by the formula

Cq(K ) = inf

{
∫

Rn

|∇ϕ|q dx : ϕ ∈ C∞
0 (Rn), ϕ > 1 on K

}

, (13)

if p ∈ (1, n/(n − 1)], then q = (p + 1)/2, but if p ∈ (n/(n − 1), n],
where n > 2, then q = np/(n + p).
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Conditions

A. If 1 < p 6 n, then the following ondition is assumed to hold:

for an arbitrary point x0 ∈ F for r 6 r0, it is true that

cq(F ∩ B
x0
r ) > c0r

n−q, (14)

where c0 is a positive onstant independent of x0 and r.

B. If p > n, then the set F is assumed to be nonempty: F 6= ∅.
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Conditions

Note that the ondition

mesn−1(F ∩ B
x0
r ) > c0r

n−1
(15)

is similar to (14) and implies (14). As we mentioned before

ondition (15) is universal for linear and for nonlinear equations.

Gregory A. Chehkin M.V.Lomonosov Mosow State University

Boyarsky�Meyers Inequality for Zaremba Problem 29/ 56



Inequality

Theorem

If f ∈ Lp′+δ0(Ω), where δ0 > 0, then there exist positive onstants

δ(n, p, δ0) < δ0 and C , suh that for a solution to the problem (10)

the estimate

∫

Ω

|∇u|p+δdx 6 C

∫

Ω

|f |p
′(1+δ/p) dx , (16)

holds, where C depends only on p, δ0, the dimension n, onstant c0
from (14) or (15), and also the onstant r0.
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p(·)-Laplaian

p(·)-Laplaian

Results from

[17℄ Yu.A. Alkhutov, G.A. Chehkin. The Boyarsky�Meyers

Inequality for the Zaremba Problem for p(·)-Laplaian // Journal of

Mathematial Sienes, New York, Springer, Vol. 274, No. 4, 2023:

423�441.
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Settings

We formulate the Zaremba problem for inhomogeneous

p(·)-Laplaian in Lipshitz domain D ⊂ R
n
with variable exponent

p, suh that

1 < α 6 p(x) 6 β <∞ for almost all x ∈ D. (17)

To set the problem we introdue the funtional spae

W (D) = {v ∈ W 1
α(D), |∇v |p(·) ∈ L1(D)} (18)

with Sobolev-Orliz norm

‖v‖W 1
p(·)

(D) = ‖v‖Lα(D) + ‖∇v‖Lp(·)(D), (19)
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Settings

where ‖ · ‖Lp(·)(D) is the Luxemburg norm de�ned by the following

formula:

‖g‖Lp(·)(D)
= inf

t>0

{
∫

D

|t−1g(x)|p(x) dx 6 1

}

. (20)
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Settings

Given the norm (19) in the spae W (D), we get the re�exive

Banah spae. Denote it by W 1
p(·)(D). Also we denote by

W 1
p(·)(D,F ) the ompletion of the set of funtions from W 1

p(·)(D)

with support lying outside some neighborhood of the losed set

F ⊂ ∂D, by the norm (19).
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Settings

De�ne the spae of funtions H1
p(·)(D), whih is the losure of the

set of smooth funtions in the norm (19). Similarly, one an

introdue the spae of funtions H1
p(·)(D,F ) as a ompletion in the

norm (19) of smooth funtions equal to zero in a neighborhood of

F .

The density of smooth funtions in W 1
p(·)(D) is provided by the

well-known logarithmi ondition

|p(x)− p(y)| 6
k0

∣

∣

∣
ln |x − y |

∣

∣

∣

for x , y ∈ D, |x − y | <
1

2
, (21)

found by V.V. Zhikov.
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Settings

Setting G = ∂D \ F , onsider the Zaremba problem

∆p(·)u := div(|∇u|p(x)−2∇u) = l in D, u = 0 on F ,
∂u

∂n
= 0 on G ,

(22)

where

∂u
∂n means the outer normal derivative of the funtion u, and

l is a linear funtional in the spae dual to W 1
p(·)(D,F ) or dual to

H1
p(·)(D,F ), whih we desribe later. For suh a problem, one an

de�ne W -solutions and H-solutions.
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Settings

The W -solution of the problem (22) is the funtion

u ∈ W 1
p(·)(D,F ) for whih the integral identity

∫

D

|∇u|p(x)−2∇u · ∇ϕ dx = −l(ϕ) (23)

is valid for all test-funtions ϕ ∈ W 1
p(·)(D,F ). In analogous way one

an de�ne H-solution, for whih (23) takes plae with

test-funtions ϕ ∈ H1
p(·)(D,F ).
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Settings

Here

l(ϕ) = −
n

∑

i=1

∫

Ω

fiϕxidx , (24)

where fi ∈ Lp′(·)(Ω) for i = 1, . . . , n and p′(x) = p(x)
p(x)−1 .
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Settings

Further, it is assumed that the inequality

‖v‖Lα(D) 6 C‖∇v‖Lα(D), (25)

holds, whih implies the relation

‖v‖Lα(D) 6 C‖∇v‖Lp(·)(D).

Therefore, in the spae W 1
p(·)(D,F ) (H

1
p(·)(D,F )) we an introdue

the norm

‖v‖W 1
p(·)

(D,F ) = ‖∇v‖Lp(·)(D). (26)
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Conditions

It is assumed that for an arbitrary point x0 ∈ F for r 6 r0 the

inequality

Cq0(F∩B
x0
r ) > c0r

n−q0 , where q0 = (α′+1)/2, α′ = min (α, n(n − 1)−1)
(27)

is valid with onstant α > 1 from (17).

Note that the ondition (27) follows from the following universal

ondition: for an arbitrary point x0 ∈ F for r 6 r0 the inequality

mesn−1(F ∩ B
x0
r ) > c0r

n−1
(28)

holds with a positive onstant c0 independent of x0 and r .
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Inequality

Theorem

Let |f |p
′

∈ L1+δ0(D), where δ0 > 0. Then, there exists a positive

onstant δ < δ0, depending only on δ0 and α, suh that the

solution to the problem (22) satis�es the estimate

∫

D

|∇u|p(x)(1+δ) dx 6 C

(
∫

D

|f |p
′(x)(1+δ) dx + 1

)

.

Here the onstant C depends only on p(·), δ0, the value c0 from

the ondition on F , the domain D and ‖f p
′(·)‖L1(D).
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If

α > n + ν, ν > 0,

than Theorem is true for F 6= ∅.
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How to prove

The proof of this statement is based on the inner and boundary

bounds for the inreased integrability of the gradient of solutions to

the problem (3). First, an estimate for the inreased integrability is

established in a neighborhood of the boundary of the domain D.

Here the tehnique of loal straightening of the boundary ∂D is

used. Then, appliation of the generalized Hering Lemma.
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How to apply
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How to apply

Denote by Mε the number of the Dirihlet parts F j
, F =

Mε
⋃

j=1
F j

.

Consider in D the problem







−∆u = f in D,
∂u
∂n + au = 0 on G ,
u = 0 on F

(29)

and the limit problem

{

−∆u0 = f in D,
∂u0
∂n + au0 = 0 on ∂D.

(30)

Gregory A. Chehkin M.V.Lomonosov Mosow State University

Boyarsky�Meyers Inequality for Zaremba Problem 45/ 56



How to apply

We estimate the rate of onvergene u → u0 as ε→ 0.

1) The family ‖u‖ is bounded, hene there exists a weak limit

u ⇀ u0.

2) Cut�o� ψε =
∏

k

ψk
ε , ψ

k
ε = ψ

(

| ln ε|
| ln rk |

)

, ψ(s) =

{

0, s 6 1,
1, s > 1 + σ.

3) Take ϕε = ϕψε as a test-funtion, subtrat one integral identity

from another. We have

∫

D

(ψε∇u −∇u0) · ∇ϕ dx +

∫

∂D

a(u − u0)ϕ ds =

=

∫

D

f · ∇ϕ(ψε − 1) dx +

∫

D

∇u · ∇ψεϕ dx +

∫

D

f · ∇ψεϕ dx .

(31)
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How to apply

Keeping in mind the equivalene of the norms in the Sobolev spae,

we derive

‖u − u0‖
2
W 1

2 (D) 6 C

(
∫

D

f · ∇ϕ(ψε − 1) dx +

∫

D

∇u · ∇ψε dx

)

.

(32)

The �rst term in the right hand side of the inequality (32) is

estimated by

K M
1
2
ε ε

1
1+σ .

Here ε
1

1+σ
is the diameter of the irke, where ψε − 1 6= 0.

4) Next, we estimate

∫

D

(∇u,∇ψε) dx .
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How to apply

I

∫

D

(∇u,∇ψε) dx 6

(

∫

D

|∇u|2 dx
)

1
2
(

∫

D

|∇ψε|
2 dx

)
1
2
6

6 K1M
1
2
ε | ln ε|

(

ε
1

1+σ
∫

ε

| ln r |−4d ln r
)

1
2
6 K2M

1
2
ε | ln ε|

− 1
2 .

Mε = | ln ε|1−θ, 0 < θ < 1.

Gregory A. Chehkin M.V.Lomonosov Mosow State University

Boyarsky�Meyers Inequality for Zaremba Problem 48/ 56



How to apply

II p1 = 2 + δ > 2, p2 =
2+δ
1+δ < 2.

∫

D

(∇u,∇ψε) dx 6

(

∫

D

|∇u|p1 dx
)

1
p1

(

∫

D

|∇ψε|
p2 dx

)
1
p2

6

6 K1M
1
p2
ε ε

2−p2
p2(1+σ) | ln ε|

(

ε
1

1+σ
∫

ε

| ln r |−2p2d ln r
)

1
p2

6 K2M
1
p2
ε ε

2−p2
p2(1+σ) | ln ε|

1
p2

−1

Mε = ε
− δ

(1+δ)(1+σ) | ln ε|
1

1+δ
−θ, 0 < θ <

1

1 + δ
.
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An example of the set F
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An example of the set F

Let {lj} is dereasing sequene of positive numbers, 2ll+1 < lj
(j = 1, 2, · · · ) and ∆1 is a segment of the length l1 6 1 on the axis

Ox1. Denote by e1 the union of two losed ∆2 and ∆3 of the

length l2, ontaining both ends of ∆1

Let E1 = e1 × e1. Repeating the proedure for the segments ∆2

and ∆3 (here l3 plays the role of l2).

We get four segments of the length l3. Denote the union of them

by e2.

Then, denoting E2 = e2 × e2, we ontinue the proess.

Finally, we have the two-dimensional Cantor set F =
∞
⋂

j=1
Ej .
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An example of the set F

We onsider 3D domain, hene q = 6/5. The ondition

C6/5(F ) > 0. (33)

is equivalent to

∞
∑

j=1

2−10j l−9
j <∞. (34)

We set lj = a−j+1
, where a ∈ (2, 45/9), and hene, 2lj+1 < lj , then

∞
∑

j=1

(

1

4
a9/5

)5j

a−9 <∞.
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An example of the set F

One an show that two-dimensional measure of F equals to zero.

Indeed, on the j-th steep we have 4j losed squares with sides of

the length a−j+1
.
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An example of the set F

For an arbitrary point x0 ∈ F and r 6 r0 we have

C6/5(F ∩ B
x0
r ) > c0r

9/5, (35)

where Bx0
r is a ball of radius r , entered in x0, the onstants

c0 =
1
2a

−9/5C6/5(F ) and r0 =
1
a
are positive.

Thus, the Boyarskiy�Meyers estimate is valid in this ase.
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Examples of the Domains

Fratals
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Ñïàñèáî çà âíèìàíèå!
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