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Short History

Higher integrability of the gradient or Boyarsky—Meyers estimate
has the form

/|VU|2+5dx < C/\f|2+5 dx,

Q Q
where u is a solution to a boundary value problem for the second
order linear elliptic equation with “right-hand side” f, in bounded
strongly Lipschitz domain Q and for p-Laplacian

: 1
/\VU\P+5dx < C/ FIPOF/R) dx, =4 = =1
Q Q
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Short History

The following paper

[1] B.V. Bojarskii, Generalized solutions to a system of first-order
differential equations of elliptic type with discontinuous

coefficients // Math. Sbornik, V. 43(85) (4, 1957). P. 451-503.

is the first publication in the topic. In this article the author showed,
that the gradient of the solution to the Dirichlet problem for the
divergent uniformly elliptic equations with measurable coefficients
in bounded domain, is integrable in the power greater than two.
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Short History

Later, in the multidimensional case for equations of the same type,
the increased summability of the gradient of the solution of the
Dirichlet problem in a domain with a sufficiently regular boundary
was established in the work

[2] N. G. Meyers, An LP—estimate for the gradient of solutions of
second order elliptic divergence equations // Annali della Scuola
Normale Superiore di Pisa, Classe di Scienze 3-e série. T. 17, (3,
1963). P. 189-206.

Subsequently, similar results were obtained for the Neumann
problem.
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Short History

We also note that the increased summability of the gradient of
solutions to the Dirichlet problem in a domain with a Lishitz
boundary for the p-Laplace equation with a variable exponent p(x)
satisfying special conditions on the modulus of continuity was
obtained in the paper

[3] V.V. Zhikov, On some Variational Problems // Russian Journal
of Mathematical physics, V. 5 (1, 1997). P. 105-116.

Note that V.V. Zhikov's study of the Meyers estimates was
stimulated by the problem of a thermistor, which gives a joint
description of the electric field potential and temperature. Systems
of the same kind arise in the hydromechanics of quasi-Newtonian
fluids.
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Short History

Later, in the papers

[4] E. Acerbi, G. Mingione. Gradient estimates for the
p(x)-Laplacian system. // J. Reine Angew. Math. 2005. V. 584. P.
117-148.

[5] L. Diening, S. Schwarzsacher. Global gradient estimates for the
p(.)-Laplacian. // Nonlinear Anal. 2014. V. 106. P. 70-85.

this result was strengthened and extended to systems of elliptic
equations with variable summability exponent.
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Short History

For the Laplace equation, the mixed Zaremba problem formulated
by W. Wirtinger, in a three-dimensional bounded domain with a
smooth boundary and inhomogeneous Dirichlet and Neumann
conditions was first considered in the work

[6] Zaremba, S.: Sur un probleme mixte relatif a I'équation de
Laplace (French). Bulletin de I'’Académie des sciences de Cracovie,
Classe des sciences mathématiques et naturelles, serie A, 313-344
(1910)

The classical solvability of the problem was established by the
methods of potential theory under the assumption that the
boundary of the open set on which the Neumann data are given
also has a certain smoothness.
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Short History

The study of the properties of solutions to the Zaremba problem for
second-order elliptic equations with variable regular coefficients
goes back to the work

[7] G. Fichera. Sul problema misto per le equazioni lineari alle
derivate parziali del secondo ordine di tipo ellittico (ltalian) // Rev.
Roumaine Math. Pures Appl. 1964. V. 9. P. 3-9.

In it, in particular, it was established that at the junction of the
Dirichlet and Neumann data, the smoothness of the solutions is
lost.
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Short History

For divergent uniformly elliptic second-order equations with
measurable coefficients, integral and pointwise estimates for
solutions of the Zaremba problem under fairly general assumptions
about the boundary of the domain are given in

[8] V.G. Mazya. Some estimates for solutions of second-order
elliptic equations. // The USSR Academy of Sciences. Doklady.
Mathematics. 1961. V. 137. No 5. P. 1057-1059.
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Short History

In the papers

[13] Yu.A. Alkhutov, G.A. Chechkin. Increased Integrability of the
Gradient of the Solution to the Zaremba Problem for the Poisson
Equation. // Russian Academy of Sciencies. Doklady Mathematics
103 (2, 2021): 69-71.

[14] Yu.A. Alkhutov, G.A. Chechkin, The Meyer's Estimate of
Solutions to Zaremba Problem for Second-order Elliptic Equations
in Divergent Form // CR Mécanique, T. 349 (2, 2021). P. 299-304.
for the linear elliptic equation of the second order, an estimate is
obtained for the higher integrability of the gradient of solutions to
the Zaremba problem in a domain with a Lipschitz boundary and a
rapid change of the Dirichlet and Neumann boundary conditions.
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Short History

[15] Yu.A. Alkhutov, G.A. Chechkin, V.G. Maz'ya. On the
Boyarsky—Meyers Estimate of a Solution to the Zaremba Problem
// Arch Rational Mech Anal, V. 245, No 2 (2022). P. 1197-1211.
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Linear equations

Linear equation
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Setting of the problem

We prove estimates of solutions to the Zaremba problem for elliptic

equation in bounded Lipschitz domain D € R", where n > 1, of the
form

Lu :=div(a(x)Vu) (1)
with uniformly elliptic measurable and symmetric matrix
a(x) = {ajj(x)}, i.e. aj = ajj and

n

a P < Z ajj(x)&i& < al€]? for almost all x € D and all € € R”.

ij=1
(2)
We assume that F C 9D is closed and G = 90D\ F.
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Setting of the problem

Consider the Zaremba problem

Lu=1 in D,
u=0 on F, (3)
gﬁ =0 on G,

Jdu

B is the outer conormal derivative of u, and / is a linear

functional on W4 (D, F), the set of functions from Wj (D) with
zero trace on F.

where
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Setting of the problem

By the solution of the problem (3) we mean the function
u € W3(D, F) for which the integral identity

/aVu-VgodX:/f-Vgodx (4)
D D
holds for all test-functions ¢ € W (D, F), the components of the

vector-function f = (f1,...,f,) belong to Ly(D). Here f appears
from the representation of the functional /.
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Auxiliaries

We are interested in the question of increased summability
(integrability) of the gradient of solutions to the problem (3). The
conditions on the structure of the set of the Dirichlet data support
F playes the key role.

For the compact K C R" we define the capacity Cq(K), 1 < g < n,
by the formula

Cq(K) = inf { /|Vg0|qu: v e CG°(R™), p>1on K}. (5)
Rn
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Auxiliaries

Suppose B;® is an open ball of the radius r centered in xg, and
mes,_1(E) is (n — 1)-measure of the set E. Assume also that
g=2n/(n+2)asn>2and g=3/2as n=2. We suppose one of
the following conditions is fulfilled: for an arbitrary point xg € F as
r < rg the inequality

Cq(F HE),(O) > cor" 9 (6)
holds true or the inequality
mes,_1(F ﬁE),(O) > cor™? (7)

holds, the positive constant ¢y does not depend on xp and r.
Condition (7) is universal (even for nonlinear equations).
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Auxiliaries

The condition (7) is stronger, than (6), but it is clearer. Note that
under any of these conditions, the functions v € W4 (D, F) satisfy
the Friedrichs inequality

/v dx < /|Vv\2 dx,

which, by the Lax-Milgram theorem, implies the unique solvability
of the problem (3).
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Main result

Theorem

If f € Loys,(D), where 69 > 0, then there exist positive constants
d(n, do) < do and C, such that for a solution to the problem (3) the

estimate
/|VU|2+5dx < c/|f|2+5 dx, (8)

D D

holds, where C depends only on &g, the dimension n, constant ¢y
from (6) and (7), and also the constant ry.
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p-Laplacian

p-Laplacian

Results from

[17] Yu.A. Alkhutov, A.G. Chechkina. Many-Dimensional Zaremba
Problem for an Inhomogeneous p-Laplace Equation // Russian
Academy of Sciences. Doklady Mathematics, V. 106, No 1 (2022).
P. 143-146.
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Settings

To formulate the Zaremba problem, we introduce the Sobolev
function space W (R, F). A priori the functions v € W) (R, F) are
assumed to satisfy the Friedrichs inequality

/\v|de</\Vv|”dx. (9)
Q Q
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Settings

Consider the following problem in bounded strongly Lipschitz
domain
Apu = div(|VulP2Vu) = in Q,
10
u=20on F, @zoonG. (10)
ov
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Settings

By the solution of problem (10), we mean a function satisfying the
integral identity

/|Vu|”_2Vu -Vpdx— = 1(p) (11)
Q
for all test functions ¢ € W1(€Q, F). Hear
1) =Y [ fionx (12)
i=1 4
where fi € Ly(Q) for i=1,...,nand p’ = ﬁ.
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Conditions

Let us remind the definition. For the compact K C R” we define
the capacity C4(K), 1 < g < n, by the formula

Cq(K) = inf { /\Vgo\qu: v e CGPR"), p=1on K}, (13)
Rn

if pe (1,n/(n—1)], then g=(p+1)/2, butif pe (n/(n—1),n],
where n > 2, then g = np/(n+ p).

Gregory A. Chechkin M.V.Lomonosov Moscow State University

Boyarsky—Meyers Inequality for Zaremba Problem 27/ 56



Conditions

A. If 1 < p < n, then the following condition is assumed to hold:
for an arbitrary point xg € F for r < rp, it is true that

cg(FNBX®) > cor™9, (14)

where ¢ is a positive constant independent of xg and r.
B. If p > n, then the set F is assumed to be nonempty: F # 0).
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Conditions

Note that the condition
mes,_1(FNB") > ¢r"? (15)

is similar to (14) and implies (14). As we mentioned before
condition (15) is universal for linear and for nonlinear equations.
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Inequality

Theorem

Iff e Llyis,(2), where 69 > 0, then there exist positive constants
d(n, p,d0) < do and C, such that for a solution to the problem (10)
the estimate

/|Vu|”+5dx < C/|f|p’(1+6/p) dx, (16)
Q Q

holds, where C depends only on p, &y, the dimension n, constant ¢
from (14) or (15), and also the constant ry.
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p(-)-Laplacian

p(-)-Laplacian

Results from

[17] Yu.A. Alkhutov, G.A. Chechkin. The Boyarsky—Meyers
Inequality for the Zaremba Problem for p(-)-Laplacian // Journal of
Mathematical Sciences, New York, Springer, Vol. 274, No. 4, 2023:
423-441.
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Settings

We formulate the Zaremba problem for inhomogeneous
p(-)-Laplacian in Lipschitz domain D C R” with variable exponent
p, such that

l1<a<p(x)<B<oo foralmostall x € D. (17)
To set the problem we introduce the functional space
W(D) = {v € W3(D),|Vv[P") € Ly(D)} (18)
with Sobolev-Orlicz norm

Ilws o) = 1¥l1ao) + IV ey 0, (19)
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Settings

where || - [|1,,(p) is the Luxemburg norm defined by the following
formula:

_ -1 (x)
leltyo =05 [l eGP o<l o)
D
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Settings

Given the norm (19) in the space W/(D), we get the reflexive
Banach space. Denote it by W1 (D) Also we denote by

Wl( )(D F) the completion of the set of functions from W1 (D)

with support lying outside some neighborhood of the closed set
F C 0D, by the norm (19).
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Settings

Define the space of functions H;(,)(D), which is the closure of the
set of smooth functions in the norm (19). Similarly, one can

introduce the space of functions H;(.)(D, F) as a completion in the
norm (19) of smooth functions equal to zero in a neighborhood of

F.
The density of smooth functions in Wp(,)(D) is provided by the

well-known logarithmic condition
ko

1
forx,y e D, |x—y| <=, (21)
"nlx—yl‘ 2

lp(x) — p(y)| <

found by V.V. Zhikov.
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Settings

Setting G = 0D \ F, consider the Zaremba problem

ou
g x)—2 I _ _
Apyu = div(|[VulP®)=2Vu) = 1in D, u=0on F, I Oon G,

(22)
where % means the outer normal derivative of the function v, and
I is a linear functional in the space dual to Wp(.)(D, F) or dual to
H;(.)(D, F), which we describe later. For such a problem, one can
define W-solutions and H-solutions.
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Settings

The W-solution of the problem (22) is the function

ue Wpl(.)(D, F) for which the integral identity

/ [VulPX) 2Ty Vo dx = —I(p) (23)
D
is valid for all test-functions ¢ € Wpl(.)(D, F). In analogous way one

can define H-solution, for which (23) takes place with
test-functions ¢ € H;(.)(D, F).
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Settings

Here n
=19
where f; € Lp/(,)(Q) fori=1,...,nand p'(x) = p(px()xll
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Settings

Further, it is assumed that the inequality

Vllea(o) < ClIVVILL (D) (25)
holds, which implies the relation

IVlleapy < ClIV VL,

Therefore, in the space W( (D,F) ( (D F)) we can introduce
the norm

HVHWpl(_)(D,F) = Vi, - (26)
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Conditions

It is assumed that for an arbitrary point xg € F for r < rg the
inequality

Coo(FNB®) = cor™ %, where qo = (/+1)/2, @/ = min (a, n(n —1)7})
(27)

is valid with constant o > 1 from (17).

Note that the condition (27) follows from the following universal

condition: for an arbitrary point xg € F for r < ry the inequality

mes,_1(F ﬂE)r(O) > cor™ ! (28)

holds with a positive constant ¢y independent of xg and r.
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Inequality

Theorem

Let |f|P" € Lyys,(D), where 5o > 0. Then, there exists a positive
constant 0 < &y, depending only on §y and «, such that the
solution to the problem (22) satisfies the estimate

/|vu|P<X)(1+5> dx < c( / (17 CA+) g 1>‘
D D

Here the constant C depends only on p(-), do, the value cy from
the condition on F, the domain D and pr/(,)

|L1(D)'
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azn+v, v>0,

than Theorem is true for F # ().
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How to prove

The proof of this statement is based on the inner and boundary
bounds for the increased integrability of the gradient of solutions to
the problem (3). First, an estimate for the increased integrability is
established in a neighborhood of the boundary of the domain D.
Here the technique of local straightening of the boundary 9D is
used. Then, application of the generalized Hering Lemma.
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How to apply
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How to apply

. M.
Denote by M. the number of the Dirichlet parts F/, F = |J F/.

j=1
Consider in D the problem
—Au=f in D,
el _
Sntau=0 on G, (29)
u=0 on F

and the limit problem

{—Auozf in D, (30)

O 4 qup=0 on AD.
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How to apply

We estimate the rate of convergence u — ug as € — 0.

1) The family ||u|| is bounded, hence there exists a weak limit
u— up.

Tk apk — o (LIne] _J 0,s<1,
2) CUt_Oﬁ-fl/}E - 1;[¢5' 1/}5 _1/} <||:,i‘>' 1/}(5) - { 175 2 1—|—0’
3) Take p. = ¢1). as a test-function, subtract one integral identity
from another. We have

/(%VU —Vu) - Vedx + / a(u— up)pds =
D oD

:/f-Vgo(wa—1)dx+£[Vu-Vw€g0dx—l—/f-Vwagodx.

D D
(31)
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How to apply

Keeping in mind the equivalence of the norms in the Sobolev space,
we derive

HU_U0H|2/V21(D) < C</f-Vg0(w€—1)dx+/Vu-V¢5dx).
D D

(32)
The first term in the right hand side of the inequality (32) is
estimated by

1
K M2et+o .
Here =T is the diameter of the circke, where ¢, —1 # 0.

4) Next, we estimate /(Vu, Ve ) dx.
D
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How to apply

1]
/(vu,w;E) dx < (/|VU|2 dx)%</|v¢5\2 dx)% <

D D D
_1
elto
1 4 3 1 1
gKlMgung\( / lInr|~ dInr) < KoM2|Ine| 3.
€

M.=|Ineglt™ 0<6<1
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How to apply

(1] pL=2+0>2 p=32<2

(Vu, Vo) dx < ([ |VulPr d g V. |P? d $<
/ y » (D/ P ) (! x)

D

1
elto
1 1 o L

L 2p = L ) 1
<K1I\/I€p2epz(1+ff)|lns|< / |Inr|_2p2dlnr>p2<K2M5”5P2(1+ﬂ)|lne|f’z
g

5 1 _g 1
M, = ¢ @)0+o)|Ing|TH5 ™7, 0<l< —.

1+90
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An example of the set F

zZ7 ZTZ zZTz Tz
LT LTLT LT LT LT
£ LTLT LT LT L7

A &8 LT LT LT

LT LTLT LT LT LT
LT LTL7 L & &.
LT LT LT LT L7
V2 = =
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An example of the set F

Let {/;} is decreasing sequence of positive numbers, 2/;11 < /;
(j=1,2,---) and A; is a segment of the length /; <1 on the axis
Ox;. Denote by e; the union of two closed A, and Az of the
length /, containing both ends of A;

Let E; = e; X e;1. Repeating the procedure for the segments A,
and Ajz (here 5 plays the role of k).

We get four segments of the length /3. Denote the union of them
by e;.

Then, denoting E; = e; X ey, we continue the process.

o0
Finally, we have the two-dimensional Cantor set F = [ E;.
j=1
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An example of the set F

We consider 3D domain, hence g = 6/5. The condition

Ce/5(F) > 0. (33)
is equivalent to
D 271970 < oo, (34)
j=1

We set [; = a=/t1 where a € (2,45/9), and hence, 2/;11 < [;, then

[e'e} 1 5j
Z (Za9/5> a? < .

j=1
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An example of the set F

One can show that two-dimensional measure of F equals to zero.
Indeed, on the j-th steep we have 4/ closed squares with sides of
the length a=/+1.
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An example of the set F

For an arbitrary point xo € F and r < ry we have
Co/s(FNBY) = cor®?, (35)

where B is a ball of radius r, centered in xp, the constants
= %3_9/5C6/5(F) and ro = 1 are positive.
Thus, the Boyarskiy—Meyers estimate is valid in this case.
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Examples of the Domains

Fractals
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Cnacnbo 3a BHUmMaHwue!
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