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Notation

We deal with smooth immersions f : S1 → Rd , d ≥ 2,

f = f (θ), θ ∈ R/2πZ.

Here θ is the angle variable, and f is a 2π-periodic function of θ.
Denote by Γ ⊂ Rd the curve

Γ = f (S1) (1)

Hereinafter we assume that the point f (θ) moves around Γ in the
positive counterclockwise direction while the parameter θ increases.
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Notation
The arc-length variable s on Γ is a function of θ. It is defined by the
equality

s(θ) =

∫ θ

0

√
g(σ) dσ,

√
g = |∂θf |. (2)

The element of the length of Γ equals

ds =
√
g(θ) dθ.

In this setting, the derivative with respect to the arc-length variable
s,

∂s =
1
√
g
∂θ (3)

becomes the nonlinear differential operator depending on f . We
assume that

0 < c−1 ≤ g ≤ c <∞, g(θ) = |∂θf (θ)|2. (4)
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Notation

The tangent vector τ to Γ is defined by the equality

τ (θ) = ∂s f (θ) := |∂θf |−1 ∂θf (θ), (5)

The curvature vector k is defined by the equalities

k(θ) = ∂sτ (θ) = ∂2
s f (θ).

Notice that k is orthogonal to τ .
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Notation

For every smooth vector field φ : S1 × (0,T )→ Rd , the space and
time normal connections ∇s and ∇t are defined by the equalities

∇s φ = ∂sφ− (∂sφ · τ ) τ , ∇t φ = ∂tφ− (∂tφ · τ ) τ , (6)

which can be written in the equivalent form

∇s φ = Π∂sφ, ∇t φ = Π∂tφ, Πφ = φ− (φ · τ ) τ .
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Energy functionals and their gradients
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Energy functionals

The Euler elastica energy Ee and the length P of Γ are defined by
the formulae

Ee =
1

2

∫
Γ
|k|2 ds, P =

∫
Γ
ds. (7)

These quantities can be regarded as integral functionals of f . We
take the total energy E of the curve Γ in the form

E = Ee + γP =

∫
Γ

(1

2
|k|2 + γ

)
ds, γ = const. > 0.

Without loss of generality we may assume that γ = 1 and take the
total energy in the form

E = Ee + P =

∫
Γ

(1

2
|k|2 + 1

)
ds. (8)
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Gradient of a geometric functional.

Let
J = J(Γ) or equivalently J = J(f)

be a geometric functional. Let X be an arbitrary periodic vector
field. If the derivative of J admits the Hadamard representation

lim
σ→0

1

σ

(
J(f + σX )− J(f )

)
=

∫
Γ

Φn · X ds, Φ ∈ L1(Γ),

then the gradient dJ of J is defined by the equality

dJ = Φ n.
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Gradient of the Euler elastica energy.

dE(f ) = ∇s∇s k +
1

2
|k |2 k − k . (9)

Recall
∇s Φ = ∂sΦ− (∂sΦ · τ ) τ , (10)

or
∇s Φ = Π∂sΦ, ΠΦ = Φ− (Φ · τ ) τ (11)
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Gradient flow equation
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Gradient flow equation
The gradient flow equation for the energy functional E(f ) reads

∂t f = −dE(f ), f (0) = f0.

It can be written in the form of the evolutionary nonlinear partial
differential equation

∂t f +∇2
sk +

1

2
|k|2k− k = 0, f (0) = f0, (12)

or equivalently in the form of the operator equation

Φ(f ) ≡ ∂t f +A(f ) = 0, f (0) = f0. (13)

A(f ) = ∇2
sk +

1

2
|k|2k− k.

Equation (12) is named straightening equation or 1D Willmore flow.
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Wen (1995), Koiso (1996), Polden (1996), Dzuik, Kuwert& Shatzle
(2002), Lin(2012), Wheeler (2012), Acqua, Pozzi(2014), Abels,
Garke& Muller (2016), Menzel (2020), Rupp, Spener (2020),
Mantegazza, Pozetta (2021).
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Remark

For nonlinear evolutionary problems, the standard proof of the
existence theorem consists of three steps.
The first is the proof of the local solvability of problem on the small
time intervals.
The second step is the proof of the global a priori estimates for
smooth solutions in Sobolev or Hölder classes.
The third step is the application the time continuation method
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Graph concept solutions

The alternative approach is based on the concept of graph
solutions, Koiso, Abels, Garke Muller, Rupp, Spener, The theory of
graph solutions operates with the modified straightening equation

∇t f +∇2
sk +

1

2
|k|2k− k = 0, f (0) = f0, (14)

This equation is equivalent to the operator equation

Ψ(f ) ≡ ∇t f +A(f ) = 0, f (0) = f0. (15)
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Iteration scheme
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Functional spaces.
Sobolev spaces of periodic functions. For every integer r ≥ 0,
denote by H r

] , the Sobolev space of all 2π -periodic mappings with
the finite norm

‖f ‖2
Hr

]
=

∫ 2π

0
(|f |2 + |∂rθf |2) dθ. (16)

For real r ≥ 0, the space H r
] is defined by the interpolation. Note

that the equivalent norm in H r
] may be defined by the equality

‖f ‖2
Hr

]
=
∑
m∈Z

(1 + |m|2)r |fm|2,

where the Fourier coefficients

fm =
1√
2π

∫ 2π

0
e−m i f (θ) dθ.
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Functional spaces

Hr ,s(0,T ) =
{
u : S1 × (0,T )→ Rd : ‖u‖2

r ,s <∞
}
,

‖u‖2
r ,s =

∫ T

0
(‖∂tu(t)‖2

Hr
]

+ ‖u(t)‖2
Hs
]
)dt

X s = Hs,s+4(0,T ), Ys = L2(0,T ;Hs
] )

The norm in X s is denoted as ‖ · ‖s
The norm in X s is denoted as | · |s
Mollifier

TNu =
1√
2π

∑
|m|≤N

fme
m i
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Let r ≥ 6, ‖f ‖r ≤ R . Then for any l ≥ 0,

|Φ(f )|r+l ≤ c(R)(1 + ‖f ‖r+l).

Let
Φ′(f )δf = lim

σ→0

1

σ

(
Φ(f + σδf )−Φ(f )

)
.

Then

|Φ′(f )δf |r+l ≤ c(R)‖δf ‖r+l + c(R)(1 + ‖f ‖r+l)‖δf ‖r
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Nash-Moser scheme

Φ(f ) = 0

We know the approximate solution f = f0.

fn+1 = fn + TNnδfn, Φ′(fn)δfn = −Φ(fn), Nn = N
3/2
n−1.

Remark. If
Φ′(f )δf = L(f )δf + O(Φ(f )) δf ,

then we can take
L(fn)δfn = −Φ(fn).
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Linearized equations
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Straightening equation

Recall the formulation of straightening equation

Φ(f ) = ∂t f +A(f ) = 0, A(f ) = ∇2
sk +

1

2
|k|2k− k

Let us calculate
Φ′(f )δf .
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Variation

Represent the variation δf in the form

δf (θ, t) = u(θ, t) + v(θ, t)τ (θ, t), u(θ, t)⊥ τ (θ, t). (17)

Here u is an infinitesimal normal flow,
vτ is an infinitesimal tangent flow.
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The operator Φ′

Then
Φ′(f ) δf = Ω δf + (Θ δf ) τ (18)

where the normal part Ω is given by

Ω δf = ∇tu +∇4
su +

3

2
|k|2∇2

su −∇2
su + (19)

L1u + L0u + v ∇sΦ,

and the tangent part Θ is given by

Θ δf = ∂tv − (A · ∇su)− v(A · k)− u · ∇s∂t f . (20)
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The operator Φ′

The operators Li are defined by

L0 u = 3(u · k)A+ 3(u · ∇sk)∇sk + (u · ∇2
sk)∇sk− (u · k) k,

L1 u =
3

2
∂s |k|2∇su + 2(∇su · k)∇sk + (∇su · k) k.
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Linearized equation

In the iteration scheme the linearized equation

L(f )δf = F.

is in the form

∇tu +∇4
su +

3

2
|k|2∇2

su −∇2
su +

L1u + L0u = ΠF,

∂tv − v(A · k)− (A · ∇su)− u · ∇s∂t f = F · τ .
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The operator Ψ′

Ψ′(f ) δf = Υ δf + (Λ δf ) τ

where the normal part Υ is given by

Υδf = ∇tu +∇4
su +

( 3

2
|k|2 − 1

)
∇2

su +

Mu + v ∇sΨ.

The tangent part Λ is given by

Λ δf = −Ψ · ∇su − v(Ψ · k). (21)

Here
M u = L1 u + L0u − (∂t f · τ )∇su,
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Linearized equation

L(f )δf = F.

is in the form

∇tu +∇4
su +

( 3

2
|k|2 − 1

)
∇2

su +

Mu = ΠF.

The solvability condition
F · τ = 0

in the Nash-Moser iteration scheme is satisfied automatically since

F · τ = −Ψ(fn) · τ n ≡ 0.

In this case we may take
δfn = un
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Moving frame
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Moving frame

Let

τ : S1 × (0,T )→ Rd , |τ | = 1, τ ∈ Hr ,s(0,T ), r , s ≥ 1.

Assume that
‖τ‖1,1 ≤ R.

Then there is an orthogonal frame

(τ ,n1, . . . ,nd−1), τ · ni = 0, ni · nj = δij ,

such that ni ∈ Hr ,s(0,T ) and

‖ni‖r ,s ≤ c(R)(1 + ‖τ‖r ,s).
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Moving frame

Set

u =
d−1∑
i=1

πi ni , δf =
d−1∑
i=1

πi ni + vτ ,

π = (π1, . . . , πd−1) : S1 × (0,T )→ Rd−1
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Linear equation

Again consider equation
L δf = F.

It is equivalent to the system of differential equations of mixed type

∂tπ + a0 ∂
4
θπ +

3∑
k=1

Ak ∂
k
θπ = F

∂tv − v(A · k)− (A · ∇su)− u · ∇s∂t f = F · τ

Here
a0 = |∂θf |−4, (F)i = F · ni ,

(d − 1)× (d − 1) matrices Ai are polynomial od ∂αθ f , ∂
α
θ (|∂θf |−1,

and ∂t∂θf with 1 ≤ α ≤ 4.
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Solvability of linear equation

Let
f ∈ X r+l , r ≥ 10, l ≥ 0, ‖f ‖r ≤ R

Then for every
F ∈ Y r+l and ρ ≤ r − 5,

the equation
L(f )δf = F, δf

∣∣∣
t=0

= 0,

has a solution. This solution admits the estimates

‖δf ‖ρ+l ≤ c(R, l)(1 + ‖f ‖r+l) |F|r + c(R, l) |F|r+l
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Conclusion

Let
f0 ∈ H r

] for some r ≥ 14.

Then there is T > 0 such that the problem

∂t f +A(f ) = 0, t ∈ (0,T ), f (0) = f0

has a solution
f ∈ X ρ, 0 ≤ ρ ≤ 9.
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Application. Viscoelastic rod equation

∇4
s∇t f +∇2

sk +
1

2
|k |2k − γk = 0 in S1 × (0,T ),

or

−∇2
s∇t f +∇2

sk +
1

2
|k|2k − γk = 0 in S1 × (0,T ),
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Shape optimization

A cost function J(f )
The steepest descent method

fn+1 = fn − δdJ(f )

leads to the gradient flow

∂t f = −dJ(f )

Regularization
∂t +A(f ) + dJ(f ) = 0.

Sokolowski & P., Geometric aspects of shape optimization, J.
Geom. Anal. (2023)
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Problems

Equation
Ψ(f ) ≡ ∇t f +A(f ) = 0.

Iteration scheme
fn+1 = fn + TNnδfn,

L(fn)δfn = −Ψ(fn)

δfn = un, un⊥τ n

or more generally

δfn = un + vnτ n, un⊥τ n

with an arbitrary fast decreasing sequence vn
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Problems

f : S2 → R3

The Willmore flow

∂t f + ∆fH + 2(|H|2 − K )H = 0.
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