
MULTIDIMENSIONAL OSCILLATIONS OF
COLD PLASMA AND THE EULER-POISSON

EQUATIONS

Olga Rozanova

Lomonosov Moscow State University

Nososibirsk, 2 - 4 October 2023
PARTIAL DERIVATIVE EQUATIONS AND THEIR

APPLICATIONS

Olga Rozanova
MULTIDIMENSIONAL OSCILLATIONS OF COLD PLASMA AND THE EULER-POISSON EQUATIONS



The Euler-Poisson equations

∂n

∂t
+ div (nV) = 0,

∂(nV)

∂t
+ div (nV ⊗ V) = k n∇Φ−∇p(n)− νnV,

∆Φ = n − n0,

n (density), V (velocity),
Φ (a force potential), p(n) (pressure),
depend on the time t and the point x ∈ Rd, d ≥ 1,
n0 ≥ 0 is the density background, ν ≥ 0 – the friction coefficient.
Positive or negative k corresponds to the repulsive and attractive
force.
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The equations of hydrodynamics of electron plasma in the
non-relativistic approximation in dimensionless quantities:

∂n

∂t
+ div (nV) = 0,

∂V

∂t
+ (V · ∇)V = −E− [V × B]−1

n
∇p(n)− νV,

∂E

∂t
= nV + rotB,

∂B

∂t
= −rotE, divB = 0,

n and V = (V1,V2,V3) are the density and velocity of electrons,
E = (E1,E2,E3) and B = (B1,B2,B3) are vectors of electric and
magnetic fields. All components of solution depends on t ∈ R+

and x ∈ R3.
n0 > 0, k < 0
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p = 0 (cold plasma)

A class of solutions depending only on the radius-vector of point

r =
√
x21 + x22 + x23 , i.e.

V = F (t, r)r, E = G (t, r)r, B = Q(t, r)r, n = n(t, r),

where r = (x1, x2, x3).
It implies B ≡ 0, rotE = 0.
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Under the assumption that the solution is sufficiently smooth and
that the steady-state density n0 is equal to 1, we get

n = 1− divE,

therefore n can be removed from the system.
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The resulting system is

∂V

∂t
+ (V · ∇)V = −E − νV ,

∂E

∂t
+ VdivE = V. (1)

If we introduce the potential Φ such that ∇Φ = −E, we can
rewrite the system as the Euler-Poisson equations with n0 = 1.
Can be considered in any space dimensions d.
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d = 1, ν = 0

dV

dt
= −E − 0 · V , dE

dt
= V ,

dx

dt
= V .

It imlpies V 2 + E 2 = V 2(0) + E 2(0) = const along each of the
characteristics x = x(t).
For v = Vx , e = Ex we get

dv

dt
= −v2 − e,

de

dt
= (1− e)v , e < 1,

v2 + 2e − 1 = C (e − 1)2,

a second-order curve, its type depends on the sign of

∆ = v2 + 2e − 1.

if ∆(0) < 0, then the phase curves is ellipse, the derivatives
remain bounded for t > 0. Otherwise, the phase curve is a
parabola for ∆(0) = 0 or a hyperbola for ∆(0) > 0, the derivatives
become infinite.
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Figure: Criterion of smoothness, ∆(0) < 0
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Criterion of a singularity formation ([Chizhonkov, R, 2020],
[Engelberg, Liu, Tadmor, 2001]

Theorem

For the existence and uniqueness of continuously differentiable
2π− periodic in time solution (V ,E ) of

∂V

∂t
+ V

∂V

∂x
= −E , ∂E

∂t
+ V

∂E

∂x
= V ,

(V ,E )|t=0 = (V0,E0) ∈ C 2(R)

it is necessary and sufficient that inequality(
V ′0(x)

)2
+ 2E ′0(x)− 1 < 0

holds at each point x ∈ R.
If there exists at least one point x0 for which the opposite
inequality holds, then the derivatives of the solution become
infinite in a finite time.

Olga Rozanova
MULTIDIMENSIONAL OSCILLATIONS OF COLD PLASMA AND THE EULER-POISSON EQUATIONS



Figure: Spatial distribution of velocity and electric field near the moment
of formation of singularity (by E.V.Chizhonkov).
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ν > 0 [R, Chizhonkov, Delova, 2021]

Phase plane (e, v):

1. ν = 0: one equilibrium point (0, 0), a center;

2. 0 < ν < 2: one equilibrium point (0, 0), a stable focus;

3. ν = 2: two equilibria, (0, 0), a degenerate stable node,
(1,−1), a saddle-node;

4. ν > 2: three equilibria, (0, 0), a stable node,
(1,−1

2(ν −
√
ν2 − 4), a saddle, (1,−1

2(ν +
√
ν2 − 4), an

unstable node.
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Figure: Left: ν < 2 in comparison with ν = 0 (dotted line). Right: ν > 2.
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ν = ν(n)

∂V

∂t
+ V

∂V

∂x
= −E − ν(n)V ,

∂E

∂t
+ V

∂E

∂x
= V , n = 1− ∂E

∂x
,

(V ,E )|t=0 = (V0(x),E0(x)) ∈ A(R).

For the prototypic function ν(n) = ν0n
γ the threshold value is

γ = 1. For γ ≥ 1 the solution does not form the gradient
catastrophe.
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ν = ν(n) [R, 2021]

Theorem

Let f (n) ∈ A(R+) be a nonnegative function satisfying conditions

lim
η→∞

ηf ′(η)

f (η)
= const

and
+∞∫

η0>0

f (η)

η2
dη =∞,

ν(n) = εf (n), ε = const > 0. Under the assumption that the
formation of singularity is associated with a gradient catastrophe
(unboundedness of the first derivatives), the problem admits a
global in time classical (C 1-smooth) solution. Otherwise, one can
find the data such that the derivatives of solution blow up in a
finite time.
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ν = 0, p(n) 6= 0

Theorem

Assume p(n) = 1
γn

γ , γ > 1. A continuously differentiable 2π−
periodic in time solution (V ,E ) of

∂V

∂t
+ V

∂V

∂x
= −E − µ1

n

∂p(n)

∂x
,

∂E

∂t
+ V

∂E

∂x
= V ,

n = 1− ∂E

∂x
,

(V ,E )|t=0 = (V0,E0) ∈ C 2(R)

exists iff (
V ′0(x)

)2
+ 2E ′0(x)− 1 < µ

(E ′′0 (x))2

(1− E ′0(x))3−γ

holds at each point x ∈ R.
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The pressure generally does not remove or postpone a singularity.

The type of the singularity changes:

µ = 0: V , E – the gradient catastrophe, n – strong singularity;

µ > 0: V , n – the gradient catastrophe, E – weak singularity;
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Example: γ = 2

∂V

∂t
+ V

∂V

∂x
= −E + µ

∂2E

∂x2
,

∂E

∂t
+ V

∂E

∂x
= V ,

A particular case of

∂V

∂t
+ V1

∂V

∂x
= QV + B

∂2V

∂x2
, (2)

where V = (V1,V2, . . . ,Vn), Vi = Vi (t, x), Q and B are n × n
constant matrices.

Here V1 = V , V2 = E , Q =

(
0 −1
1 0

)
, B =

(
0 µ
0 0

)
.

B
∂2V

∂x2
looks like a viscous term, however in fact its sense is

different.
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d ≥ 2, ν = 0

Consider the initial data

(V,E)|t=0 = (F0(r)r,G0(r)r), (F0(r),G0(r)) ∈ C 2(R̄+),

where r = (x1, . . . , xd), r = |r|, with the physically natural
condition n|t=0 > 0.

Definition

Solution (V,E) is called an affine solution if it has the form
V = V(t)r, E = E(t)r, where V and E are (d× d) matrices.

Definition

Solution (V,E) is called a simple wave if it has the form
V = F (t, r)r, E = G (t, r)r, where F (t, r) and G (t, r) are
functionally dependent.
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Theorem

The solution of the Cauchy problem for d ≥ 2, d 6= 4, blows up in
a finite time for all initial data, possibly except for the data,
corresponding to simple waves.

If the solution is globally smooth in time, then it is either affine or
tends in the C 1-norm to an affine solution as t →∞.
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Explicit solutions along characteristics

F and G satisfy the following Cauchy problem:

∂G

∂t
+ Fr

∂G

∂r
= F − dFG ,

∂F

∂t
+ Fr

∂F

∂r
= −F 2 − G ,

(F (0, r),G (0, r)) = (F0(r),G0(r)), (F0(r),G0(r)) ∈ C 2(R̄+).

Along the characteristic

ṙ = Fr ,

starting from the point r0 ∈ [0,∞) system (3) takes the form

Ġ = F − dFG , Ḟ = −F 2 − G , (3)

Thus,

1

2

dF 2

dG
= −F 2 + G

1− dG
,

which is linear with respect to F 2 and can be explicitly integrated.
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For d = 2

2F 2 = (2G − 1) ln |1− 2G |+ C2(2G − 1)− 1,

C2 =
1 + 2F 2(0, r0)

2G (0, r0)− 1
− ln |1− 2G (0, r0)|,

for d = 1 and d ≥ 3

F 2 =
2G − 1

d− 2
+ Cd|1− dG |

2
d ,

Cd =
1− 2G (0, r0) + (d− 2)F 2(0, r0)

(d− 2)|1− dG (0, r0)|
2
d

.
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Lemma

The period of revolution on the phase curve depends on d and the
starting point of trajectory, except for d = 1 and d = 4, where
T = 2π. In the other cases the following asymptotics holds for the
deviation of order ε from the origin:

T = 2π(1 +
1

24
(d− 1)(d− 4)ε2 + o(ε2)), ε→ 0,

i.e. for d ∈ (1, 4) the period is less that 2π, for d > 4 the period is
greater that 2π.
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Figure: Phase portrait on the plane (F ,G ) for G+ = 0.1 (left) and the
dependence of the period on G+ (right) for d = 1, 2, 3, 4, 5.
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The behavior of derivatives

Denote D = divV, λ = divE.

Ḋ = −D2 + 2 (d− 1)F D − λ− (d− 1)dF 2, λ̇ = D (1− λ),

along the characteristic curve.
New variables: u = D − dF , v = λ− dG :

u̇ = −u2 − 2F u − v , v̇ = −u v + (1− dG ) u − dF v . (4)
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Linearization and the Radon lemma

Theorem (The Radon lemma)

A matrix Riccati equation

Ẇ = M21(t) + M22(t)W −WM11(t)−WM12(t)W ,

is equivalent to the homogeneous linear matrix equation

Ẏ = M(t)Y , M =

(
M11 M12

M21 M22

)
.

Let on some interval J ∈ R the matrix-function Y (t) =

(
Q(t)
P(t)

)
be a

solution with the initial data

Y (0) =

(
I
W0

)
Then W (t) = P(t)Q−1(t) is the solution with W (0) = W0 on J .
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System (4) can be written as a matrix Riccati equation

W =

(
u
v

)
, M11 =

(
0
)
, M12 =

(
1 0

)
,

M21 =

(
0
0

)
, M22 =

(
−2F −1

1− d G −d F

)
.

Thus, we obtain the Cauchy problem q̇
ṗ1
ṗ2

 =

0 1 0
0 −2F −1
0 1− d G −d F

 q
p1
p2

 ,

 q
p1
p2

 (0) =

 1
u0
v0

 ,

with periodical coefficients, known from (3).
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The standard change of the variable p1(t) = P(t) e
− d+2

2

t∫
0

F (τ) dτ

reduces to

P̈ + QP = 0, Q = 1− d + 2

2
G − 1

4
(d− 2)(d− 4)F 2, (5)

q(t) = 1 +

t∫
0

p1(τ) dτ = 1 +

t∫
0

P(ξ) e
− d+2

2

ξ∫
0

F (τ) dτ
dξ. (6)

Theorem implies that the solution of (4) blows up if and only if
q(t) vanishes at some point t∗, 0 < t∗ <∞.
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Idea of the proof: the Floquet theory

1. Q(t) is periodic with period T , Q(t) = Q(−t), therefore (5)
has solutions

eµtP(t), e−µtP(−t),

P is T -periodic, which can be taken as a fundamental system
provided that µ is real.

2. Suppose z(t) is a solution of (5) with initial conditions
z(0) = 1, z ′(0) = 0. Then

z(t) =
1

2P(0)

(
eµtP(t) + e−µtP(−t)

)
,

Thus,
coshµT = z(T ). (7)

Unboundedness takes place for | coshµT | > 1.
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If z(T ) > 1, then µ ∈ R, and the general solution of (5) has the
form

P = C+e
µtP(t) + C−e

−µtP(−t).

Thus, for an arbitrary choice of the data P is unbounded and q
oscillates with a growing amplitude.
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Figure: Dependence of eµT on G+ for d = 1 (and d = 4 till G+ = 0.25),
solid line, d = 2, solid circles, d = 3, crosses, d = 5, solid diamonds.
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Simple waves

Theorem predicts the existence of non-affine solutions with special
initial data, which are globally smooth and tends to an affine
solution as t →∞.

To construct them, we look for simple waves F = F (G ). System
(3) reduces to one equation

∂G

∂t
+ F (G )r

∂G

∂r
= F (G )(1− dG ),

with F (G ) can be found from previous formulas, the periods of
oscillations are equal for all characteristics. If we fix Cd, we obtain
the relation between G and F in this special kind of solution, and
the corresponding initial data.

If Gr does not blow up, it tends to zero as t →∞ (E ,V tend to
the affine solution).
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Configuration of solutions

Figure: Affine solutions, radial solutions, simple waves.
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Affine solutions without the radial symmetry

V = Q(t)r, E = R(t)r,

Q and R are d× d matrices with coefficients depending on t,
r is the radius vector of the point r ∈ Rd.

E-P system reduces to a matrix system of ODE

Q̇ + Q2 + R = 0, Ṙ − (1− trR)Q = 0. (8)

d = 3, the oscillations in a plane perpendicular to e3:

V = Qr =

 a(t) b(t) 0
c(t) d(t) 0

0 0 0

 r, E = Rr =

 A(t) B(t) 0
C (t) D(t) 0

0 0 0

 r.
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Solutions with radial symmetry

c = C = 0, system (8) takes the form

ȧ = −A− a2, Ȧ = a− 2Aa, (9)

a(t), A(t) are periodic with period

T = 2

A+∫
A−

dη

(1− 2η)a(η)
,

A− < 0 and A+ > 0 is the smaller and larger roots of the equation

a(A) = 0. Besides,
T∫
0

a(τ) dτ = 0.

The period depends on A(0) = ε, ε ∈ (0, 12) decreasing

monotonically from 2π to
√

2π, and the asymptotic formula

T = 2π(1− 1

12
ε2 + o(ε2)), ε→ 0.
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Arbitrary affine solution (2D)

Ȧ = (1− A− D)a, Ḋ = (1− A− D)d ,

ȧ + a2 + A = 0, ḋ + d2 + D = 0.

To study the effect of deviation from symmetry, we make the
substitution d = a + σ, D = A + δ, which corresponds to the
axisymmetric case for σ = δ = 0:

Ȧ = (1− 2A)a− δa, ȧ = −a2 − A,

δ̇ = (1− 2A− δ)σ, σ̇ = −σ2 − 2aσ − δ.
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Small perturbation from radial symmetry

We choose a small parameter ε and set

A(t) = A0(t) + ε2A1(t) + o(ε2), a(t) = a0(t) + ε2a1(t) + o(ε2),

δ(t) = ε2δ1(t) + o(ε2), σ(t) = ε2σ1(t) + o(ε2).

For ε = 0 we obtain a globally smooth solution A0(t), a0(t), which
is a solution to system (9). For the functions A1, a1, δ1, σ1,
discarding terms of the order of smallness o(ε2), we obtain the
linear system

Ȧ1 = −2a0A1 + (1− 2A0)a1 − a0δ1, ȧ1 = −2a0a1 − A1,

δ̇1 = (1− 2A0)σ1, σ̇1 = −2a0σ1 − δ1.
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The Floquet theory for systems of linear equations with
periodic coefficients

1. For the fundamental matrix Ψ(t) (Ψ(0) = E ) there exists a
constant matrix M, possibly with complex coefficients, such that
Ψ(T ) = eTM , where T is the period of the coefficients. The
eigenvalues of the matrix of monodromy eTM are called the
characteristic multipliers of the system.

2. If among the characteristic multipliers there are such that their
absolute value is greater than one, then the zero solution of the
studied linear system is unstable in the sense of Lyapunov.
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Characteristic multipliers in dependence on A(0)
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R, Turzynsky, 2023

Theorem

1. The zero equilibrium of system (8) is unstable in the sense of
Lyapunov in the class of affine solutions.
2. Any small asymmetric affine perturbation of a globally smooth
radially symmetric affine solution of system (8) blows up in a finite
time.
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d ≥ 2, ν = const > 0 [R, 2023]

∂V

∂t
+ (V · ∇)V = −E− νV, ∂E

∂t
+ VdivE = V.

(V,E)|t=0 = (V0(r),E0(r)) = (F0(r)r,G0(r)r).
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Theorem

For arbitrary small ν > 0 there exists ε(ν) > 0, such that the
solution of the problem satisfying

‖V0(r),E0(r)‖C1(R+)
< ε,

keeps C 1 - smoothness for all t > 0. Moreover,

‖V,E‖C1(R+)
≤ const e−

ν
2
t → 0, t →∞.

Theorem

For arbitrary initial data (40) there exists such ν > 2 that the
solution of problem (10) - (40) keeps C 1 - smoothness for all t > 0
and the asymptotic property

‖V,E‖C1(R+)
≤ const e−

ν−
√

ν2−4
2

t → 0, t →∞.

holds.
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Thank you!
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