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1D-packing problems: examples

m-processor scheduling (Graham, 1966)
bin packing

Both problems are NP-hard

ApproximaƟon raƟo

RA = sup
I

{
A(I)

OPT(I)

}
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m-processor scheduling

given a list L of intervals of sizes 0 < di, i = 1, . . . , n,
pack all di inm lines minimizing the maximum sum of
sizes in each line.

Form ≥ 2 the problem is NP-hard.

2-approximaƟon on-line algorithm (RA ≤ 2)
Graham, 1966

on-line vs off-line algorithms
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m-processor on-line scheduling

Improvements:
RA ≤ 1.986 (Bartal, STOC 1992),
RA ≤ 1.945 (Karger, SODA 1994),
RA ≤ 1.923 (Albers, STOC 1997)

Lower bounds for on-line algorithms:
RA ≥ 1.837 (Bartal, IPL 1994),
RA ≥ 1.852 (Albers, STOC 1997)
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bin packing: average case analysis :

given a list L of items of sizes 0 < di ≤ 1, i = 1, . . . , n,
pack all di in minimum number of bins of size 1

di ∈ U[0, 1], wA(L) = A(L)− s(L), where
A(L) is the number of bins used by A, s(L) is the sum of
sizes of items in L

EwBF = O(n1/2(log n)3/4), P. Shor, 1986

EwFF = O(n2/3) Shor, 1986

EwA(L) > cn1/2 for any on-line algorithm A
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Discrete vs conƟnous distribuƟons

Bin Packing with Discrete Item Sizes, Part I: Perfect
Packing Theorems and the Average Case Behavior of
OpƟmal Packings, SIAM J. Discrete Math. (2000)
E. G. Coffman, Jr., C. CourcoubeƟs, M. R. Garey, D. S.
Johnson, P. W. Shor, R. R. Weber, and M. Yannakakis
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Strip packing problem
Input:

I = (R1, . . . , RN)— list of rectangles
i-th rectangle:

▶ h(Ri)— height,
▶ w(Ri)—width

ObjecƟve: Find orthogonal packing of I inside a unit
width strip without rotaƟons and intersecƟons so that
the height of packing is minimal.

ApplicaƟons
VLSI design
Cuƫng stock problem
Scheduling of parallel jobs on a cluster
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Packing example
N = 20
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Strip packing: approximaƟon algorithms
Strip packing is NP-hard (1980)

⇒ ApproximaƟon algorithms

ApproximaƟon raƟo

RA = sup
I

{
A(I)

OPT(I)

}
AsymptoƟc approximaƟon raƟo

R∞A = lim
k→∞

sup
I

{
A(I)

OPT(I)
| OPT(I) ≥ k

}

9/55



Strip packing: off-line approximaƟon
algorithms
FPTAS (Kenyon, Remila, 2000)

RA ≤ 1 + ε+
1

OPT · ε2

M. Sviridenko
Improve the quality of the algorithm

RA ≤ 1 + ε+
log(1/ε)
OPT · ε
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Strip packing: on-line algorithms.
Worst case analysis
On-line algorithms with asymptoƟc approximaƟon
raƟos

1983 Baker, Schwarz, Shelf algorithms, R∞A ≤ 1.7 + ε

1997 Csirik, Woeginger R∞A ≤ 1.69103

2007 Han, Iwama, Ye, Zhang R∞A ≤ 1.58889

Lower bound
van Vliet R∞A ≥ 1.54
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The idea of shelf algorithm
The idea of shelf algorithms is divide the strip on shelfs

The idea of algorithm Iwama et al is to divide the strip
on slips.

12/55



Average case analysis of algorithms

Standard probabilisƟc model: h(Ri), w(Ri) are
independent random variables uniformly distributed in
[0, 1]

Denote uncovered area of a strip as

S = H−
∑
i

h(Ri)w(Ri)

The goal is to minimize E S
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On-line algorithms: open-end and
closed-end

Closed-end on-line algorithm:
we know the number of items in advance

Open-end on-line algorithm: we don’t know the
number of items in advance
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Best known results in terms of
average-case analysis

1993 E S = O(N1/2)— Off-line algorithm, Coffman, Shor.

1993 E S = O(N2/3)— Closed-end on-line algorithm
(the number of rectangles N is known in advance),
Coffman, Shor.

2010 E S = O(N2/3)— Open-end on-line (an algorithm
does not know the number of rectangles),
Kuzyurin, Pospelov.
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About shelf algorithms: average case

It is impossible to improve upper
bound

E S = O(N2/3)

in the class of shelf on-line algorithms.
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New algorithm for closed-end SP

M. Trushnikov¹ proposed new on-line
algorithm for closed-end strip packing.

Experimentally he showed that

E S = CN1/2

¹Master thesis, Lomonosov Moscow State University, 2011
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Experimental results

N C
80 000 1.5655

150 000 1.5716
500 000 1.5798

1 000 000 1.5798
4 000 000 1.5878

15 000 000 1.5975
30 000 000 1.5897

100 000 000 1.5934
300 000 000 1.6006
800 000 000 1.5912

1 000 000 000 1.6044
1 500 000 000 1.6027
2 000 000 000 1.5949
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The idea of new algorithm (Trushnikov)

NotaƟons
d =

⌊
N/4√
N

⌋
, δ =

1

d

U =
N/4
d

=
√
N+ O(1).

At the boƩom of the strip we introduce d+ 1 horizontal
areas (called containers) each of height U (see the
picture below).
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Algorithm

U δ
δ

δ

…

δ
δ

δ

d+ 1 horizontal areas
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Algorithm

Each even rectangle we will pack in the first pyramid
and each odd one in the second.

Rectangles which consƟtute the pyramid we will call
containers.

Enumerate containers inside the pyramid by numbers
from 1 up to d such that the i th one has width iδ.
Rectangles inside containers will be packed one by one:
the first at the boƩom, next one above the first and so
on.
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The steps of the Algorithm
Let we obtain as input current rectangle of width w.

Find i, such that (i− 1)δ < w ≤ iδ. We will call this
rectangle be assigned to the i th container.

Then find minimal j such that i ≤ j ≤ d and in the j
th container it is enough room to pack the
rectangle.
If such j exists we pack the rectangle into the j th
container.
If no, then put the rectangle above current packing.

Such rectangles we will call unpacked.
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Theorem. The expected wasted area of
packing obtained by the Algorithm is

E S = Õ(
√
N) = O(N1/2(logN)3/2)
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Outline of the proof
Let Σ is the square of all N rectangles. Obviously
EΣ = N/4.
The height of the pyramids is

(d+1)U = N/4
(
d+ 1

d

)
= N/4+

N
4⌊N/4√

N ⌋
= N/4+O(N1/2).

We will consider only one of the two pyramids and only
⌊N/2⌋ rectangles packed into this pyramid.
Let us enumerate these ⌊N/2⌋ rectangles by numbers
from 1 up to ⌊N/2⌋ in the order of arriving rectangles.
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LetM{n1, n2} be the expectaƟon of
the number of unpacked rectangles
when the Algorithm packs rectangles
with numbers from the interval [n1, n2]

It is sufficient to prove that
M {1, ⌊N/2⌋} = O(N1/2(logN)3/2).

25/55



Main results
Define two numbers k0 and k1:

k0 = ⌊N/2⌋ − ⌊N3/4
√
logN⌋, k1 = ⌊N/2⌋ − ⌊N1/2⌋.

Obviously

M {1, ⌊N/2⌋} = M {1, k0}+M {k0 + 1, k1}+

M {k1 + 1, ⌊N/2⌋}

26/55



Main results
Define two numbers k0 and k1:

k0 = ⌊N/2⌋ − ⌊N3/4
√
logN⌋, k1 = ⌊N/2⌋ − ⌊N1/2⌋.

Obviously

M {1, ⌊N/2⌋} = M {1, k0}+M {k0 + 1, k1}+

M {k1 + 1, ⌊N/2⌋}

26/55



Main results

Lemma 1.M {k1 + 1, ⌊N/2⌋} = O(N1/2).

Lemma 2.M {1, k0} → 0, N → ∞,

Lemma 3.M {k0 + 1, k1} = O(N1/2(logN)3/2)
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For any rectangle the probability p to be assigned to
each container is 1/d.

Let into the pyramid was packed k rectangles. For any
fixed container let Xi, 1 ≤ i ≤ k be random variable that
is equal to the height of the i th rectangle when it was
assigned to this container and 0 otherwise.

Xi = ξiηi, where ξi — random variable equal 1 with
probability p and 0 with probability 1− p,
and ηi — iid random variable on (0, 1].
Let X = X1 + X2 + · · ·+ Xk.
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.Лемма..

.. ..

.

.

Let X = X1 + X2 + · · ·+ Xk, be the random variable such
that Xi = ξiηi, (see above) and all variables
ξi, ηi, i = 1, . . . , k are independent.
Then for any α ∈ (0, 1)

P {X > (1 + α)EX} ≤ e−
5
9α

2EX.
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.Лемма..

.. ..

.

.

Let the Algorithm already packed ⌊N/2⌋ − ⌊N1/2+β⌋
rectangles and 0 < β < 1/4. Fix any γ such that

1/2− 2β +
ln (5 lnN)

lnN
≤ γ < 1/2.

Let C be the event: there exists a container from ⌈Nγ⌉
lowest containers of the pyramid with height of packing
inside less then U− 1. Then for sufficiently large N

P{C} ≥ 1− 1

N1.1

.

30/55



Define parƟƟon of [0, 1/4] into n =
⌊

lnN
6 ln (5 lnN)

⌋
equal

parts. DefineMi as follows

Mi = M
{
⌊N/2⌋ − ⌊N

1
2+

1
4n i⌋, ⌊N/2⌋ − ⌊N

1
2+

1
4n (i−1)⌋

}
.

M {k0 + 1, k1} =
n∑

i=1

Mi =

n∑
i=1

M
{
⌊N/2⌋ − ⌊N

1
2+

1
4n i⌋, ⌊N/2⌋ − ⌊N

1
2+

1
4n (i−1)⌋

}
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Let us esƟmateMi for 2 ≤ i ≤ n.

Apply lemma with parameters

β =
i− 1

4n
,

γ =
1

2
− i− 1

3n
.

Obviously

γ ≥ 1

2
− 2β +

ln (5 lnN)
lnN

and The Algorithm packed ⌊N2 ⌋ − ⌊N1/2+β⌋ rectangles
(the condiƟons of lemma hold).
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By the lemma the lowest ⌈Nγ⌉ containers of the
pyramid aŌer packing of ⌊N2⌋ − ⌊N1/2+β⌋ rectangles
cannot be packed all with heights greater than U− 1.

This means that a rectangle can become unpacked iff it
will be assigned into one of the lowest ⌈Nγ⌉ containers
of the pyramid.

There are d containers in the pyramid. Thus, the
probability that every ractagle from the interval
considered can become unpacked is at most ⌈Nγ⌉

d .
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The total number of rectangles in the interval(
⌊N/2⌋ − ⌊N

1
2+

1
4n i⌋, ⌊N/2⌋ − ⌊N

1
2+

1
4n(i−1)⌋

)
is at most N1

2+
i
4n .
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Thus,

Mi = M
{
⌊N/2⌋ − ⌊N

1
2+

1
4n i⌋, ⌊N/2⌋ − ⌊N

1
2+

1
4n (i−1)⌋

}
=

= O

(
N1

2+
i
4n · N 1

2−
i−1
3n

N1/2

)
= O

(
N

1
2+

−i+4
12n

)
.
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For i ≥ 5 Mi = O(N1
2−

1
12n ).

n∑
i=5

Mi = O
(
nN

1
2−

1
12n

)
=

O

(
logN

N1
2

log logN

)
= O(N

1
2 logN).

Moreover
4∑

i=2

Mi = O (3 ·M2) = O
(
N

1
2+

1
6n

)
=

O
(
N

1
2+

ln 5 ln N
ln N

)
= O

(
N

1
2 logN

)
.

36/55



For i = 1 the number of rectangles in the interval(
⌊N/2⌋ − ⌊N

1
2+

1
4n⌋, ⌊N/2⌋ − ⌊N

1
2⌋
)

is
O
(
N

1
2+

1
4n

)
= O

(
N

1
2 (logN)3/2

)
Finally

M {k0 + 1, k1} =
n∑

i=1

Mi = O
(
N

1
2 (logN)3/2

)
.
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Open quesƟons

Process. The are n enumerated urns, each can
contain at most n balls and there are n2 balls.

At the beginning all urns are empty.

At the current step the current ball goes to any
urn with probability n−1.
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Process. If the urn is not full (contains less than
n balls), the ball will be packed into this urn.

In opposite case it moves to the urn with
number less by 1. If it is not full the ball will be
packed into this urn, else it moves to the next
urn with number less by 1.
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Problem

If the ball was moved to the urn with
number 1 and the urn is full, the ball is
unpacked.

QuesƟon: Is it true that the
expectaƟon of the unpacked balls is
O(n)?
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Generalized mulƟple-strip packing

MSP: MulƟple strip packing problem there
areM strips of unit width instead of one.

Generalized MSP (IniƟally addressed by Zhuk, 2006):
There areM strips of widths w1, . . . ,wM,

w1 ≥ w2 ≥ . . . ≥ wM
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Generalized mulƟple-strip packing

There are examples of inputs for
Generalized MSP such that very
natural heurisƟcs give

R∞A → ∞
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Generalized mulƟple-strip packing

Zhuk proved (2007) for generalized MSP that

there is an on-line algorithm A

R∞A ≤ 2e

For any on-line algorithm A: R∞A ≥ e
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NotaƟons.

Define A(T) as a vector y = (y1, . . . , ym), where
yk is the sum of squares of rectangles from T
packed by algorithm A into the k th strip.

h(T) efficiently computable funcƟon

h(T) is the lower bound of the height of
opƟmal packing.

45/55



An idea of balancing: how to get constant approximaƟon
restricƟon for small rectangles to go to large strips

Concrete rule: Let a set of rectangles T was packed and

Ar(T) = y = (y1, . . . , ym).

Next rectangle R will be packed as follows:

...1 Compute h = h(T+ {R}).

...2 Find k, such that

k = max i : w(R) ≤ wi and
yi
wi

≤ eh.

If such k exists we pack R into the k th strip by shelf
algorithm.
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DirecƟons for future work

Special cases: all strips have equal widths
(MSP)

strips have widths of special form (say, powers
of 2)

strips have constant number of different
widths
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MSP: on-line vs off-line
Off-line

AFPTAS, 2009, Bougeret, Dutot, Jansen, OƩe,
Trystam
RA ≤ 2 2009, Bougeret, Dutot, Jansen, OƩe,
Trystam

On-line
RA ≤ 3 + δm, Ye, Han, Zhang, 2009
RA ≤ 2.7 + δm, Ye, Han, Zhang, 2009
randomized on-line algorithm
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The case of related machines
We havem one-processor machines, each
machine with its own speed and a list of tasks.

DeterminisƟc on-line algorithm with RA ≤ 8

and randomized algorithm with RA ≤ 2e (1993)

DeterminisƟc on-line algorithm with
RA ≤ 3 +

√
8 and randomized algorithm with

RA ≤ 4.31 (1997)
Berman, Charicar, Karpinsky
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The case of related MSP

We have GMSP, each strip with its own
’speed’. This means that if we pack a rectangle
into the strip its height decreases
proporƟonally its ’speed’.

Zhuk (2012)
DeterminisƟc on-line algorithm with R∞A ≤ 2e.
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MulƟple Strip Packing: average case

All strips have equal widths

Our results on average case analysis for MSP
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Modified T-algorithm with every new rectangle placed
on the empƟest strip and then using Trushnikov’s
algorithm.

Theorem
E Smax = Õ(N1/2) forM = const.

Experiments show that
E Smax = O(N1/2) even for
M = N1/3

E Smax = CN1/2

M N C
21 10 000 1.663
34 40 000 1.6415
54 160 000 1.6937
86 640 000 1.7065

136 2 560 000 1.7238
273 20 480 000 1.5822
434 81 920 000 1.6312
547 163 840 000 1.7506
689 327 680 000 1.7396
868 655 360 000 1.6455

1000 1 000 000 000 1.5631
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Experiments (average case) for MSP
ForM = N1/2 average waste grows faster than N1/2

M N C
200 40 000 3.0043
400 160 000 3.7113
800 640 000 4.8146

1131 1 280 000 5.1267
1600 2 560 000 4.7967
2262 5 120 000 3.9807
3200 10 240 000 5.321
4525 20 480 000 5.4551
6400 40 960 000 7.5701
9050 81 920 000 8.067

12800 163 840 000 9.3379
18101 327 680 000 7.6747
31623 1 000 000 000 16.4354 53/55



Resume

On-line approximaƟon algorithm for MSP

New closed-end on-line algorithm for strip packing

It is shown experimentally that E S = O(N1/2).

It is proved that the algorithm provides
E S = Õ(N1/2)
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Future work:

improve analysis of new algorithm (prove
E S = O(N1/2)

adapt it to MSP

adapt it to more general types of distribuƟons

what about open-end on-line algorithms?
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