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Introduction

The setting

M a closed manifold, dim M = n.
F a codimension one foliation on M.
φt : M → M, t ∈ R a foliated flow (i.e., φt takes each leaf to a leaf).

A Lefschetz number of the flow φ:

L(φ) =
n−1∑
j=0

(−1)jTr (φ∗ : H j → H j)

H j is some cohomology theory associated to F , Tr is some trace.

The corresponding Lefschetz trace formula:

L(φ) = a contribution of closed orbits and fixed points of the flow.
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Introduction

Simple flows

Definition
A closed orbit c of period l (not necessarily minimal) of the flow φ is
called simple, if

det(id−φl
∗ : TxF → TxF) 6= 0, x ∈ c.

Definition
A fixed point x of the flow φ is called simple if

det(id−φt
∗ : TxM → TxM) 6= 0, t 6= 0.
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Introduction

Simple flows

Fix(φ) the fixed point set of φ (closed in M).
M0 the F-saturation of Fix(φ) (the union of leaves with fixed
points).
Observe that M0 is φ-invariant.
M1 = M \M0 the transitive point set.

Definition
The foliated flow φ is simple, i.e.:

all of its fixed points and closed orbits are simple,
its orbits in M1 are transverse to the leaves:

TxM = RZ (x)⊕ TxF , x ∈ M1,

where Z is the infinitesimal generator of φ (a vector field on M).
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Introduction

Guiilemin-Sternberg formula

There is a canonical expression for the right-hand side of the Lefschetz
trace formula, which follows from the Guiilemin-Sternberg formula.

In D′(R+),

L(φ) =
∑

c

l(c)
∞∑

k=1

εkl(c)(c)δkl(c) +
∑

p

εp|1− eκp t |−1,

c runs over all closed orbits and p over all fixed points of φ:
l(c) the minimal period of c,
εl(c) := sign det

(
id−φl

∗ : TxF → TxF
)
, x ∈ c.

εp := sign det
(
id−φt

∗ : TpF → TpF
)
, t > 0.

κp 6= 0 is a real number such that

φ̄t
∗ : TpM/TpF → TpM/TpF , x 7→ eκp tx .
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Introduction

Problems

Problem
To define a Lefschetz number of the flow φ:

L(φ) =
n−1∑
j=0

(−1)jTr (φ∗ : H j → H j)

H j is some cohomology theory associated with F ,
Tr is a trace,

in such a way that the above Guillemin-Sternberg formula holds.

Motivation:
Deninger’s program to study zeta- and L-functions for algebraic
schemes over the integers, in particular, the Riemann zeta-function
(Berlin, ICM, 1998).
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Nonsingular flows

Nonsingular flows

ASSUMPTIONS:
M a closed manifold, dim M = n.
F a codimension one foliation on M.
φt : M → M, t ∈ R a simple foliated flow.
φ has no fixed points:

all the closed orbits are simple,
all the orbits in M are transverse to the leaves.
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Nonsingular flows

Leafwise de Rham complex

(Ω(F),dF ) the leafwise de Rham complex of F :
Ω·(F) = C∞(M,Λ·T ∗F) smooth leafwise differential forms;
dF : Ω·(F)→ Ω·+1(F) the leafwise de Rham differential.

In a foliated chart with coordinates (x1, . . . , xn−1, y) ∈ Rn−1 × R such
that leaves are given by y = c,
a p-form ω ∈ Ωp(F) is written as

ω =
∑

α1<α2<...<αp

aα(x , y)dxα1 ∧ . . . ∧ dxαp

and dFω ∈ Ωp+1(F) is given by

dFω =
n−1∑
j=1

∑
α1<α2<...<αp

∂aα
∂xj

(x , y)dxj ∧ dxα1 ∧ . . . ∧ dxαp
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Nonsingular flows

Leafwise de Rham cohomology

The reduced leafwise de Rham cohomology of F :

H(F) = ker dF/im dF ,

the closure is in C∞-topology.
φ is a foliated flow =⇒ dF ◦ φt = φt ◦ dF .
The induced action:

φt∗ : H(F)→ H(F).

Question

The trace of φt∗ : H(F)→ H(F)?
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Nonsingular flows

The leafwise Hodge decomposition

g the Riemannian metric on M such that the infinitesimal
generator Z of the flow φ is of length one and is orthogonal to the
leaves — a bundle-like metric (so F is a Riemannian foliation.).
∆F = dFδF + δFdF the leafwise Laplacian on Ω(F)
(a second order tangentially elliptic differential operator on M).
H(F) the space of leafwise harmonic forms on M:

H(F) = {ω ∈ Ω(F) : ∆Fω = 0}.

Theorem (Alvarez Lopez - Yu. K)
The Hodge isomorphism

H(F) ∼= H(F).
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Nonsingular flows

The Lefschetz distribution

For any f ∈ C∞c (R), define

Af =

∫
R
φt∗ · f (t) dt ◦ Π : L2Ω(F)→ L2Ω(F),

where Π : L2Ω(F)→ L2H(F) is the orthogonal projection.

Af is a smoothing operator:

The Schwartz kernel KAf = KAf (x , y)|dy | of Af is smooth:

Af u(x) =

∫
M

KAf (x , y)u(y)|dy |.

In particular, Af is of trace class and

Tr Af =

∫
M

tr KAf (x , x)|dx |.
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Nonsingular flows

The Lefschetz distribution

For any f ∈ C∞c (R),

Af =

∫
R
φt∗ · f (t) dt ◦ Π : L2Ω(F)→ L2Ω(F),

where Π : L2Ω(F)→ L2H(F) is the orthogonal projection.

The Lefschetz distribution L(φ) ∈ D′(R):

< L(φ), f >= Trs Af :=
n−1∑
j=1

(−1)j Tr A(i)
f , f ∈ C∞c (R),

where A(i)
f is the restriction of Af to Ωi(F).
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Nonsingular flows

The Lefschetz formula

Theorem (Alvarez Lopez - Y.K.)
Assume that φ is simple and has no fixed points.

On R \ {0}
L(φ) =

∑
c

l(c)
∑
k 6=0

εkl(c)(c)δkl(c),

when c runs over all closed orbits of φ and l(c) denotes the
minimal period of c.
In some neighborhood of 0 in R:

L(φ) = χΛ(F) · δ0.

χΛ(F) the Λ-Euler characteristic of F given by the holonomy invariant
transverse measure Λ (Connes, 1979).
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Singular flows

The setting

ASSUMPTION:
M a closed manifold, dim M = n.
F a codimension one foliation on M.
φt : M → M, t ∈ R a simple foliated flow.

Fix(φ) the fixed point set of φ (closed in M).
M0 the F-saturation of Fix(φ).
M1 = M \M0 the transitive point set.

Definition
The foliated flow φ is simple, i.e.:

all of its fixed points and closed orbits are simple,
its orbits in M1 are transverse to the leaves.
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Singular flows

Difficulties

F is a foliation almost without holonomy:
If φ is simple, then:

M0 is a finite union of compact leaves,
only the leaves in M0 may have non-trivial holonomy groups.

In particular, F is not a Riemannian foliation.

The leafwise Laplacian ∆F is transversally elliptic only on the
transitive point set M1, not on M0.
As a consequence, the operator

Af =

∫
R
φt∗ · f (t) dt ◦ Π : L2Ω(F)→ L2Ω(F)

is not a smoothing operator. Its Schwartz kernel is smooth on
M1 ×M1 and singular near M0 ×M0.
So its trace is not well-defined.
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Singular flows

The transitive point set and its blow-up

M1
l , l = 1, . . . , r , the connected components of M1(= M \M0):

(M1,F1) =
⊔

l

(M1
l ,F1

l ).

M l is the closure of M1
l :

M l = M1
l .

Thus, Ml is a connected compact manifold with boundary,
endowed with a smooth foliation Fl tangent to the boundary.
Put

Mc :=
⊔

l

Ml , F c :=
⊔

l

Fl .

The flow lifts to a simple foliated flow φc,t of F c tangent to ∂Mc.
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Singular flows

Riemannian metric on the transitive point set

There exists a Riemannian metric g1 on M1:

M1
l equipped with gl := g1|M1

l
is a manifold of bounded geometry;

g1 is bundle-like for F1;
F1

l a Riemannian foliation of bounded geometry;
φt

l a flow of bounded geometry.

Remarks:

g1 is singular at M0.
Each (M1

l ,g
1
l ) is a Riemannian manifold with cylindrical ends.
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Singular flows

Local model for g1 near a compact leaf

Take a compact leaf L ⊂ M0. Then, by the local stability theorem,
a tubular nbhd V of L in M is diffeomorphic to a tubular nbhd VL of
L in the suspension foliated manifold (ML = L̃×Γ R,FL):

V ⊂ M ≡ VL ⊂ ML = L̃×Γ R,

the flow φt on V ≡ VL:

φt ([ỹ , x ]) = [φt
x (ỹ),eκLtx ], [ỹ , x ] ∈ VL ⊂ ML = L̃×Γ R,

the Riemannian metric g1 on M1 ≡ ML \ L = L̃×Γ (R \ {0}):

g1 = gFL +
dx2

x2 , [ỹ , x ] ∈ L̃×Γ (R \ {0}),

where gFL is a leafwise Riemanian metric on (ML,FL).
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Singular flows

Differential operators on the blow-up

The blow up of the transitive point set M1:

Mc =
⊔

l

Ml , F c =
⊔

l

Fl ,

Ml a connected compact manifold with boundary,
Fl a smooth foliation tangent to the boundary:

M̊l ≡ M1
l , F̊l ≡ F1

l .

We transfer the Riemannian metric g1 to M̊l . Then M̊l is a manifold
of bounded geometry and F̊l is a Riemannian foliation of bounded
geometry.
dF̊l

the leafwise de Rham differential on Ω(F̊l).

δF̊l
the leafwise de Rham codifferential on Ω(F̊l).

DF̊l
= dF̊l

+ δF̊l
.
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Singular flows

Smoothing operators

Definition
Let A be the Fréchet algebra of functions ψ : R→ C such that the
Fourier transform ψ̂ satisfies that, for every k ∈ N, there is some
Ak > 0 such that, for all ξ ∈ R,

|ψ̂(ξ)| ≤ Ake−k |ξ| .

A contains all functions with compactly supported Fourier transform,
as well as the Gaussians x 7→ e−tx2

with t > 0.

Definition
For any ψ ∈ A, f ∈ C∞c (R) and l , the operator

P̊l =

∫ ∞
−∞

φt∗ · f (t) dt ◦ ψ(DF̊l
)

is a smoothing operator on M̊l , but its kernel is singular near ∂M̊l .
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Singular flows

b-calculus (R. Melrose)

Theorem (Alvarez Lopez, Yu.K., Leichtnam)

P̊l =
∫∞
−∞ φ

t∗ · f (t) dt ◦ ψ(DF̊l
) gives rise to Pl ∈ Ψ−∞b (Ml ;

∧
TF∗l ).

The Schwartz kernel KPl is smooth in the interior M̊l × M̊l .
KPl has a C∞ extension to Ml ×Ml \ ∂Ml × ∂Ml that vanishes to all
orders at (∂Ml ×Ml) ∪ (Ml × ∂Ml).
Consider a tubular neighborhood of L ⊂ π0(∂Ml) with coordinates
(ρ, y), ρ ∈ (0,∞), y ∈ L.
Then KPl = KPl (ρ, y , ρ

′, y ′)u(ρ′, y ′)|dρ′||dy ′| has the form

KPl (ρ, y , ρ
′, y ′) =

1
ρ′
κPl (ρ, y ,

ρ′

ρ
, y ′),

where κPl (ρ, y , s, y
′) is smooth up to L (that is, up to ρ = 0).
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Singular flows

b-trace

In a tubular neighborhood of L with coordinates ρ ∈ (0, ε0), y ∈ L,

Plu(ρ, y) =

∫
KPl (ρ, y , ρ

′, y ′)u(ρ′, y ′)|dρ′||dy ′|,

KPl (ρ, y , ρ
′, y ′) =

1
ρ′
κPl (ρ, y ,

ρ′

ρ
, y ′),

and κPl (ρ, y , s, y
′) is smooth up to L (that is, up to ρ = 0).

Definition

bTr (Pl) = lim
ε→0

(∫
ρ>ε

KPl (ρ, y , ρ, y)|dρ||dy |+ ln ε
∫
κPl (0, y ,1, y)|dy |

)
.

Key fact

The functional bTr doesn’t have trace propertry, but bTr [P,P ′] is
expressed in terms of traces of some explicit integral operators on ∂Ml .
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Singular flows

Operators on the transitive point set

Since Mc =
⊔

l Ml ,F c =
⊔

l Fl , we get the operator

P ≡
⊕

l

Pl =

∫ ∞
−∞

φt∗ · f (t) dt ◦ ψ(DF c)

∈ Ψ−∞b (Mc;
∧

TF c∗) ≡
⊕

l

Ψ−∞b (Ml ;
∧

TF∗l ) .

In particular, its b-trace bTr (P) is well-defined.
The b-supertrace of P:

bTr s(P) =
n−1∑
j=1

(−1)j bTr (P(j)),

where P(j) is the restriction to j-forms.
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Singular flows

Derivative of the b-supertrace

We follow the heat kernel approach to index theory:

Fix an even ψ ∈ A and f ∈ C∞c (R).
For u > 0, let

Pψu ,f =

∫ ∞
−∞

φt∗ · f (t) dt ◦ ψ(uDF c)

Since the b-trace is not a trace, d
du

bTr s(Pψu ,f ) 6= 0.

Theorem
d
du

bTr s(Pψu ,f ) =
∑

L∈π0(M0)

2
|κL|

∑
γ∈ΓL

Tr s
ΓL

(
T ∗γ R̃L̃,u,tL,γ

)
f (tL,γ) .
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Singular flows

Notation

Theorem
d
du

bTr s(Pψu ,f ) =
∑

L∈π0(M0)

2
|κL|

∑
γ∈ΓL

Tr s
ΓL

(
T ∗γ R̃L̃,u,tL,γ

)
f (tL,γ) ,

L̃ the universal covering of L, ΓL := π1L̃.
T ∗γ the induced action of γ ∈ ΓL on ΓL-invariant operators on L̃.

Tr ΓL the ΓL-trace on ΓL-invariant operators on L̃.

R̃L̃,u,t = uη̃∧ φ̃t∗
L ψ
′(uDL̃).

η̃ a closed one-form on L̃, the lift of a closed one-form η on L.
If we consider η as a closed leafwise 1-form on the suspension
manifold ML = L̃×Γ R, then there exists a 1-form ω on ML
satisfying TFL = kerω such that dω = η ∧ ω.
φt

L : L→ L the restriction of the flow to L.
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Singular flows

More notation

Theorem
d
du

bTr s(Pψu ,f ) =
∑

L∈π0(M0)

2
|κL|

∑
γ∈ΓL

Tr s
ΓL

(
T ∗γ R̃L̃,u,tL,γ

)
f (tL,γ) ,

κL 6= 0 a real number such that, for p ∈ L,

φ̄t
∗ : NpF → NpF , x → eκLtx .

tL,γ = −κ−1
L log aL,γ relative periods, where a homomorphism

γ ∈ ΓL 7→ aL,γ ∈ R+ is given by the holonomy homomorphism

γ ∈ ΓL 7→ h̄L,γ ∈ Diffeo+(R,0), h̄L,γ(x) = aL,γx .

Yuri A. Kordyukov (Ufa, Russia) Lefschetz trace formulas for flows Dynamics in Siberia, 2017 26 / 29



Singular flows

Variation of the b-supertrace and Lefschetz distribution

For u, v > 0,

bTr s(Pψv ,f )− bTr s(Pψu ,f ) =
∑

L∈π0(M0)

2
|κL|

∑
γ∈ΓL

Tr s
ΓL

(
T ∗γ S̃L̃,u,v ,tL,γ

)
f (tL,γ) ,

S̃L̃,u,v ,t =

∫ v

u
R̃L̃,w ,t dw = η̃∧ φ̃t∗

L
ψ(vDL̃)− ψ(uDL̃)

DL̃
.

Definition
The Lefschetz distribution

〈L(φ), f 〉 = bTr s(Pψv ,f )− lim
u→0

∑
L∈π0(M0)

2
|κL|

∑
γ∈ΓL

Tr s
ΓL

(
T ∗γ S̃L̃,u,v ,tL,γ

)
f (tL,γ).

Here the right-hand side is independent of v .
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Singular flows

Trace formula

Theorem
L(φ) is a well-defined distribution on R+ given by

L(φ) =
∑

c

l(c)
∞∑

k=1

εkl(c)(c) · δkl(c)

on R+, where c runs over all closed orbits of φt , l(c) denotes the
minimal period of c, and x is an arbitrary point of c.
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Singular flows

Concluding remarks

Remark
The next problem is to give a cohomological interpretation of the limit
as v → +∞ of

bTr s(Pψv ,f )− lim
u→0

∑
L∈π0(M0)

2
|κL|

∑
γ∈ΓL

Tr s
ΓL

(
T ∗γ S̃L̃,u,v ,tL,γ

)
f (tL,γ).

Remark
Contribution of fixed points as in the Guillemin-Sternberg formula.
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