Naturally graded Lie algebras of slow growth

Dmitry Millionshchikov

Lomonosov Moscow State University

International Conference "Dynamics in Siberia", Novosibirsk

February 27, 2017

Dmitry Millionshchikov Naturally graded Lie algebras of slow growth

\mathbb{N} -graded Lie algebras

Definition

A Lie algebra ${\mathfrak g}$ is called ${\mathbb N}\text{-}\mathsf{graded}$ if there is a decomposition

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{N}} \mathfrak{g}_i, \ [\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}, \text{ for all } i, j \in \mathbb{N}.$$

Example

The Lie algebra \mathfrak{m}_0 is defined by its infinite basis $e_1, e_2, \ldots, e_n, \ldots$ with the commutation relations:

$$[e_1, e_i] = e_{i+1}, \forall i \geq 2.$$

Dmitry Millionshchikov

The Lie algebra \mathfrak{m}_2 is defined by its infinite basis $e_1, e_2, \ldots, e_n, \ldots$ and

 $[e_1, e_i] = e_{i+1}, \quad \forall i \geq 2; \qquad [e_2, e_j] = e_{j+2}, \quad \forall j \geq 3.$

The Lie algebra W^+ can be defined by its basis $\{e_i, i \in \mathbb{N}\}$ and

$$[e_i, e_j] = (j - i)e_{i+j}, \ \forall i, j \in \mathbb{N}.$$

Dmitry Millionshchikov

Narrow graded Lie algebras after Zelmanov and Shalev

Definition

A \mathbb{N} -graded Lie algebra $\mathfrak{g} = \bigoplus_{i \in \mathbb{N}} \mathfrak{g}_i$ is called of width d if there exists (minimal) $d \in \mathbb{N}$ such that

dim $\mathfrak{g}_i \leq d, \forall i \in \mathbb{N}$.

The Lie algebras $\mathfrak{m}_0, \mathfrak{m}_2, W^+$ considered above are examples of narrowest graded Lie algebras (with width d = 1).

Fialowski in 1983 classified \mathbb{N} -graded Lie algebras of width 1. Besides $\mathfrak{m}_0, \mathfrak{m}_2, W^+$, there are other interesting \mathbb{N} -graded Lie algebras in her list.

The Lie algebra n_1

Polynomial matrices defined for $k \in \mathbb{N}$ by

$$e_{3k+1} = \frac{1}{2} \begin{pmatrix} 0 & t^{2k+1} \\ 0 & 0 \end{pmatrix}, e_{3k+2} = \begin{pmatrix} 0 & 0 \\ t^{2k+1} & 0 \end{pmatrix}, e_{3k+3} = \frac{1}{2} \begin{pmatrix} t^{2k+2} & 0 \\ 0 & -t^{2k+2} \end{pmatrix}$$

The linear span $\langle e_1, e_2, e_3, \ldots, e_n, \ldots \rangle$ is a positively graded subalgebra \mathfrak{n}_1 in the loop Lie algebra $\mathfrak{sl}(2, \mathbb{K}) \otimes \mathbb{K}[t]$. It is \mathbb{N} -graded with one-dimensional homogeneous components:

$$\mathfrak{n}_1 = \oplus_{i=1}^{+\infty} \langle e_i
angle \subset \mathfrak{sl}(2,\mathbb{K}) \otimes \mathbb{K}[t],$$

with the Lie bracket

$$[e_i, e_j] = c_{i,j}e_{i+j}, \ c_{i,j} = \begin{cases} 1, \text{if } j-i \equiv 1 \mod 3; \\ 0, \text{if } j-i \equiv 0 \mod 3; \\ -1, \text{if } j-i \equiv -1 \mod 3. \end{cases}$$

Dmitry Millionshchikov

Twisted loop algebra $\mathfrak{n}_2 = \oplus_{i=1}^{+\infty} \langle f_i \rangle \subset \mathfrak{sl}(3,\mathbb{K}) \otimes \mathbb{K}[t],$

$$f_{8k+1} = \begin{pmatrix} 0 & t^{2k} & 0 \\ 0 & 0 & t^{2k} \\ 0 & 0 & 0 \end{pmatrix}, f_{8k+2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ t^{2k+1} & 0 & 0 \end{pmatrix}, f_{8k+3} = \begin{pmatrix} 0 & 0 \\ t^{2k+1} & 0 \\ 0 & -t^{2k+1} \end{pmatrix}$$

$$f_{8k+4} = \begin{pmatrix} t^{2k+1} & 0 & 0 \\ 0 & -2t^{2k+1} & 0 \\ 0 & 0 & t^{2k+1} \end{pmatrix}, f_{8k+5} = \begin{pmatrix} 0 & t^{2k+1} & 0 \\ 0 & 0 & -t^{2k+1} \\ 0 & 0 & 0 \end{pmatrix},$$

$$f_{8k+6} = \begin{pmatrix} 0 & 0 & t^{2k+1} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, f_{8k+7} = \begin{pmatrix} 0 & 0 & 0 \\ t^{2k+2} & 0 & 0 \\ 0 & t^{2k+2} & 0 \end{pmatrix}, f_{8k+8} = \begin{pmatrix} t^{2k+2} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$[f_q, f_l] = d_{q,l}f_{q+l}, \ q, l \in \mathbb{N}.$$

Dmitry Millionshchikov

Descending central series and natural grading

Let $\mathfrak g$ be a Lie algebra and its descending central series is

$$\mathfrak{g}^1 = \mathfrak{g} \supset \mathfrak{g}^2 = [\mathfrak{g}, \mathfrak{g}] \supset \cdots \supset \mathfrak{g}^k = [\mathfrak{g}, \mathfrak{g}^{k-1}] \supset \cdots$$

 \mathfrak{g} is called nilpotent if there exists s such that $\mathfrak{g}^s \neq 0, \mathfrak{g}^{s+1} = 0$.

One can consider its associated graded Lie algebra

$$\operatorname{gr}_{\mathcal{C}}\mathfrak{g} = \oplus_{i=1}^{+\infty} \left(\mathfrak{g}^{i}/\mathfrak{g}^{i+1}\right)$$

with the Lie bracket:

$$[x+\mathfrak{g}^{i+1}, y+\mathfrak{g}^{j+1}] = [x, y]+\mathfrak{g}^{i+j+1}, x \in \mathfrak{g}^i, y \in \mathfrak{g}^j.$$

Definition

A Lie algebra \mathfrak{g} is called naturally graded if it is isomorphic to its associated graded $\operatorname{gr}_{\mathcal{C}}\mathfrak{g}$.

Dmitry Millionshchikov

Some remarks

The Lie algebra \mathfrak{m}_0 is naturally graded:

$$\mathfrak{m}_0 \cong \operatorname{gr}_C \mathfrak{m}_0 = \oplus_{i=1}^{+\infty} \mathfrak{m}_{0i}.$$

But its first homogeneous component is two-dimensional now:

$$\mathfrak{m}_{01} = \langle e_1, e_2 \rangle, \mathfrak{m}_{02} = \langle e_3 \rangle, \ldots, \mathfrak{m}_{0i} = \langle e_{i+1} \rangle, i \geq 2.$$

However the positive part W^+ of the Witt algebra and \mathfrak{m}_2 are not naturally graded.

$$\operatorname{gr}_{\mathcal{C}}\mathfrak{m}_{2}\cong \operatorname{gr}_{\mathcal{C}}W^{+}\cong \operatorname{gr}_{\mathcal{C}}\mathfrak{m}_{0}\cong\mathfrak{m}_{0}$$

Dmitry Millionshchikov

Finite-dimensional case: Carnot Lie algebras

The natural grading has very important property

$$[\mathfrak{g}_1,\mathfrak{g}_i]=\mathfrak{g}_{i+1}, i\in\mathbb{N}.$$
 (1)

In particular it means that \mathfrak{g} is generated by its first homogeneous component \mathfrak{g}_1 .

If a naturally graded Lie algebra \mathfrak{g} is finite-dimensional, i.e. it means that exists N such that $\mathfrak{g}_i = 0, i > N$, then \mathfrak{g} is nilpotent.

Definition

A finite-dimensional \mathbb{N} -graded Lie algebra is called Carnot Lie algebra if it satisfies (1).

The Lie algebras \mathfrak{n}_1 and \mathfrak{n}_2 are naturally graded and they have the width d = 2 (as naturally graded Lie algebras).

Theorem (M. Vergne, 1970)

Let $\mathfrak{g} = \bigoplus_{i=1}^{+\infty} \mathfrak{g}_i$ be a naturally graded of maximal class, i.e.

$$\dim \mathfrak{g}_1 = 2, \dim \mathfrak{g}_i = 1, i \geq 2.$$

then $\mathfrak{g} \cong \mathfrak{m}_0$

Dmitry Millionshchikov

Suppose that an infinite-dimensional Lie algebra \mathfrak{g} is generated by a finite-dimensional subspace V_1 . For n > 1, let V^n denote the K-linear span of all products in elements of V_1 of length at most n with arbitrary arrangements of brackets. Clearly $V_1 \subset V_2 \subset \cdots \subset V_n \subset \ldots$ is an ascending chain of finite-dimensional subspaces of \mathfrak{g} and $\cup_{i=1}^{+\infty} V_i = \mathfrak{g}$. The Gelfand-Kirillov dimension of \mathfrak{g} is

$$GKdim\mathfrak{g} = \limsup_{n \to +\infty} \frac{\log \dim V_n}{\log n}.$$

A finite Gelfand-Kirillov dimension means that there exists a polynomial P(x) such that dim $V_n < P(n)$ for all n > 1.

The growth function is $F(n) = \dim V_n = \dim (\mathfrak{g}/\mathfrak{g}^{n+1})$. For the Lie algebras $\mathfrak{m}_0, \mathfrak{m}_2$ and W^+ (maximal class or filiform) we have

dim
$$V_n = n+1$$

and it is the slowest possible growth. An arbitrary naturally graded Lie algebra \mathfrak{g} of width 2 grows not faster than 2n. For instance if $\mathfrak{g} = \mathfrak{n}_1$ we have

$$\dim V_n = \left[\frac{3n+1}{2}\right]$$

All these Lie algebras have $GKdim\mathfrak{g} = 1$.

Dmitry Millionshchikov

Central extensions of Lie algebras

A central extension of a Lie algebra \mathfrak{g} is an exact sequence

$$0 o V o \tilde{\mathfrak{g}} o \mathfrak{g} o 0$$

of Lie algebras and their homomorphisms, in which the image of $V \to \tilde{\mathfrak{g}}$ is contained in the centre $Z(\tilde{\mathfrak{g}})$. At the level of vector spaces we have

$$0 \to V \to V \oplus \mathfrak{g} \to \mathfrak{g} \to 0$$

where the Lie bracket $[,]_{V \oplus \mathfrak{g}}$ in the vector space $V \oplus \mathfrak{g}$ is defined by the formula

$$[(v,g),(w,h)]_{V\oplus\mathfrak{g}}=(c(g,h),[g,h]_{\mathfrak{g}}).$$

The Jacobi identity for this Lie bracket is equivalent to $c: \mathfrak{g} \times \mathfrak{g} \to V$ being cocycle.

Dmitry Millionshchikov

Naturally graded Lie algebras as central extensions

Let $\tilde{\mathfrak{g}} = \bigoplus_{i=1}^{k} \mathfrak{g}_i$ be a naturally graded Lie algebra. Obviously $\mathfrak{g}_k \subset Z(\tilde{\mathfrak{g}})$. One can consider the central extension

$$0 o \mathfrak{g}_k o \widetilde{\mathfrak{g}} o \widetilde{\mathfrak{g}}/\mathfrak{g}_k o 0.$$

Let fix $e_1^k, \ldots, e_{m_k}^k$ a basis of \mathfrak{g}_k , then we can write our two-cocycle in the coordinates

$$c(\cdot,\cdot)=c_1(\cdot,\cdot)e_1^k+\ldots+c_{m_k}(\cdot,\cdot)e_{m_k}^k,$$

Dmitry Millionshchikov

Naturally graded Lie algebras as central extensions

We have

$$c_1(\cdot,\cdot),\ldots,c_{m_k}(\cdot,\cdot)\in H^2_{(k)}(\widetilde{\mathfrak{g}}/\mathfrak{g}_k,\mathbb{K}).$$

Proposition

Let $c_1(\cdot, \cdot), \ldots, c_{m_k}(\cdot, \cdot)$ and $\tilde{c}_1(\cdot, \cdot), \ldots, \tilde{c}_{m_k}(\cdot, \cdot)$ be two k-sets of cocycles from $H^2_{(k)}(\tilde{\mathfrak{g}}/\mathfrak{g}_k, \mathbb{K})$. They define isomorphic extensions iff linear spans $\langle c_1(\cdot, \cdot), \ldots, c_{m_k}(\cdot, \cdot) \rangle$ and $\langle \tilde{c}_1(\cdot, \cdot), \ldots, \tilde{c}_{m_k}(\cdot, \cdot) \rangle$ are in the same orbit of $\operatorname{Aut}_{gr}(\tilde{\mathfrak{g}}/\mathfrak{g}_k)$ in the space of m_k -planes in $H^2_{(k)}(\tilde{\mathfrak{g}}/\mathfrak{g}_k, \mathbb{K})$.

Remark

$$\dim \mathfrak{g}_k \leq \dim H^2_{(k)}(\tilde{\mathfrak{g}}/\mathfrak{g}_k,\mathbb{K})$$

Dmitry Millionshchikov

$\operatorname{Aut}_{gr}(\mathcal{L}(2,3))$ -action on $\mathbb{P}H^2_{(4)}(\overline{\mathcal{L}(2,3),\mathbb{R})}$

Minimal model for $\mathcal{L}(2,3)$:

$$da^{1} = db^{1} = 0, \quad da^{2} = a^{1} \wedge b^{1}, da^{3} = a^{1} \wedge a^{2}, \quad db^{3} = b^{1} \wedge a^{2};$$
(2)

 $\begin{aligned} & H^2_{(4)}(\mathcal{L}(2,3),\mathbb{R}) = \langle a^1 \wedge a^3, \ a^1 \wedge b^3 + a^3 \wedge b^1, \ b^1 \wedge b^3 \rangle. \end{aligned}$ Graded automorphisms, $\operatorname{Aut}_{gr}(\mathcal{L}(2,3)) = GL(2,\mathbb{R})$

$$A = \begin{pmatrix} \alpha & \beta \\ \rho & \mu \end{pmatrix} \to \det A \cdot \begin{pmatrix} \alpha^2 & 2\rho\alpha & \rho^2 \\ \alpha\beta & \rho\beta + \alpha\mu & \mu\rho \\ \beta^2 & 2\mu\beta & \mu^2 \end{pmatrix}$$

Dmitry Millionshchikov

3 orbits of $\operatorname{Aut}_{gr}(\mathcal{L}(2,3))$ -action on $\mathbb{P}H^2_{(4)}(\mathcal{L}(2,3),\mathbb{R})$

Dmitry Millionshchikov

Two real loop algebras

Two real forms $\mathfrak{so}(3,\mathbb{R})$, $\mathfrak{so}(1,2)$ of $\mathfrak{sl}(2,\mathbb{C})$ can be defined by the basis u, v, w and commutating relations

$$[u, v] = w, [v, w] = \pm u, [w, u] = v.$$

Now we consider two subalgebras \mathfrak{n}_1^{\pm} in loop algebras $\mathfrak{so}(3,\mathbb{R})\otimes\mathbb{R}[t]$ and $\mathfrak{so}(1,2)\otimes\mathbb{R}[t]$ respectively. They are defined by basic elements

$$\frac{u \otimes t^1}{v \otimes t^1}, w \otimes t^2, \frac{u \otimes t^3}{v \otimes t^3}, w \otimes t^4, \frac{u \otimes t^5}{v \otimes t^5}, w \otimes t^6, \dots$$

Dmitry Millionshchikov

Theorem

Let $\mathfrak{g} = \bigoplus_{i=1}^{+\infty} \mathfrak{g}_i$ be a real naturally graded Lie algebra such that:

 $\dim \mathfrak{g}_i + \dim \mathfrak{g}_{i+1} \leq 3, \forall i \in \mathbb{N}.$

Then $\mathfrak{g} = \bigoplus_{i=1}^{+\infty} \mathfrak{g}_i$ is isomorphic to the only one Lie algebra from the following list:

$$\mathfrak{m}_0,\mathfrak{n}_1^\pm,\ \mathfrak{n}_2,\left\{\mathfrak{m}_0^{\mathcal{S}}\mid\mathcal{S}\subset\{3,5,7,9,\dots\}
ight\},$$

where $\{\mathfrak{m}_0^S \mid S \subset \{3, 5, 7, 9, ...\}\}$ are central extensions of \mathfrak{m}_0 that correspond to the sequence S of two-cocycles.

Remark

The Lie algebras \mathfrak{n}_1^{\pm} are isomorphic over \mathbb{C} .

Dmitry Millionshchikov

$$H^2(\mathfrak{m}_0,\mathbb{K}).$$

The second cohomology space $H^2(\mathfrak{m}_0, \mathbb{K})$ is graded and generated by cocycles of odd gradings

$$e^2 \wedge e^3, e^2 \wedge e^5 - e^3 \wedge e^4, e^2 \wedge e^7 - e^3 \wedge e^6 + e^4 \wedge e^5, \dots$$

Thank you!

Dmitry Millionshchikov Naturally graded Lie algebras of slow growth