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Rough dynamical systems

The concept roughness of a dynamical system was born in
Nizhny Novgorod in 1937 (then Gorky). A. Andronov and L. Pontryagin

considered a dynamical system

ẋ = v(x),

where v is a C1-vector field on the plane, x ∈ R2 and suggest to
call it rough if for any sufficiently small perturbation in the
C1-metric, there exists a homeomorphism close to the identity
map which transforms the orbits of the original dynamical
system to the orbits of the perturbed system (perturbed system
is topologically equivalent to the original one by a conjugating
homeomorphism).



Criteria of the roughness

In the paper “A. Andronov and L. Pontryagin. Rough systems.
Doklady Akademii Nauk SSSR. 1937. 14 (5): 247–250” for a
dynamical system

ẋ = v(x),

where v is a C1-vector field given on the unit disk and
transversal to the boundary, was done a following criteria for its
roughness:
• number of the equilibrium points and the periodic orbits is

finite and they are hyperbolic ;
• there are no saddle connections .



Leontovich-Mayer scheme

The topological classification (division into classes with respect
to the topological equivalence) of structurally stable flows
(dynamical systems with continuous time) on a bounded part of
the plane and on the 2-sphere follows from the results by

E. Leontovich-Andronova and A. Mayer . In the papers “E. Leontovich, A.
Mayer. On trajectories defining qualitative structure of
decomposition of the sphere into trajectories. Dokl. Akad. Nauk
SSSR. 1937. 14 (5), 251–257” and “E. Leontovich, A. Mayer.
On a scheme defining topological structure of decomposition
into trajectories. Dokl. Akad. Nauk SSSR. 1955. 103 (4),
557–560” actually more general class of dynamical systems
was considered. The classification was based on the ideas of
Poincare-Bendixson to pick a set of specially chosen
trajectories so that their relative position (Leontovich-Mayer
scheme) fully define the qualitative structure of the
decomposition of the phase space of the dynamical system into
the trajectories.



Transition to a surface with positive genus

The principal difficulty in generalization of this result in case of
arbitrary orientable surfaces of positive genus is the possibility
of new types of motion — non-closed recurrent trajectories . The absence of
such trajectories for structurally stable flows without
singularities on the 2-torus at first was proved by A. Mayer.
Actually in the paper “Mayer A.G. Rough transformation of the
circle to the circle. Uch. Zap. GGU. 1939. Gorky, Pub. GGU,
12, 215-229.” he introduced the rough notion for cascades
(discrete dynamical systems), found the conditions of the
roughness for cascades on the circle and also got the
topological classification for these cascades.



Rough transformations of circle

Let R(S1) be class of rough transformations of the circle which
consists of two subclasses R+(S1) and R−(S1) of preserving
orientation and reverse orientation diffeomorphisms,
accordingly.
1. For each diffeomorphism ϕ ∈ R+(S1) the non-wandering set
NW(ϕ) consists of 2n, n ∈ N periodic orbits, each of them has
period k.
2. For each diffeomorphism ϕ ∈ R−(S1) the non-wandering set
NW(ϕ) consists of 2q, q ∈ N periodic points, two of them are
fixed, others have period 2.



The preserving orientation case

Let ϕ ∈ R+(S1). Enumerate the periodic points from NW(ϕ):
p0, p1, . . . , p2nk−1, p2nk = p0 starting from arbitrary periodic point
p0 clockwise, then ϕ(p0) = p2nl and (k, l) are coprime.

Two diffeomorphisms
ϕ;ϕ′ ∈ R+(S1) with
parameters n, k, l; n′, k′, l′ are
topologically conjugated if and
only if n = n′, k = k′ and at
least one of the following
assertions holds:
• l = l′,
• l = k′ − l′.



The reversing orientation case

For ϕ ∈ R−(S1) we set ν = −1; ν = 0; ν = +1 if its fixed point
are sources; sink and source; sinks, accordingly. Notice that
ν = 0 if q is odd and ν = ±1 if q is even.

Two diffeomorphisms
ϕ;ϕ′ ∈ R−(S1) with
parameters q, ν; q′, ν ′ are
topologically conjugated if and
only if q = q′ and ν = ν ′.



Structural stability

In 1959 M. Peixoto introduced the concept of structural stability of
flows to generalize the concept of roughness.
A flow f t is called structurally stable if, for any sufficiently close
flow gt, there exists a homeomorphism h sending trajectories of
the system gt to trajectories of the system f t. The original
definition of a rough flow involved the additional requirement
that the homeomorphism h be C0-close to the identity map.
Peixoto proved that the concepts of roughness and structural
stability for flows on 2-sphere are equivalent. In 1962 Peixoto
proved that the conditions 1),2) above plus condition
3) all ω- and α-limit sets are contained in the union of the
equilibrium points and the limit cycles
are necessary and sufficient for the structural stability of a flow
on arbitrary orientable closed (compact and without boundary)
surface and showed that such flows are dense in the space of
all C1-flows.



Morse-Smale systems

An immediate generalization of properties of rough flows on
orientable surfaces leads to Morse-Smale systems (continuous
and discrete). The non-wandering set of such a system
consists of finitely many fixed points and periodic orbits, each of
which is hyperbolic and the stable and unstable manifolds Ws

p
and Wu

q intersect transversally for any distinct non-wandering
points p, q.
Morse-Smale systems are named in 1960 after paper “Morse
inequality for Dynamical Systems” Bull. Amer. Math. Soc.
1960, No. 66, 46-49” by S. Smale , where he introduced flows with
the above properties (on manifolds of dimension greater than 2)
and proved that they satisfy inequalities similar to the Morse
inequalities.



Citation

“We remark that systems satisfying 1)-3) may be very important
because of the following possibilities.
(A) It seems at least plausible that system satisfying 1)-3) form
an open dense set in the space (with the C1-topology) of all
vector fields on Mn.
(B) It seems likely that conditions 1)-3) are necessary and
sufficient for X to be structurally stable in the sense of A.
Andronov and L. Pontryagin (1937).
(A) and (B) have been provide for the case Mn is a 2-disk.”

S. Smale



Morse-Smale systems do not exhaust the class of all rough
systems

Later 1969 S. Smale and J. Palis showed that Morse-Smale
systems are structurally stable. However, already in 1961
Smale proved that such systems do not exhaust the class of all
rough systems via constructing a structurally stable
diffeomorphism on the two-dimensional sphere S2 with infinitely
many periodic points. This diffeomorphism is known now as the
Smale’s horseshoe.



Peixoto’s graph

In 1971 M. Peixoto obtained the classification for Morse-Smale
flows on arbitrary surfaces. He did this by generalizing the
Leontovich-Mayer scheme for such flows to a directed graph whose
vertices are in one-to-one correspondence with fixed points and
closed trajectories of the flow, and whose edges correspond to
the connected components of the invariant manifolds of fixed
points and closed trajectories. He proved that the isomorphic
class of such directed graph is the complete topological
invariant for the class of Morse-Smale systems on surfaces
(where the isomorphisms preserve specially chosen
subgraphs).



Oshemkov-Sharko approach

A. Oshemkov and V. Sharko in 1998 pointed out a certain inaccuracy
concerning the Peixoto invariant due to the fact that an
isomorphism of graphs does not distinguish between types of
decompositions into trajectories for a domain bounded by two
periodic orbits.



Three-colour graph

They therefore suggest to use a three-colour graph , see Figure 4,
where vertices correspond to triangular domains and the color
of an edge corresponds to passing through a side of triangles
of the same color.

Figure: Directed and three-colour graphs for a Morse-Smale flow on
2-sphere



Gradient-like difeomorphisms

Morse-Smale diffeomorphisms is called gradient-like if it has no
heteroclinic points.

Figure: Heteroclinic points



On topological conjugacy of the gradient-like
diffeomorphisms on surfaces

• In 1985 A. Bezdenezhnych , V. Grines showed that for gradient-like
diffeomorphism on surfaces a directed graph with an
automorphism is again a complete invariant.

• V. Grines , S. Zinina , O. Pochinka in 2014 showed that two
gradient-like diffeomorphisms on surface are topologically
conjugate if and only if their three-colour graphs equipped
by periodic automorphisms are isomorphic and found an
efficient algorithm for distinguishing of such graphs.



On topological conjugacy of “beh 1” 2-diffeomorphisms

• In 1993 V. Grines proved that for such diffeomorphisms an
invariant similar to Peixoto’s graph carrying an additional
information on the heteroclinic intersections (a substitution)
is sufficient to describe necessary and sufficient conditions
for the topological conjugacy.



On topological conjugacy of “beh 1” 2-diffeomorphisms

• R. Langevin in 1993 suggest to consider an orbit space with
respect to in a basin of the sink and project to this closed
surface the unstable separatries of the saddle points. In
2010 T. Mitryakova and O. Pochinka applied this method to the
topological classification of Morse-Smale diffeomorphisms
f with beh(f ) ≤ 1 on orientable surfaces and solved the
realization problem for such diffeomorphisms.



On topological conjugacy of Morse-Smale
diffeomorphisms on surfaces

• Ch. Bonatti and R. Langevin in 1998 presented the topological
classification of arbitrary structurally stable
diffeomorphisms of orientable surfaces using Markov
partitions as complete invariant. The main result of that
paper consists of a finite combinatorial presentation of the
global topological dynamics by the geometrical types of
some Markov partitions of the hyperbolic sets and by
gluing the domains along their boundary.



On topological conjugacy of Morse-Smale
diffeomorphisms on surfaces

• I. Vlasenko in 1998 also presented the topological
classification of arbitrary structurally stable
diffeomorphisms of orientable surfaces using an equipped
oriented graph whose vertices are oriented circles. In this
graph to each periodic and heteroclinic point was assigned
a vertex and to connecting segments of a separatrices —
directed edges.



Grines-Pochinka-Van Strien approach (2016)

Definition

Let σ be a saddle periodic point for a Morse-Smale
diffeomorphism f : M2 → M2. A neighborhood Nσ of the point σ
with a one-dimensional foliation Fu

σ containing Wu
σ as leaves, is

called linearizable if there is a homeomorphism µσ : Nσ → N
which conjugates the diffeomorphism f kσ |Nσ to the linear
diffeomorphism and sends leaves the foliation Fu

σ to the foliation
consisting of the horizontal lines.



The compatible system of neighbourhoods

An f -invariant collection Nf of linearizable neighborhoods Nσ of
all saddle points σ ∈ Σ is called compatible if for if
Ws
σ1
∩Wu

σ2
6= ∅ for σ1, σ2 ∈ Σ then (Fu

σ1,x ∩ Nσ2) ⊂ Fu
σ2,x for

x ∈ (Nσ1 ∩ Nσ2).



Heteroclinic rectangle

Definition

A closed 2-disc Πσ bounded by segments
[σ, a]uσ, [a, b]sσ1

, [b, c]uσ2
, [c, σ]sσ, σ1, σ2 ∈ Σ and such that

int Πσ ∩ Ωf = ∅ is called a heteroclinic rectangle with respect to
σ if every connected component of the set Ws

Σ ∩Πσ intersects
every connected component of the set Wu

Σ ∩Πσ at exactly one
point.

Figure: A) Πσ is a heteroclinic rectangle. B) Πσ is not a heteroclinic
rectangle



The maximal compatible system of neighbourhoods

Definition

A compatible system of neighbourhoods Nf is called maximal if
every linearizing neighborhood Nσ ∈ Nf contains each
heteroclinic rectangle Πσ.

Theorem

For every diffeomorphism f ∈ MS(M2) there is a maximal
compatible system of neighbourhoods.



The scheme of f

Let Σ0 be the set of all sinks of f , Vf = Ws
Σ0
\ Σ0, V̂f = Vf /f .

Denote by pf : Vf → V̂f the natural projection which is a cover in
this case. Let ηf be a map composed by induced by pf

homomorphisms from the fundamental groups of connected
components of V̂f to the group Z and Ûf = pf (Nf ). A scheme is

Sf := (V̂f , ηf , Ûf ).



The classification theorem

The schemes Sf and Sf ′ of diffeomorphisms f , f ′ ∈ MS(M2),
respectively, are said to be equivalent if there exist a
homeomorphism ϕ̂ : V̂f → V̂f ′ such that:
1) ηf ′ϕ̂∗ = ηf ;
2) ϕ̂(Ûf ) = Ûf ′ and for every point σ ∈ Σi there is a point σ′ ∈ Σ′i
such that ϕ̂(L̂σ) = L̂σ′ and

q−1
σ′ ϕ̂qσ : Sνσ \ Iσ → Sνσ′ \ Iσ′

preserves the order of points on the circles.

Theorem

Two diffeomorphisms f , f ′ ∈ MS(M2) are topologically conjugate
iff their schemes Sf , Sf ′ are equivalent.



The realization



The realization



Combinatorial invariants

For wide class of Morse-Smale systems a graph is complete
invariant (similar to Leontovich-Andronova and Mayer’s scheme
or Peixoto’s graph for flows). Topological classification of even
the simplest examples of Morse-Smale diffeomorphisms on
3-manifolds do not fit into the concept of selecting of the frame
of the invariant manifolds of fixed points and periodic orbits.
The reason for this surprising effect is the possibility of “wild”
behavior of the separatrices of the saddle points. First
diffeomorphism with wild separatrices was constructed by

D. Pixton in 1977.



Classification of the Pixton’s class P

Let f ∈ P. Set Vf = Wu
α \ α,

V̂f = Vf /f . Denote pf : Vf → V̂f

the natural projection. Then V̂f

is homeomorphic to S2 × S1, pf

is cover and L̂s
f = pf (Ws

σ \ σ) is
homeomorphic to T2.

Theorem

(Ch. Bonatti, V. Grines, 2000) Diffeomorphisms f , f ′ ∈ P are
topologically conjugated if and only if there is a
homeomorphism ϕ̂ : S2 × S1 → S2 × S1 such that ϕ̂(L̂s

f ) = L̂s
f ′ .



Global dynamic of Morse-Smale diffeomorphisms.

Let f be a Morse-Smale diffeomorphism on 3-manifold. Let us
denote by Ωq, q = 0, 1, 2, 3 the set of all periodic points with
Morse index q.

We set Af = Ω0 ∪Wu
Σ1

,
Rf = Ω3 ∪Ws

Σ2
. It is possible to

prove that Af (Rf ) is a
connected set which is an
attractor (a repeller) of f .



Scheme of Morse-Smale diffeomorphism f

Set Vf = M3 \ (Af ∪ Rf ) and V̂f = Vf /f . Denote by pf : Vf → V̂f

the natural projection and by ηf : π1(V̂f )→ Z epimorphism,
induced by cover pf . Set L̂s

f = pf (Ws
Ω1

) and L̂u
f = pf (Wu

Ω2
).

Definition

The collection Sf = (V̂f , ηf , L̂
u
f , L̂

s
f ) is called scheme of the

diffeomorphism f .



Heteroclinic lamination
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The scheme is complete invariant

Definition

The schemes Sf = (V̂f , ηf , L̂
u
f , L̂

s
f ) and Sf ′ = (V̂f ′ , ηf ′ , L̂

u
f ′ , L̂

s
f ′) of

diffeomorphisms f , f ′ are called equivalent if there is a
homeomorphism ϕ̂ : V̂f → V̂f ′ such that
1) ηf = η

f ′ ϕ̂∗;
2) ϕ̂(L̂u

f ) = L̂u
f ′ , ϕ̂(L̂s

f ) = L̂s
f ′ .

Theorem

The diffeomorphisms f , f ′ are topologically conjugated if and
only if their schemes are equivalent.
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Figure: L. Pontryagin
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An equilibrium point x0 where v(x0) = 0, is said to be hyperbolic
if none of the eigenvalues of the linearization of v at x0 is purely
imaginary. A periodic orbit of a flow is said to be hyperbolic if
none of the eigenvalues of the Poincare return map at a point
on the orbit has absolute value one.

Figure: Hyperbolic equilibrium
points

Figure: Hyperbolic periodic orbit

back



Saddle connection refers to a situation where an orbit from one
saddle point enters the same (homoclinic orbit) or another
saddle point (heteroclinic orbit), i.e. the unstable and stable
saddle separatrices are connected.

Figure: Homoclinic connection

Figure: Heteroclinic connection
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Figure: E. Leontovich-Andronova
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Figure: A. Mayer
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Figure: Irrational winding of the torus
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Figure: M. Peixoto

back



Figure: The diffeomorphisms f , f ′ : S2 → S2 have isomorphic graphs
but they are not topologically conjugate as their equipped graphs are
not isomorphic
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Figure: J. Palis
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Figure: A. Oshemkov
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