Separatrix map for slow-fast Hamiltonian systems

Sergey Bolotin Moscow Steklov Mathematical Institute

Dynamics in Siberia 2021

Slow-fast Hamiltonian systems

• Consider a Hamiltonian system on $M \times N$ with a symplectic structure

$$\omega_{\varepsilon} = \omega + \varepsilon^{-1} \Omega, \qquad \varepsilon \ll 1.$$

 ω and Ω – symplectic structures on M and N. Hamilton's equations:

$$\dot{z} = J\partial_z H(z, w), \quad \dot{w} = \varepsilon J\partial_w H(z, w)$$

 $z \in M$ – fast variables, $w \in N$ – slow variables.

• A slowly time dependent system

$$\dot{z} = J\partial_z H(z, \tau), \qquad \dot{\tau} = \varepsilon \ll 1$$

can be represented as a slow-fast system

$$\hat{H}(z, \tau, h) = H(z, \tau) + h, \quad \hat{\omega}_{\varepsilon} = \omega + \varepsilon^{-1} dh \wedge d\tau,$$

on the energy level $\{\hat{H} = 0\}.$

• For $\varepsilon = 0$ we obtain a frozen system

$$\dot{z} = J \nabla H_w(z), \quad H_w(z) = H(z, w)$$

depending on a parameter w.

- Suppose trajectories γ of the frozen system on energy levels
 {*H_w* = *E*} are periodic. *I*(*w*, *E*) = *A*(γ) − the Maupertuis
 action of γ. Period τ(*w*, *E*) = ∂_E*I*(*w*, *I*).
- For small ε the action is an adiabatic invariant: on $\Sigma_E = \{H = E\}$ it changes with average rate $O(\varepsilon^2)$.
- Averaged system:

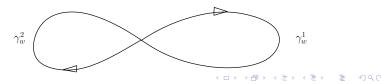
$$\dot{w} = -\varepsilon \frac{J \partial_w I(w, E)}{\tau(w, E)}$$

• Period map $S: w \to w - \varepsilon J \nabla I(w, E) + o(\varepsilon)$.

Adiabatic invariant near a separatrix

- Averaging doesn't work for trajectories passing near equilibria of the frozen system but there is an analog of the monodromy map – separatrix map.
- Suppose the frozen system has 1 dof and z₀(w) is a hyperbolic equilibrium with a figure 8 separatrix
 Γ_w = γ¹_w ∪ γ²_w union of 2 homoclinics.
- In the complement of Γ_w there is an adiabatic invariant.
- For $E o h(w) = H(z_0(w), w)$ inside γ_w^k it behaves as

$$I_k(w, E) = A(\gamma_w^k) + \frac{(h(w) - E) \ln |h(w) - E|}{\lambda(w)} + \cdots$$



Sergey Bolotin Moscow Steklov Mathematical Institute Separatrix map for slow-fast Hamiltonian systems

Jumps of the adiabatic invariant

- While a trajectory stays away from the separatrix, the slow variable shadows a level curve of an adiabatic invariant.
- For 1 dof A. Neishtadt (1986) showed that when the slow variable crosses the curve Z_E = {h = E} (then the trajectory of the fast system shadows the separatrix), the adiabatic invariant has quasi-random jumps of order ε. Then the slow variable shadows a level curve of another adiabatic invariant till it crosses Z_E again and so on.
- We obtain a partial multidimensional analog of Neishtadt's result for trajectories shadowing a chain of homoclinics.
- The behavior of shadowing trajectories is described by an analog of the separatrix map of B.Chirikov, A.Neishtadt, D.Treschev.

• • • • • • • •

- The problem is related to Arnold's diffusion problem near a multiple resonance.
- V.Gelfreich and D.Turaev (2008) showed that if the frozen system has compact uniformly hyperbolic chaotic invariant sets Λ_{w,E} ⊂ {H_w = E}, there exist trajectories with quasirandom change of the slow variable with average rate of order ε.
- w shadows a trajectory of a composition of maps $w \to J \nabla I_k(w, E), I_k(w, E) = A(\gamma_{w,E}^k)$, where $\gamma_{w,E}^k \subset \Lambda_{w,E}$ hyperbolic periodic orbits. Tool – Shilnikov's separatrix map.
- This result does not work on critical frozen energy levels.

• Suppose the frozen system has a hyperbolic equilibrium $z_0(w)$ such that

$$abla h(w) \neq 0, \qquad h(w) = H(z_0(w), w).$$

Then energy levels

$$\Sigma_E = \{(z,w) : H(z,w) = E\}$$

are smooth at $(z_0(w), w)$.

- If (z₀(w), w) ∈ Σ_E, then w belongs to the uncertainty manifold Z_E = {h = E}.
- Goal: study trajectories on $(z(t), w(t)) \in \Sigma_E$ with w(t) near Z_E .

Poincaré function

• Let ϕ_w^t be the flow of the frozen system and

$$\mathcal{W}^{\pm}(w) = \{x: \phi^t_w(x) o z_0(w) ext{ as } t o \pm \infty\}$$

the stable and unstable manifolds.

- Let $\gamma_w^k : \mathbb{R} \to W^-(w) \cap W^+(w)$ be transverse homoclinics. Poincaré's functions $P_k(w) = A(\gamma_w^k)$.
- Melnikov's function:

$$\nabla P_k(w) = -\int_{-\infty}^{+\infty} \partial_w \hat{H}(\gamma_w^k(t), w) dt, \quad \hat{H}(z, w) = H - h(w).$$

化氯化 化氯

For a trajectory (z(t), w(t)) ∈ Σ_E shadowing a homoclinic γ^k_w for −T ≤ t ≤ T,

$$\Delta w = \int_{-T}^{T} \dot{w} \, dt = \varepsilon \int_{-T}^{T} J \partial_w \hat{H} \, dt + \varepsilon \int_{-T}^{T} J \nabla h \, dt.$$

- For large T the first integral converges to $-J\nabla P_k(w)$, and the second grows as $2TJ\nabla h$.
- If the trajectory comes $O(\sqrt{\varepsilon})$ -close to $z_0(w)$ at t = T, then $h(w) E \sim \varepsilon$ and

$$2T \sim rac{\ln |h(w) - E|}{lpha(w)}, \quad lpha(w) = \min |\mathrm{Re} \,(\mathrm{eigenvalues})|$$

• Hence $\Delta w \approx -\varepsilon J \nabla I_k(w, E)$, where

$$I_k(w, E) = P_k(w) + \frac{(h(w) - E) \ln |h(w) - E|}{\alpha(w)}$$

- analog of the adiabatic invariant for 1 dof fast system.

• The separatrix map corresponding to the homoclinic γ_w^k is

$$S_{\varepsilon}^{k}(w) = w - \varepsilon J \nabla I_{k}(w, E) + o(\varepsilon).$$

- S^k_ε is an analog of the separatrix map introduced by B.Chirikov and D.Treschev for nearly integrable time periodic systems with 1 dof, and by A.Neishtadt for slowly time dependent systems with 1 dof.
- For 1 dof fast system, the separatrix map is the Poincaré map for an appropriate choice of the section. Not so for higher dimension.
- Compositions of the separatrix maps are not always defined.

- For small ε the system has a normally hyperbolic invariant manifold N_ε = {(z_ε(w), w) : w ∈ N}.
- The Hamiltonian flow ϕ_{ε}^{t} on N_{ε} :

$$\dot{w} = \varepsilon J \nabla h(w) + o(\varepsilon).$$

The scattering map F^k_ε: N_ε → N_ε corresponding to the homoclinic γ^k_w is given by F^k_ε(w) = w₊ if W⁻(z_ε(w), w) ∩ W⁺(z_ε(w₊), w₊) contains a curve close to γ^k_w. Then

$$F_{\varepsilon}^{k}(w) = w - \varepsilon J \nabla P_{k}(w) + o(\varepsilon).$$

 The separatrix map S^k_ε is a superposition of the flow φ^t_ε on N_ε and the scattering maps F^k_ε.

 $\alpha(w) = \min\{|\operatorname{Re} \lambda| : \lambda \text{ eigenvalue of } z_0(w)\}.$ Generically there are 2 cases:

- $\pm \alpha(w)$ are real simple eigenvalues.
- $\pm \alpha(w) \pm i\beta(w)$ are complex simple eigenvalues.

 $W_{\text{strong}}^{\pm}(w)$ – strong stable and unstable manifolds of $z_0(w)$ corresponding to strong eigenvalues with $|\text{Re }\lambda| > \alpha(w)$. We call a homoclinic orbit γ_w of the frozen system leading if $\gamma_w(\mathbb{R}) \not\subset W_{\text{strong}}^+(w) \cup W_{\text{strong}}^-(w)$. Generic homoclinics are leading and transverse.

For a leading homoclinic there exist

$$v_{\pm}(\gamma_w) = \lim_{t \to \pm \infty} e^{-\alpha(w)|t|} \dot{\gamma}_w(t) \neq 0.$$

We call γ_w positive (negative) if

$$\omega(v_+(\gamma_w),v_-(\gamma_w))>0\qquad (<0).$$

∃ ▶

Example: natural systems

$$H_w(q,p) = rac{1}{2} \|p\|^2 + V_w(q)$$

- If q_0 is a point of nondegenerate maximum of V_w , then $z_0 = (q_0, 0)$ is a hyperbolic equilibrium with real eigenvalues.
- A homoclinic $\gamma(t) = (q(t), p(t))$ is positive (negative) if

$$\lim_{t \to +\infty} \frac{\dot{q}(t)}{\|\dot{q}(t)\|} = \mp \lim_{t \to -\infty} \frac{\dot{q}(t)}{\|\dot{q}(t)\|}$$

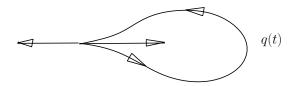


Figure: Positive homoclinic in the configuration space

 $\Omega_+(\varepsilon) = \{a \le h - E \le b\varepsilon\}$. Let $\varepsilon > 0$ be small enough.

Theorem

For any $w_0 \in \Omega_+$ there exist a sequence $(t_i)_{i=1}^n$ and a trajectory $(z(t), w(t)) \in \Sigma_E$ such that:

- $w(0) = w_0$ and z(t) shadows the homoclinic chain $(\gamma_{w_i}^k)_{i=0}^n$, $w_i = w(t_i)$.
- $d(z(t), z_0(w(t)))$ has a local minimum $\sim \sqrt{\varepsilon}$ at $t = t_i$.
- The sequence w_i shadows a trajectory of the separatrix map:

$$\Delta w_i = w_{i+1} - w_i = -\varepsilon J \nabla I_k(w_i, E) + o(\varepsilon)$$

•
$$\Delta t_i = t_{i+1} - t_i = \frac{|\ln \varepsilon|}{\alpha(w_i)} + O(1).$$

n is determined by the condition $w_i \in \Omega_+$ for $i = 1, \ldots, n$.

In the complex case we don't need the homoclinic to be positive.

Theorem

For any sequence $m_i \in \mathbb{N}$ and $w_0 \in \Omega_+$ there exist a sequence $(t_i)_{i=1}^n$ and a trajectory $(z(t), w(t)) \in \Sigma_E$ such that:

- $w(0) = w_0$ and z(t) shadows the homoclinic chain $(\gamma_{w_i})_{i=0}^n$.
- $d(z(t), z_0(w(t)))$ has a local minimum $\sim \sqrt{\varepsilon}$ at $t = t_i$.
- The sequence w_i shadows a trajectory of the separatrix map: $\Delta w_i = w_{i+1} - w_i = -\varepsilon J \nabla I_k(w_i, E) + o(\varepsilon),$
- $\Delta t_i = t_{i+1} t_i = \frac{|\ln \varepsilon|}{\alpha(w_i)} + \frac{2\pi m_i}{\beta(w_i)} + O(1).$

The index m_i shows the number of revolutions near $z_0(w_i)$ between shadowing of the homoclinic.

伺 ト く ヨ ト く ヨ ト

Shadowing a homoclinic chain

Suppose the leading eigenvalues are real. We call a code (k_i) positive if $s_{k_i,k_{i+1}} = \omega(v_+(\gamma_w^{k_i}), v_-(\gamma_w^{k_{i+1}})) > 0$ for all *i*.

Theorem

For any positive code $(k_i)_{i=1}^n$ and any $w_0 \in \Omega_+$ there exist a sequence $(t_i)_{i=1}^n$ and a trajectory $(z(t), w(t)) \in \Sigma_E$ such that $w(0) = w_0$ and:

- $d(z(t), z_0(w(t)))$ has a local minimum $\sim \sqrt{\varepsilon}$ at $t = t_i$.
- The trajectory shadows the homoclinic chain $(\gamma_{w_i}^{k_i})$ and

$$\Delta t_i = t_{i+1} - t_i = rac{|\ln arepsilon|}{lpha(w_i)} + O(1).$$

$$\Delta w_i = w(t_{i+1}) - w(t_i) = -\varepsilon J \nabla I_{k_i}(w_i, E) + o(\varepsilon)$$

The orbit w_i moves along a trajectory with Hamiltonian I_{k_1} , then along a trajectory with Hamiltonian I_{k_2} , and so on. Similarly for the complex case. The time interval 0 ≤ t ≤ T ~ n | ln ε | is relatively short: for longer time the trajectory will exit the domain

$$\Omega_+(\varepsilon) = \{ \mathsf{a}\varepsilon \le \mathsf{h} - \mathsf{E} \le \mathsf{b}\varepsilon \}.$$

One can get similar results in a larger domain $a\varepsilon \leq |h - E| \leq \delta \ll 1$, but this is not written yet.

• If there are homoclinics $\gamma_w^{1,2}$ such that the Poisson brackets $\{h, P_1\} > 0$ and $\{h, P_2\} < 0$, there exist shadowing trajectories with $w(t) \in \Omega_+$ for long time.

.

In the real case let $\gamma_w^{1,2}$ be positive homoclinics such that $s_{1,2} > 0$, $s_{2,1} > 0$. Suppose also $\{h, P_1\} > 0$ and $\{h, P_2\} < 0$.

Corollary

Let $u : [0, T] \to \mathbb{R}_+$ be a continuous function. For small $\varepsilon > 0$ there exist a code $(k_i)_{i=1}^n$, a sequence $(t_i)_{i=0}^n$ and a trajectory $(z(t), w(t)) \in \Sigma_E$, $0 \le \tau \le T$, such that

• z(t) shadows the homoclinic chain $(\gamma_{w_i}^{k_i})_{i=1}^N$ with $\Delta w_i = -\varepsilon J \nabla I_{k_i}(w_i, E).$

•
$$|h(w_i) - \varepsilon u(t_i)| = o(\varepsilon).$$

The time interval T is independent of ε . In the complex case no positivity assumption is needed.

直 と く ヨ と く ヨ と

- A. Neishtadt, On the change in the adiabatic invariant on crossing a separatrix in systems with two degrees of freedom. PMM, 51 (1987), 750–757.
- V. Gelfreich, D. Turaev D., Unbounded energy growth in Hamiltonian systems with a slowly varying parameter. CMP, 283 (2008), 769–794.
- S. Bolotin, Local adiabatic invariants near a homoclinic set of a slow-fast Hamiltonian system. Proc. Steklov Inst. Math., 310 (2020), 12–24.

4 B 6 4 B