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Introduction to billiards. Some famous open problems

Action of billiard reflection on the space of oriented lines

N

N

L

T(L)

Problem 1 Does every triangular billiard have at least one periodic orbit?

Alexey Glutsyuk Density of thin film billiard reflection pseudogroup in Hamiltonian symplectomorphism pseudogroupMarch 4, 2021 3 / 24



Introduction to billiards. Some famous open problems
Problem 1 Does every triangular billiard have at least one periodic orbit?

Vertices = bases of heights

Fagnano 3−periodic orbit

in an acute−angled triangular billiard

Richard Schwarz: partial progress for obtuse-angled triangular billiards
based on numerical experiments.

Problem 2 (Ivrii’s Conjecture). In every billiard with smooth boundary
the set of periodic oriented lines has zero Lebesgue measure?

Partial results: 3-periodic case: Rychlik, Stojanov, Vorobets (any dim)...
4-periodic in dim= 2: A.G. and Yuri Kudryashov.
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Symplectic properties of billiards
M – 2n-dimensional manifold, ω - 2-form on M.
The form ω is symplectic, if ω is non-degenerate, and dω = 0.

Standard symplectic form on R2n
q1,...,qn,p1,...,pn : ω =

∑n
j=1 dpj ∧ dqj .

Example. For every manifold N the cotangent bundle T ∗N is symplectic.

Namely, let π : T ∗N → N projection, x ∈ N, β ∈ T ∗x N: lin. form on TxN.
The canonical 1-form α on T ∗N, the Liouville form, is defined as follows.

For every ζ ∈ T(x ,β)(T ∗N) set α(ζ) := β(π∗ζ).

ω := dα is the standard symplectic form on T ∗N.

Let N be a Riemannian manifold. Then T ∗N ' TN.
The Riemannian Liouville form α and symplectic form ω on TN:

x ∈ N, w ∈ TxN, ζ ∈ T(x ,w)TN; α(ζ) :=< w , π∗ζ >, ω := dα.
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Symplectic properties of billiards

Example. The space En of oriented lines in Rn is canonically
diffeomorphic to the tangent bundle TSn−1 to the unit sphere;
dim En = 2(n − 1).
The pullback of the standard symplectic form on TSn−1 is called the
standard symplectic form on the space of oriented lines En.

L

L −−> (x,v)

      

 

 nThe isomorphism  E   −−> TS
  n−1

O

x(L)

v(L)
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Equivalent definition: Melrose symplectic reduction.
Let ω - standard symplectic form on TRn. Consider the hypersurface

S := T1Rn = {(x , v) ∈ TRn | ||v || = 1} ⊂ (TRn, ω)

Ker(ω|S)− line field on S.

Σ ⊂ S − a cross-section ' open subset U ⊂ En.

ω|Σ = a symplectic structure on Σ ' U.

The symplectic form ωU is independent on the choice of Σ for given U.

Theorem (Melrose). Billiard reflection from every hypersurface in Rn

acting on the space En is a symplectomorphism: preserves the form ω.

Melrose made this construction for every Riemannian manifold:
the canonical symplectic form on the local space of geodesics.
It is invariant under billiard reflection from any hypersurface.
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Symplectic properties of billiards
Reflection from any hypersurface (mirror) acting on the space En of oriented
lines is a symplectomorphism.

Problem (A.Yu.Plakhov, D.V.Treschev, S.L.Tabachnikov). Which
symplectomorphisms can be realized as compositions of mirror reflections?

Very few symplectomorphisms can be realized:
- a symplectomorphism between domains in R2(n−1) is locally defined by
a generating function of 2(n − 1) variables;
- a reflecting hypersurface is a graph of function of n − 1 variables.

Consider two parallel beams of lines in R3 identified with two domains
U,V ⊂ R2. They are Lagrangian surfaces in E3.

Theorem (A.Yu.Plakhov, D.V.Treschev, S.L.Tabachnikov, 2016).
Every orientation-preserving diffeomorphism U → V is a
composition of 6 reflections.
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Hamiltonian symplectomorphisms

A symplectomorphism F of a symplectic manifold (M, ω) is Hamiltonian,
if there exists a function H : M × [0, 1]→ R such that F is the time 1 flow
map of corresponding non-autonomous Hamiltonian differential equation:

ẋ = ∇ωH(x , t), ∇ω := the skew gradient of H in x ∈ M.

A diffeomorphism of a manifold with boundary has compact support, if it
equals identity outside a compact subset and near the boundary.

Each symplectomorphism of a symplectic topological disk is Hamiltonian.

The group of symplectomorphisms of top. disk with compact support is
path-connected by smooth paths and contractible.

Theorem (M.Gromov). The same holds for symplectomorphisms of R4.

In higher dimensions it is not known, whether a similar statement is true.
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Let V ⊂ (M, ω) be a domain. A symplectomorphism F : V → F (V ) ⊂ M
is called M-Hamiltonian, if there exists a smooth family of
symplectomorphisms Ft : V → Vt = F (Vt) ⊂ M, t ∈ [0, 1], F0 = Id ,
F1 = F , such that for every t ∈ [0, 1]
the derivative dF

dt is a Hamiltonian vector field on Vt .

Example. Let M be a symplectic topological cylinder,
V b M be a subcylinder: a deformation retract of M.
Then not every symplectomorphism F : V → F (V ) b M isotopic to
identity is M-Hamiltonian.

Necessary condition for F to be M-Hamiltonian: case of cylinders.
Consider a boundary component L ⊂ ∂V . Then
the signed area of the domain bounded by L and F (L) should be zero.
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Main results: global case.
Let α > 0, k ∈ N.

Two hypersurfaces in Rn+1 are (α, k)-close, if they admit parametrizations
by the same source n-manifold that are α-close in Ck -norm.

Let γ ⊂ Rn+1 be a strictly convex C∞-smooth closed hypersurface,

Π := {the oriented lines intersecting γ transversally} ⊂ En+1.

Π := phase cylinder of billiard inside the convex domain bounded by γ.

Theorem (A.G.) For α > 0 arbitrarily small, k ∈ N arbitrarily large and
arbitrary domain V ⊂ Π each Π-Hamiltonian symplectomorphism
F : V → F (V ) ⊂ Π is a C∞-limit of compositions of reflections (and
their inverses) from closed C∞-smooth hypersurfaces (α, k)-close to γ.

In other words: the C∞-closure of pseudogroup generated by reflections
from hypersurfaces (α, k)-close to γ contains the pseudogroup of
Π-Hamiltonian symplectomorphisms between domains in Π.

Alexey Glutsyuk Density of thin film billiard reflection pseudogroup in Hamiltonian symplectomorphism pseudogroupMarch 4, 2021 11 / 24



Thin film billiards (after Ron Perline)
Perline, R. Geometry of Thin Films. J. Nonlin. Sci. 29 (2019), 621–642.

Let γ ⊂ Rn+1 be a C∞-smooth closed strictly convex hypersurface,

Let Π := {oriented lines intersecting γ transversally} ⊂ En+1.
~N = ~N(x) := the exterior unit normal vector field on γ. Let f ∈ C∞(γ),

γε = γε,f := {x + εf (x)~N(x) | x ∈ γ},

Tγ ,Tγε : En+1 → En+1 the reflections from γ and γε acting on lines,

∆Tε,f := T−1
γε
◦ Tγ , ∆T0,f = Id .

  ε=0
d
d   

is a symplectic   
vector field on  Π

 ε, f  f

L

T  (L)γ
      
∆ ε

γ γε

    T     (L)
       ,         f

 ∆  )ε (V   :=        T      |

The field Vf isHamiltonian.
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Vf := d
dε(∆Tε,f )|ε=0 is a Hamiltonian vector field on Π.

L ∈ Π a line. L <−−> (x,v),  ||v||=1

L
γ

Ν

The Hamiltonian function

    f   

Theorem (Ron Perline).

    f

x

 

v

of the vector field   V       is

H  (x,v):=−2<v, N> f(x)

Goal. Find the Lie algebra generated by fields Vf , f ∈ C∞(γ).
<=> Find the Lie algebra generated by functions Hf (x , v) under
Poisson bracket: {F ,G} := ω(∇ωF ,∇ωG),

where ∇ωH is the Hamiltonian vector field for the function H.
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Main result: density of Lie algebra generated by fields Vf

{F ,G} := ω(∇ωF ,∇ωG), ∇ω{F ,G} = [∇ωf ,∇ωg ].

Hamiltonian function for Vf : Hf (L) = Hf (x , v) = −2 < v , ~N(x) > f (x).

Main Theorem (A.G.) Consider the Lie algebra H ⊂ C∞(Π) generated
by all the functions Hf (x , v) under the Poisson bracket {, }, f ∈ C∞(γ).

The algebra H is C∞-dense in the algebra of all the C∞-functions on Π.

Main Theorem => for every α > 0, k ∈ N the closure of pseudogroup
gener. by reflections from hypersurf. (α, k)-close to γ contains the pseu-
dogroup of Π-Hamiltonian symplectomorphisms between domains in Π.

We find the algebra H explicitly and prove its density.
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Unit ball bundle model: Π ' T<1γ = {(x ,w) ∈ Tγ | ||w || < 1}.

 

w

v

L
γ  x

            γ,L −> (x,w), w in  T        ||w||<1.x

Theorem (Melrose). This is a symplectomorphism Π→ T<1γ
with respect to the standard symplectic forms on Π and on Tγ.

The Hamiltonian function Hf (L) in the model Π ' T<1γ:

Hf (x ,w) = −2 < v , ~N(x) > f (x) = −2
√
1− ||w ||2f (x).

Theorem. Let γ be an arbitrary Riemannian manifold. Then the
Lie algebra H generated by the functions Hf (x ,w) with respect to {, } is
C∞-dense in the space of C∞-smooth functions on T<1γ.
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Lie algebra H generated by functions Hf (x ,w) = −2
√
1− ||w ||2f (x)

T<1γ ' Tγ : (x ,w) ∈ T<1γ, w 7→ y := w√
1− ||w ||2

∈ Txγ.

This is not a symplectomorphism.
We describe H in coordinates (x , y), in which Hf = −2 f (x)√

1+||y ||2
.

Sk(T ∗γ) := {functions on Tγ whose restrictions to the fibers Txγ
are degree k homogeneous polynomials in y}; S0(T ∗γ) = C∞(γ).

Λk := 1√
1 + ||y ||2

Sk(T ∗γ) ⊂ C∞(Tγ).

We deal with functions in Λk as functions on T<1γ ' Tγ.

The vector space Λ0 is spanned by functions Hf .

Theorem. Let γ be a Riemannian manifold not diffeomorphic to a
circle. Then H = ⊕∞k=0Λk .

Alexey Glutsyuk Density of thin film billiard reflection pseudogroup in Hamiltonian symplectomorphism pseudogroupMarch 4, 2021 16 / 24



Special case: γ = S1, s – natural parameter, |S1| = 2π;
T<1S1 = S1

s × (−1, 1)w , ω = dw ∧ ds, y = w√
1−|w |2

.

Λk = vector space of functions Hk,f (s, y) := yk√
1 + y2 f (s), f ∈ C∞(S1).

H = the Lie algebra in C∞(T<1S1) ' C∞(S1
s × Ry ) generated by Λ0.

Λk,0 := {Hk,f ∈ Λk |
∫ 2π

0
f (s)ds = 0}.

Gglob,0 := Λ1 ⊕ (⊕k∈2Z≥0Λk)⊕ (⊕k∈2Z≥1+1Λk,0).
Odd(y) := the space of odd polynomials in y .

Theorem. One has H = Gglob,0 ⊕Ψ (the vector space sum) for the vector
subspace Ψ ⊂ 1√

1+y2
Odd(y) defined below. Namely,

for every P(y) ∈ Odd(y) set P̃(x) := x− 1
2 P(x 1

2 ). One has

Ψ :=
{

P(y)√
1 + y2 | P(y) ∈ Odd(y), P ′(0) = 0, P̃ ′(−1) = 0

}
.
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Density of the Lie algebra thus obtained

Main result
=> In all the cases, except for γ = S1 one has H = ⊕k≥0Λk .

=> And in the case, when γ = S1 this is almost true: description of H.

Proposition. The Lie algebra ⊕k≥0Λk is dense in C∞(T<1γ).
The same holds for the algebra H in the case, when γ = S1.

Proof. Deduced fromWeierstrass Theorem on C∞-density of polynomials.
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Sketch of proof of main results: description of Lie algebra H.

The functions Hf form the vector space Λ0.
Goal: show that the Lie algebra H generated by Λ0 is ⊕+∞

k=0Λk .

{Λ0,Λ0} = Λ1, {Λ1,Λ1} = Λ1 => Λ1 is a Lie algebra.

{Λd ,Λk} ⊂ Λd+k−1 ⊕ Λd+k+1.

πd : ⊕kΛk → Λd

πk+1({Λ0,Λk}) = Λk+1 whenever k 6= 2. (1)

If (1) were true for all k, then the proof would have been done.
But in general, (1) does not hold for k = 2:
- for γ = S1;
- in higher dimensions.
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For γ = S1 = Rs/2πZ, metric ds2, one has

Λk = vector space of functions Hk,f (s, y) := yk√
1 + y2 f (s), f ∈ C∞(S1).

{Hd ,f ,Hk,g} = Hd+k−1,hd+k−1 + Hd+k+1,hd+k+1 (2)

hd+k−1 = (d +k)fg ′−k(fg)′, hd+k+1 = (d +k−2)fg ′− (k−1)(fg)′. (3)

Claim 1. π3({Λ0,Λ2}) = Λ3,0 = { h(x)y3√
1+y2

|
∫ 2π

0 h(x)dx = 0}.

Proof. (2), (3) => {H0,f ,H2,g} = H1,2f ′g + H3,−(fg)′ , and
∫ 2π

0 (fg)′ds = 0.

f ∈ C∞(S1) 7→ average: f̂ := 1
2π

∫ 2π
0 f (x)dx ∈ R.

Claim 2. (d + k − 2)ĥd+k−1 = (d + k)ĥd+k+1. Proof. See (3).
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{Hd ,f ,Hk,g} = Hd+k−1,hd+k−1 + Hd+k+1,hd+k+1

Claim 2: (d + k − 2)ĥd+k−1 = (d + k)ĥd+k+1.

Λk,0 := {Hk,f ∈ Λk | f̂ = 0}.
Claim 3: πk+1{Λ0,Λk} = πk+1{Λ0,Λk,0} = Λk+1 for k 6= 2.

Claims 2, 3 => H = Λ1 ⊕ (⊕k∈2Z≥0Λk)⊕ (⊕k∈2Z≥1+1Λk,0)⊕Ψ,

Ψ = Span
{

Rj(y)√
1 + y2 | Rj(y) := jy2j−1 + (j − 1)y2j+1, j ≥ 2

}
.

For P(y) =
m∑

i=1
aiy2i+1, P̃(x) := x−

1
2 P(x

1
2 ); R̃j(x) = jx j−1 + (j − 1)x j .

Miracle 1. R̃ ′j (−1) = 0. One has P(y)√
1+y2

∈ Ψ <=> P̃ ′(−1) = 0.

Implies the main result for γ = S1.
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Case of higher dimensions

{Λd ,Λk} ⊂ Λd+k−1 ⊕ Λd+k+1,

πk+1{Λ0,Λk} = Λk+1 for k 6= 2. (4)

This is not true for k = 2: π3{Λ0,Λ2} ⊂ Λ3, 6= Λ3.

G± : Λ0⊗RΛ4 → Λ4±1 : G+(F⊗H) := π5{F ,H}, G−(F⊗H) := π3{F ,H}.

Miracle 2. If dimγ ≥ 2 => G−(ker G+) = Λ3 => Λ3 ⊂ {Λ0,Λ4}.

(4) + Miracle 2 => H = ⊕k≥0Λk . Proves main result.
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We have proved that:

each Π-Hamiltonian symplectomorphism is a
C∞-limit of compositions of reflections and their inverses.

Reflections are done from hypersurfaces close to γ.

Open question. What about the case of pseudo-semigroup:
compositions of just reflections, without inverses?

Related to Ivrii’s Conjecture.
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Thank you for your attention!

Alexey Glutsyuk Density of thin film billiard reflection pseudogroup in Hamiltonian symplectomorphism pseudogroupMarch 4, 2021 24 / 24


