Weak ergodicity and non-equilibrium statistical mechanics

Valery V. Kozlov 2021

Steklov Mathematical Institute of Russian Academy of Sciences Regular and Chaotic Dynamics. 2020. Vol. 25. №6, pp. 675–689 $\Gamma = \{x_1, \ldots, x_n, y_1, \ldots, y_n\}$ — phase space. Liouville equation $\frac{\partial}{\partial}$

$$\frac{\partial \rho}{\partial t} + \{H, \rho\} = 0$$

1.

$$\bar{\rho}(x,y) = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \rho_t(x,y) dt$$

2. ρ_t weakly converges to $\bar{\rho}$ if

$$\int_{\Gamma} \varphi \rho_t d^n x d^n y \to \int_{\Gamma} \varphi \bar{\rho} d^n x d^n y$$

as $t \to \infty$

Weak Ergodicity

$$M^{n} = \{x_{1}, \dots, x_{n}\}, \Gamma = T^{*}M$$
$$H = \frac{1}{2}(A(x)y, y) \text{ is a Hamiltonian function}$$

$$\dot{x} = \frac{\partial H}{\partial y}, \quad \dot{y} = -\frac{\partial H}{\partial x}$$

Lemma 1. If x(t), y(t) is a solution, then $t \mapsto x(\lambda t)$, $\lambda y(\lambda t)$ is also a solution for any $\lambda \in \mathbb{R}$.

Gibbs measure γ with density

$$\rho = e^{-\beta H} / Z; \quad \beta = \frac{1}{kT}$$
$$\int_{\Gamma} \rho d^n x d^n y = 1 \quad \Rightarrow \quad \gamma(\Gamma) = 1$$

Weak Ergodicity

$$\varphi\colon M\to\mathbb{R}\xrightarrow[\mathrm{lift}]{}\tilde{\varphi}\colon\Gamma\to\mathbb{R}$$

 $d\nu = |A(x)|^{-1/2} d^n x$ is a Riemannian volume on M

Lemma 2. If φ is integrable with respect to the measure ν , then $\tilde{\varphi}$ is integrable with respect to the measure γ and

$$\int_{\Gamma} \tilde{\varphi} d\gamma = \int_{M} \varphi d\nu \left/ \int_{M} d\nu \right.$$

Here g_H^t is the phase flow.

For almost all $z \in \Gamma$ there exist

$$\lim_{\tau \to \pm \infty} \frac{1}{\tau} \int_{0}^{\tau} \tilde{\varphi}(g_{H}^{t}(z)) dt = \bar{\varphi}(z) \quad \text{(Birkhoff-Khinchin theorem)}$$

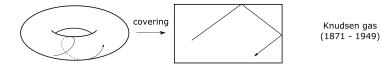
and $\bar{\varphi}$ is integrable with respect to the measure γ ; $\bar{\varphi}|_{y=0} = \varphi$.

Lemma. If $y \neq 0$, then $\bar{\varphi}$ depends only on x and y/|y|. **Definition.** A system is called *weakly ergodic* if for any integrable function $\varphi \colon M \to \mathbb{R}$ its mean value $\bar{\varphi} \colon \Gamma \to \mathbb{R}$ is constant almost everywhere.

Theorem 1. If the system is weakly ergodic, then

$$\bar{\varphi} = \int_{M} \varphi d\nu \left/ \int_{M} d\nu \quad (\text{a.e.}) \right.$$

Corollary. Almost all geodesics are everywhere dense on M. Theorem 2. Every ergodic system is weakly ergodic. **Example.** $M = \mathbb{T}^n$, $H = \frac{1}{2}(y, y) = \frac{1}{2} \sum y_i^2$ is a weakly ergodic system and is not an ergodic system.



 $\rho_t(z) = \rho_0(g_H^{-t}(z))$ is a solution of the Liouville equation

If $\rho_0 \in L_p$, then $\rho_t \in L_p$ for all $t \in \mathbb{R}$. Let $f \in L_q(\Gamma, \mu)$, $d\mu = d^n x d^n y$ is the Liouville measure $\Rightarrow f \rho_t$ is integrable with respect to the measure μ .

Lemma 4.

$$\int_{\Gamma} \rho_0(g_H^{-t}(z)) f(z) d\mu = \int_{\Gamma} \rho_0(z) f(g_H^t(z)) d\mu.$$

Let $\rho_0 \in L_1(\Gamma, \mu)$ and $\varphi \in L_\infty(M, \nu)$;

$$K(t) = \int_{\Gamma} \rho_t \varphi d\mu.$$

Theorem 3. If the system is weakly ergodic, then

$$\lim_{t \to \pm \infty} K(t) = \bar{\varphi} \quad \left(= \int_M \varphi d\nu \middle/ \int_M d\nu \right)$$

Average Temperature of the Knudsen Gas

$$M = \mathbb{T}^n \{ x_1, \dots, x_n \mod 2\pi \}$$

$$\rho_0(x, y) = \frac{e^{-\frac{y^2}{2\sigma^2(x)}}}{[\sqrt{2\pi}\sigma(x)]^n} \varphi(x), \quad y^2 = \sum y_i^2$$
Let $\int_{\Gamma} \rho_0 d\mu = 1 \Rightarrow \int_{\mathbb{T}^n} \varphi(x) d^n x = 1.$

$$\sigma^2(x) = kT(x)$$

$$\rho_t(x, y) = \frac{e^{-\frac{y^2}{2\sigma^2(x-yt)}}}{[\sqrt{2\pi}\sigma(x-yt)]^n} \varphi(x-yt)$$

is a solution of the Liouville equation

$$\frac{\partial \rho}{\partial t} + \sum_{i=1}^{n} \frac{\partial \rho}{\partial x_i} y_i = 0.$$

 ρ_t weakly converges to $\rho_{\infty} = \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} \rho_0(x, y) d^n x.$

Average Temperature of the Knudsen Gas

$$E_0 = \frac{1}{2} \int_{\mathbb{R}^n} \int_{\mathbb{T}^n} y^2 \rho_0(x, y) d\mu = \frac{nk}{2} \int_{\mathbb{T}^n} T(x) \varphi(x) d^n x.$$
$$E_\infty = \frac{1}{2} \int_{\mathbb{R}^n} \int_{\mathbb{T}^n} y^2 \rho_\infty d\mu = \frac{nk}{2} T_\infty.$$

Theorem 5.

$$T_{\infty} = \int_{\mathbb{T}^n} T(x)\varphi(x)d^nx \left/ \int_{\mathbb{T}^n} \varphi(x)d^nx \right.$$

Density Homogenization

$$u(x,t) = \int_{\mathbf{R}^n} \rho_t(x,y) d^n y$$

— the density of distribution in the configuration space. **Theorem 6.** If $\sigma = \text{const}$, then $u'_t = t\sigma^2 \Delta u$, $u(x, 0) = \varphi(x)$, Δ is the Laplace operator.

$$u'_{\tau} = \sigma^2 \Delta u, \quad \tau = t^2/2$$

— heat equation, which is invariant under the substitution $t \mapsto -t$. In statistical mechanics, $\sigma^2 = kT$, k is the Boltzmann constant, T is the absolute temperature.

$$\Pi^n = \{ x \in \mathbb{R}^n : 0 \leqslant x_1 \leqslant l_1, \dots, 0 \leqslant x_n \leqslant l_n \}, \quad l = \max_j l_j.$$
$$\left\| u(x,t) - \frac{1}{\operatorname{mes}\Pi} \int_{\Pi} \varphi(x) d^n x \right\|_{L_2} \leqslant c e^{-\frac{\pi^2 \sigma^2}{2t^2} t^2}, \quad c = \text{const.}$$
Doklady, 2007, V. 416, №3, pp. 302–305

Curved Space

$$\Gamma = T^*M, \quad \rho_0(x, y) = \frac{e^{-\frac{H}{\sigma^2}}}{(\sqrt{2\pi}\sigma)^n} \varphi \left/ \int_M \varphi d\nu \right.$$
$$\int_{\Gamma} \rho_0 d\mu = 1; \quad \int_{\Gamma} H \rho_t \psi d\mu$$

 $\psi(x) \equiv 1 \Rightarrow$ we obtain the mean kinetic energy of the system (which is constant).

Let ψ be the characteristic function of a measurable region $\Psi \subset M$. Then we obtain the mean energy of the systems from the Gibbs ensemble located in Ψ for the moment t.

Theorem 7. Under the assumption of weak ergodicity,

$$\int_{\Gamma} H\rho_t \psi d\mu \to \frac{n}{2} \int_M \sigma^2 \varphi d\nu \int_M \psi d\nu \left/ \int_M \varphi d\nu \int_M d\nu \right.$$

$$\psi(x) = 1$$
; let $E_{\infty} = \lim_{t \to \infty} E_t = \frac{nkT_{\infty}}{2}, \ \sigma^2(x) = kT(x) \Rightarrow$
 $T_{\infty} = \int_M T\varphi d\nu / \int_M \varphi d\nu$

Weak Ergodicity and the Knudsen Gas

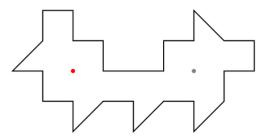
Theorem A. The billiard on a torus with a wall is a weakly ergodic system.

Theorem B. Let $D \subset \mathbb{T}^n$ be a Jordan measurable region, $\varphi \colon \mathbb{T}^n \to \mathbb{R}$ be a Riemannian integrable function. Then for any motion $t \mapsto x(t)$ with non-resonant velocity vector

$$\lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \varphi(x(t)) dt = \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} \varphi(x) d^n x$$

Will the Knudsen gas flow out? $\Pi = \Pi_1 \cup \Pi_2$

Theorem C. If the billiard in Π is weakly ergodic, then almost all Knudsen gas with any integrable density will flow out from Π_1 and Π_2 .



- G. Tokarsky, Amer. Math. Monthly, 1995, 867–879
- C.A. Pickover, The Math BOOK. 250 Milestones in the History of Mathematics. Sterling Publishing. 2009.

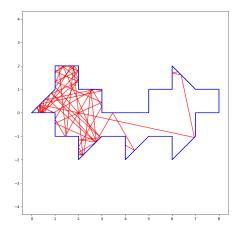


Figure 1: $n = 10, T \sim 10$

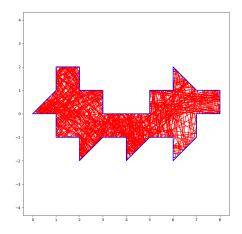


Figure 2: $n = 10, T \sim 100$

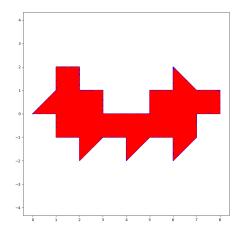


Figure 3: $n = 10, T \sim 1000$

Thank you