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'={zy,...,2n,y1,-..,Yn} — phase space.
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Weak Ergodicity

M" = {z1,...,2,}, 0 = T*M
H = (A(z)y,y) is a Hamiltonian function
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Lemma 1. If z(t), y(t) is a solution, then ¢ — x(At), Ay(At) is also a
solution for any A € R.

Gibbs measure v with density
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Weak Ergodicity

p: M —R 'T p:I' =R
ift
dv = |A(z)|"Y?d"z is a Riemannian volume on M

Lemma 2. If ¢ is integrable with respect to the measure v, then ¢ is
integrable with respect to the measure v and
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Here g%, is the phase flow.

For almost all z € I" there exist
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and @ is integrable with respect to the measure v; @|y,—0 = ¢.



Weak Ergodicity

Lemma. If y # 0, then ¢ depends only on = and y/|y|.
Definition. A system is called weakly ergodic if for any integrable
function ¢: M — R its mean value ¢: I' — R is constant almost
everywhere.

Theorem 1. If the system is weakly ergodic, then

p= /M wdv //M dv  (a.e.)

Corollary. Almost all geodesics are everywhere dense on M.
Theorem 2. Every ergodic system is weakly ergodic.



Weak Ergodicity

Example. M =T", H = %(u, y) = % S y? is a weakly ergodic system

and is not an ergodic system.

covering Knudsen gas
— (1871 - 1949)




Ergodic Theorems

pe(2) = po(gy'(2)) is a solution of the Liouville equation

If po € Ly, then p; € L, for all t € R.

Let f € Ly(T, ), du = d"zd™y is the Liouville measure = fp, is
integrable with respect to the measure pu.

Lemma 4.

/po(gﬁt(Z))f(Z)duz/po(Z)f(ng(Z))du-
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Let po € L1(T, ) and ¢ € Lo (M, v);

K(t) = /Fpmdu.



Ergodic Theorems

Theorem 3. If the system is weakly ergodic, then

lim K(t < / gpdu// dV).
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Average Temperature of the Knudsen Gas

M =T"{x,...,2, mod 27}
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Let [ podp=1= [, o(z)d"z = 1.
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is a solution of the Liouville equation
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Average Temperature of the Knudsen Gas
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Density Homogenization

u(z, t) =/, pi(x,y)d"y

— the density of distribution in the configuration space.
Theorem 6. If o = const, then u}, = to2Au, u(x,0) = p(x), A is
the Laplace operator.

ul = o*Au, T=1*/2
— heat equation, which is invariant under the substitution ¢ — —t.

In statistical mechanics, 02 = kT, k is the Boltzmann constant, T is
the absolute temperature.
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H
L=T"M, po(z,y) = (\/ﬂo)”@//M o
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Y(xz) =1 = we obtain the mean kinetic energy of the system (which
is constant).

Let 1 be the characteristic function of a measurable region ¥ C M.
Then we obtain the mean energy of the systems from the Gibbs
ensemble located in ¥ for the moment .

Theorem 7. Under the assumption of weak ergodicity,

/Hptzbdu%ﬁ/ 02<pdl// wdy// (pdl// dv
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Y(x) =1;let Eo = tlggo By, = "= 52(y) = kT (2) =

TOO:/ T«pdy// pdv
M M
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Weak Ergodicity and the Knudsen Gas

Theorem A. The billiard on a torus with a wall is a weakly ergodic
system.

Theorem B. Let D C T" be a Jordan measurable region, ¢: T" — R
be a Riemannian integrable function. Then for any motion ¢ — x(t)

with non-resonant velocity vector
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Weak Ergodicity and the Knudsen Gas

Will the Knudsen gas flow out? II = II; UTl,

Theorem C. If the billiard in IT is weakly ergodic, then almost all
Knudsen gas with any integrable density will flow out from II; and II,.
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Illumination Problem
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e G. Tokarsky, Amer. Math. Monthly, 1995, 867-879

e C.A. Pickover, The Math BOOK. 250 Milestones in the History
of Mathematics. Sterling Publishing. 2009.
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Figure 1: n
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Illumination Problem

Figure 2: n=10,7 ~ 100
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Illumination Problem

Figure 3: n =10, T' ~ 1000
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