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1. Point vortices interacting with rigid bodies
(historical highlights).

» General equations and conservation laws (Helmholtz, Kelvin)

» These general equations are Hamiltonian (Kirchhoff) and even in the presence of
interfaces (Lin)

» Vortices on surfaces (Gromeka, Zermelo, Bogomolov, Boatto, Dritschel, Koiller)

» The motion and stability of point vortices exterior to and within a circular
domain (Greenhill, Havelock, von Karman, Kurakin).

» Vortices and bodies interact dynamically (Koiller, Ramodanov, Shashikanth,
Borisov, Mamaev, Sokolov)
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2. Forces on a cylinder in a perfect fluid.

1. Force due to the added-mass effect
F =7R%pv or F ~ v.

2. Joukowski's lifting force
F=—olv X e3 = —Av X e3 (the
vector e3 is orthogonal to the flow)

3. Force exerted by vortex of intensity );
at position r;. This force is
proportional to the difference of the
two velocities: of the vortex itself and
of its inverse image

F=ix (i - 7))




Integrable Case of the Rigid Body and Single Vortex.

Governing Equations

ro=-v+gradg(r)| _, r.=w,

r=r)
az’zl = )\02 = )\1@71 = f/l)a abg = —)\01 + )\1(}1 — )'cl),

here r. = (x., y.) — coordinates of the center, v = (01, v9) — velicity,

ry = (xy, y1) — vortex coordinates, r; = (X1, y1) = B &1 — inverse 1mage of

the vortex , R — cylinder radius, a — mass of the cylinder, A = -,
Al = QF—‘ — circulation and vortex intensity, ¢(r) — perfect liquid potential
o(r) regularized in r =r,

2

R y y—u y—u
o(r) = —?(r, V) — )\arctg)—c + A\ (arctg < — ) arctg ( :

1 X — X1
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Integrable Case Rigid Body and Single Vortex. Governing

Equations

: OH
G={G H} =D {G Glgrs (1)
k G
here (; — phase vector ¢ = {xy, y1, v1, V9, X, y.}, Hamiltonian
Lo, 1o s oy 1 2
H = g + §A1 In(riy —R*) — §A1)\lnr1,

Phase space of the system

M:Rﬁ\B, B:{(xl,yl):xf—i—nyRQ}.
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Poisson structure

I ri — R*(x} — yi) I 2R%x1y,
{Ul,xl}—a ril ) {Ul,y1}—{02, xl}__a ri} ’
1 i+ RY(x? — 4?) A o Nrf—RY
{027 yl}za ril ) {017 02}:?_? rzll )

1 1
{xla yl} - _)\_17 {xw Ul} - {yw 02} = E

Poisson bracket is nondegenerate

Sergei V. Sokolov Dynamics of a Circular Cylinder and ...



First Integrals

R2 RQ
Q:aUQ—f-)\XC—/\l)Cl(—Q—l), P:ayl_)\yc+/\ly1(_2_l)7
r ri

1 | 1 [ R?
5)\"? — §>\1r%+§ (r_% — 1) (rl,rc)

K= Cl(Ul_L/c - UQXC) -

{Q,P} =), {K,Q} =P, {K P}=-Q.

F=av’+ ) |2a I—R—2 (X109 — v)+()\—)\)r2—|—)\R—4
1 o 102 — Y10 1 1 lr% ;

F=2MK+ P + Q>+ 2R*\],
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Reduced system

i = —v + grad (r)|

r=ry’
ady, = vy — M (7, — i), (2)
le)g = —)\01 aF )\1(}1 — Xl),
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Reduced system

: oH
G=1¢ HY => {¢ o (3)
. k
where ¢ = {xi, y1, v1, v},
Lo, Loy o o 1 2
H = 5av + §A1 In(riy —R*) — §A1)\ln r, (4)

Phase space

M =R\ B, B={(x,n):x +yi <R}
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Integrability

System (3) has additional first integral

2 R? 2 R
F =av* + )\ |:2a (1 = ﬁ) ()Clvg = ylvl) I ()\1 = )\)fl = )\1?] ,
1 1
which is commute with hamiltonian (4) with respect to (4). Using
Arnold-Liouville’s theorem, one can assert that the compact connected
component of the integral manifold P = {H = h, F = [} is diffeomorphic to
a two-dimensional torus.
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Invariant Manifold

Invariant relations
Fi=0, F,=0, (5)

Fy = x1v1 + Y10y,

Fy=a[(x}+y})? =R (xiva — y1v1)® + {(A — A) x

x [(f +57)° = (a+ R*)(xf +47)°] — R*(aX + MR?)(xf + 7) + MR} x

X (%109 = y1v1) = M (xf + y7) (6F + i — R?) [AR? + (A = ) (xF + 47)] -
Theorem

The critical set C of the momentum map F exhausted by solutions of (5).
The set N is 2D invariant submanifold of initial hamiltonian system.

Sergei V. Sokolov Dynamics of a Circular Cylinder and ...



Common Level of the First Integrals

We introduce the following variables, which are integrals of the symmetry
field generated by the integral K

p1 = a(x10; + y1vs), pe = a(xjvs — y1vy), r= x% + y%.

In the new variables, the integrals H and F take, respectively, the form

H= p12+l72 N é)\ I\ In(r — R?) — Mnr,
6)
RQ R4 (
F = p—l —l_pQ +2)\1 <1 = 7) p2+/\% <l’—|— 7) —>\)\17’.

The form of the expressions eqref el3 allows us to conclude that in the
case A -\, < O the joint surface of the integrals H and F is compact
(diffeomorphic to the sphere), in the case A- A} >0 — is non-compact
(diffeomorphic to a two-sheeted hyperboloid).
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Bifurcation Diagram

Theorem
The bifurcation diagram ¥ of the momentum map F consists of curves

2
|

h= 22— + §A1[)\1 In(r — R*) — Xnr],

IIo: 20;1’ r € (R +00).

R? R
f:27+2)\1 (1—7>2+)\% (I’—l—T) — A7,

here z = 219(r) is a real solution of the equation
(r? — RHYZ2 + {RY(R? — )\ — r[\ir — M(r — @)]R2 + P (A — A1) (a — 1) }z+
+arAi(R? — r)[Mr + M(R? —r)] = 0.
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Bifurcation Diagram

Bifurcation diagram and bifurcation complex in a case of
compact symplectic leaf
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Bifurcation Diagram

Bifurcation diagram and critical set in a case of compact
symplectic leaf
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Bifurcation Diagram

Bifurcation diagram and bifurcation complex in a case of
non-compact symplectic leaf
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Bifurcation Diagram

Bifurcation diagram and critical set in a case of non-compact
symplectic leaf

0™ g—256 24 22 J2 49 16 14 12 1
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Governing equations

Fe=v=(v1,v2), F=-v+gradg(r), j=12 &= F(Q),
avy = —Av, + )\1()-71 -w)+ )\2(}.72 — ), ¢ = (Xe» Yes Va5 Vas X1, Y1, X2, ¥2)

avy = vy — M\ (%1 — %) — Xa(X2 — %),

R2 - -
p(r) = —r—z(r7 v) — Aarctg 4 + A1 (arctg (y—{l) — arctg (u)) +
X

- X X — Xq
+ A2 (arctg (y _ {2) — arctg (&)) .
X — X X=X,
Y
»n
L ni
7
1 i T
T v
C
[
/F
T
(0]




The equations of motion ¢ = f(C), ¢ = (Xcs Yer Vg5 Vo, X5 Yqs Xa5 ¥p) admit the
following integral (the system's energy)

1 R* —2R2%(rq, 2y2
H= v+ > Z)\zln( P~ R+ Aaln (11, r2) 4 r3rs
[ri—ra2f2

and the equations can be represented in the Hamiltonian form
. oH
G=1¢ HY =D {G Gl
p ¢

where the energy H serves as the Hamiltonian function. The tensor's non-zero
components read

1 —R?(x?—y?) 1 2R?x;y;
{v, i} = ——F—5, {wv,yi}=—-—3—,
a ri a
1 2R2x;y; 1r +R2(x —y)
{va, xi} = —— s (b= — 32—
r; r;

i i

A N\ ord— R4 1 _
{V17 V2}: 32_2 :azl : r4 ’ {Xh yi}:_;7 {X57 Vl}:{y67 V2}:a 1'
i i !

This Lie-Poisson bracket satisfies the Jacobi identity.



3. Integrals of motion and reduction.

Besides the energy, the governing equations ¢ = f(¢) allow two additional integrals
due to translational symmetry (conservation of linear momenta)

Q=av, — Z)\(x—x —av1+2)\(y, yi)

and one due to the rotational symmetry

13 13 R2
I =a(viy. — vox.) — 5 Z>\J-rj2 + 5 ZAJ- <r_2 - 1> (rjs re)-
j=1 j=1 )

The Lie-Poisson brackets of @, P and | read
{Q,Pr=Xx {,Q=P, {I,P}=-Q.

Therefore, if A = 0 then on the common level P = Q = 0 the system's order can be
reduced by three units and thus (on this level) the system of a cylinder and two
vortices is Liouville integrable.



Using the momenta we get rid of the cylinder’s velocities v1, vo and obtain four ODEs
and two conservation laws (energy and angular momentum)

Xl:_)d( 2+2 _}’1>+>\2< z+z _}’2> '<1+R2(y2—X12+2X1y1))_

a (Xl +yi 2)2

A1 ( 2+y2 _)’1>

+
R2xq _ 2 R2yq _ 2
(F2—=) + (F
_ Ry
" Y2 —y1 N e
(1 = x2)? + (1 — y2)? (LZXZ - xl)2 + ( B yl)2
E+v3 E+y3
Yi=..., X2=..., Y2=...

Denote it by x = g(x) where x = (x;, y1, X5, ¥5)-

2
2 1 2
DAE=X) |+ 50 N0y
j=1 j=1

2

4 —2R?(7y, 1) + r12r22

R
+2) Nn(r2 - R?) + = )\1>\2In
Z ) |ry — 122

2
I= Z )‘j(sz + yjz)‘
=1

What can be done next?



The equations x = g(x) are Hamiltonian with the
classical bracket {x;, y;} = —+!!

To reduce the system’s order it is customary to take the integrals of the symmetry
field v; = {/, -}, as our new (attitude or relative) variables, that is,

p1= X12 +)/12, p2 = Xzz +Y227 p3 = X1X2 + y1y2, Pa = X1y2 — Y1Xo.

Their non-zero brackets are

2ps 2p3 2py
{p1, 3} =—, {p1, pa}=—=—=, {p2, p3} =——,
A1 A1 A2
2p3 P2
{p2, pa} = —, {P3,P4}_*—*
A2 A2 A1

The integrals H and | now read

2 2 2
1 X2(R? — pj)? )\1>\2(R2 — p1)(R? — p2)ps
= (Z *
=1
2
Yon
2

p1p2

A1 2 n R* —2R?p3 + p1p2

—R2
)+ 2 p1+p2 —2p3

o

I'=A1p1 + A2p2.



4. Connection between the absolute and relative
motion.

Given pj(t), to be able to find the absolute motion x;(t), yi(t)) one needs an
additional quadrature

. R2+ A2(R2 —
o= 1P (Al(Rz — )+ w) +
apy P2
M A2(R? — p2)(R?(p1 — p3) — P1(p3 — p2)) D
RZ —p1  pi(p1+ p2 —2p3)(R* — 2R2p3 + p1p2)
Therefore,
. p3 COs v — pa sin« pg cosa + p3sina
X1 = 4/P1COSQ, y1 = 4/p1SINCY, X2 = y Y2 =
Vv P1 Vv P1
: : : )
5. Statlonary conflguratlons.
The time evolution of p; is governed by p; = {p;, H}, namely:
p1 = 2X2pa(R? — p1)(R? p)( Ly ! )
1 = 2A2pP4 - P - P2
apip2 (p1+ p2 —2p3)(R* — 2R?p3 + p1p2)

P2 = .iP3=..Pa=..

The only option for p; to be const is ps = 0. There no static or translational
equilibrium configurations (no moving Foppl's equilibria). There are stationary
rotations: the vortices and the cylinder’s center are on the same line and go along
concentric circles.



6. The case of \; >0, A\, > 0.
Instead of p1, p2, p3, ps choose I, e1, e2, e3 where

_A1p1 — Aop2 VA1 VA1
a="—"—""" e ps, e

4 ) 2 3, 3 2

Their brackets are

{a, @} =e3, {e, &}=ea, {g al=e (3

The leafs p:,z’ + p‘% = p1p2, | = c are compact, diffeomorhic to S2 and are given by
2_ ¢
S 16

In this case the introduction of canonical coordinates /, L is straightforward

e1 =L, e=+vG2—1[2sinl, e3=—VG2—1L2cosl, {l,L}=1.

I =c, e12+e§+e§:G

(4)



One-degree-of-freedom system

We have canonical variables | and L, the Hamiltonian function H(L, /, c) of the form

1 <,\1 (R2A; — /2 —2L)? Lo (R —c/2+4 2L)2>

H(L, I, ¢c) = -
a 41+ ¢ 41 —c

+(2R2)\1 —c—4L) 2R?X2 —c+4L)VA2 Arsinl
2av/c2 — 16 L2

A2 A2
+71|n(—2R2)\1+c+4L)+72|n(c—4L—2R2)\2)

A1 2 4R*A1 Mo —4R?>V/ Do A1V 2 —16[2sinl — 16 L% 4 ¢
In
2 2(c+4L)X2+2A1 (c—4L)— 422 A1V 2 — 16 L2sin]

+

Now

OH(L,1,¢) i AH(L, 1, ¢)
oL’ al ’

i=



Bifurcation diagram.

Ive

ch ¢ so

sought to be dependent. For ea

0 = (Lo, lo) = a point on the plane

hwnl=care
BH(L,I,

H(Lo, /o, C))

The integrals H
BH(L,I,c)

G

<)

0,
(c,

H) =

o




| WILL STOP THERE AND

THANK YOU FOR LISTENING





