A model for the cubic connectedness locus

Alexander Blokh*, Lex Oversteegen*, Vladlen Timorin**

*University of Alabama at Birmingham **HSE University Moscow

Polynomial dynamics on C

- Consider monic polynomials $P : \mathbb{C} \to \mathbb{C}$ whose filled Julia set $K(P) = \{z \in \mathbb{C} \mid P^n(z) \not\rightarrow \infty\}$ is connected.
- The Julia set $J(P) = \partial K(P)$, the Fatou set $\mathbb{C}P^1 \setminus J(P)$.
- All such quadratic polynomials are conjugate to $Q_c(z) = z^2 + c$ with $c \in \mathcal{M}_2$ (quadratic Mandelbrot set).
- The cubic connectedness locus \mathcal{M}_3 consists of (affine conjugacy classes of) such cubic polynomials.
- *P* is hyperbolic if all critical points are in (super)attracting basins.

Julia sets and Thurston invariant laminations

The Mandelbrot set

Tuning and renormalization

A rough model of \mathcal{M}_2

- A baby Mandelbrot set consists of all "tunings" of the same hyperbolic polynomial (not in the main cardioid).
- Collapse the (filled) main cardioid and all baby Mandelbrot sets.
- The result is a dendritic model for \mathcal{M}_2 .
- We aim at constructing a similar model for \mathcal{M}_3 .
- In particular, we define a combinatorial upper semi-continuous (UCS) partition of \mathcal{M}_3 .

Upper semi-continuous families

• A collection \mathcal{F} of compact sets (in a topological space) is USC if $(\forall Z \in \mathcal{F})(\forall \text{ open } U \supset Z)(\exists \text{ open } V \supset Z)(\forall X \in \mathcal{F})$ $X \cap V \neq \emptyset \implies X \subset U$

Cubic critical portraits

- $\mathbb{S} = \{z \in \mathbb{C} \mid |z| = 1\}$, the map $\sigma_3 : \mathbb{S} \to \mathbb{S}$ is defined as $\sigma_3(z) = z^3$.
- A chord $\ell = ab$ of S is critical if $\sigma_3(a) = \sigma_3(b)$.
- A critical portrait is an unordered pair of critical chords that are disjoint in \mathbb{D} .
- The set of all cubic critical portraits is denoted by CrP; it is homeomorphic to the Möbius band.
- Our model space is a quotient of CrP.

External rays

- Suppose $P(z) = z^3 + az + b$ and K(P) is connected.
- The Riemann map $\psi : \mathbb{D} \to \mathbb{C}P^1 \setminus K(P)$ with $\psi(0) = \infty$ and $\lim_{z \to 0} z\psi(z) > 0$ conjugates $z \mapsto z^3$ with P.
- External rays are ψ -images of the radii: $R_P(\theta) = \psi \{ t e^{2\pi i \theta} \mid 0 < t < 1 \}.$

Combinatorial counterparts

- A point $x \in K(P)$ is legal if $\exists n \text{ s.t. } P^n(x)$ is a repelling periodic point.
- If $R_P(\alpha)$, $R_P(\beta)$ land at x, then the pair $\{\alpha, \beta\}$ is legal.
- Z_P = the set of all legal pairs of angles = the L-set of P.
- *P* is visible if $Z_P \neq \emptyset$.
- A critical portrait $\{c, d\}$ is compatible with Z_P if neither c nor d separate a pair $\{e^{2\pi i \alpha}, e^{2\pi i \beta}\}$ with $\{\alpha, \beta\} \in Z_P$.
- C_P = the set of $\mathcal{K} \in CrP$ compatible with Z_P = the combinatorial counterpart of P.

Alliances: properties

- For every P with connected K(P), we define an alliance $\mathcal{A}_P \subset CrP$.
- Alliances are closed.
- If *P* is visible, then $\mathcal{C}_P \subset \mathcal{A}_P$.
- Distinct alliances are disjoint.
- Alliances form a USC partition of CrP.
- One alliance is called prime.
- Other alliances are called regular.
- Regular alliances are combinatorial counterparts.

Main Theorem

Main Theorem. All alliances form a USC partition $\{A_P\}$ of CrP. The union of regular alliances is open and dense in CrP. The map $P \mapsto A_P$ is continuous and maps \mathcal{M}_3 onto the quotient space $\operatorname{CrP}/\{A_P\}$.

- Prime alliance corresponds to all invisible polynomials and to many polynomials that are "not sufficiently visible".
- Inou-Kiwi (2012) and Shen-Wang (2020) imply that hyperbolic regular fibers of the map $\mathcal{M}_3 \to \mathrm{CrP}/\{\mathcal{A}_P\}$ are connected.
- Open question: are all fibers connected?

The prime alliance

- For a critical chord c, let I(c) be the smaller open arc bounded by the endpoints of c.
- $\{c, d\} \in \operatorname{CrP}$ is weak if $\sigma_3^n(c \cap \mathbb{S}) \cap I(d) = \emptyset \ (\forall n \ge 0)$ and $\sigma_3^n(d \cap \mathbb{S})$

Regular alliances

- If P admits no nontrivial renormalization, then C_P is a regular alliance.
- Then all $\mathcal{K} \in \mathcal{C}_P$ have only strong friends of friends.
- Such ${\mathcal K}$ are called regular.
- Regular ${\mathcal K}$ form an open dense subset of CrP.
- Alliances are disjoint, closed, and form a USC collection.

Thank you!