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Time variable in a dynamical systems can be real (continuous time)
or integer (discrete time). We have two parallel theories in these two
classes of DS with essentially the same (at least, similar) results, ideas
and methods.

For most of particular problems one context is technically more
convenient in comparison with another. Hence, there exists a
necessity to have a tool which associates with a system from one class
“the corresponding system” from another class.

The standard way to go in the direction (continuous −→ discrete) is
the Poincaré map.



The backward direction (discrete −→ continuous) is less clear and
usually needs more work.

Suspension construction changes considerably the phase space and in
many cases is unsatisfactory.

Need other approaches ...



Some piece of folklore

Proposition. Let q : M ←↩ be a diffeo of a smooth compact manifold
to itself. Suppose q is isotopic to the identity. Then there exists a
smooth time dependent vector field v on M such that q coincides with
the Poincaré map {0} ×M ←↩ for the differential equation on T×M

ẋ = v(t, x), ṫ = 1.

Comment. The vector field v is non-unique. Much freedom. Why
not autonomous?
Because if v is time independent then v is a symmetry field for q:

Dq v = v ◦ q.

Existence of a nontrivial symmetry field is a very restrictive condition
for a diffeomorphism. Periodic points should be degenerate, etc.



Proof of the proposition.
Let γs : M ←↩, s ∈ [0, 1] be an isotopy which joins q with the identity
map: γ0 = id and γ1 = q.
W.l.g. we may assume that
(1) γs is smooth in s,
(2) γs = id for s near 0 and γs = q for s near 1.

We put

v(x, t) :=
( ∂

∂t
qt

)
◦ q−1

t (x).

Then the flow ϕt of the differential equation ṫ = 1, ẋ = v on [0, 1]×M
satisfies

ϕ1(0, x) = (1, q(x)).

Since v(t, x) vanishes near t = 0 and t = 1, it can be continued
smoothly to T×M .



This argument is almost trivial. But there are other versions of the
problem which need more (sometimes much more) effort. For example,

I q symplectic, need v Hamiltonian,
I q volume-preserving, need v divergence free,
I q real-analytic, need v real-analytic,
I . . .

All this is done, more or less ...



New result

Let M , dimM = m be a smooth compact manifold and let ν be a
volume form on it. This means that ν is a differential m-form,
nowhere vanishing on M . Then ω = dt ∧ ν is a volume form on
T×M .

We define the natural projections

T×M ∋ (t, x) 7→ πT(t, x) = t, (t, x) 7→ πM (t, x) = x.

Consider the vector field v on T×M . We assume that

(A) the first component of v is positive: DπT v = vT > 0,
(B) v preserves the form ω: Lvω = 0, where Lv is the Lie derivative.



Let gsv be the flow, generated by the vector field v on T×M .
Condition (A) implies that the Poincaré map
Pv : {0} ×M → {0} ×M is well-defined.

The map Pv preserves the volume form λ = ivω|{t=0} on {0} ×M .

Theorem Let Q : {0} ×M → {0} ×M be another map which
preserves λ. We assume that Q is (smoothly) isotopic to Pv in the
group of λ-preserving self maps of {0} ×M . Then there exists an
ω-preserving vector field u on T×M such that DπT u > 0 and
Q = Pu.



Motivation

In the paper

B.Khesin, S.Kuksin, D.Peralta-Salas, Global, local and dense
non-mixing of the 3d Euler equation. Arch. Ration. Mech. Anal. 238
(2020), no. 3, 1087-1112.

The authors prove a non-mixing property of the flow of the 3D Euler
equation which has a local nature:
in any neighbourhood of a “typical” steady solution there is a generic
set of initial conditions, such that the corresponding Euler flows will
never enter a vicinity of the original steady one.



More precisely,

there exist stationary solutions u0 of the Euler equation on S3 and
divergence-free vector fields v0 arbitrarily close to u0, whose
(nonsteady) evolution by the Euler flow cannot converge in the Ck

Hölder norm (k > 10 non-integer) to any stationary state in a small
(but fixed a priori) Ck-neighbourhood of u0.

The set of such initial conditions v0 is open and dense in the vicinity
of u0.



The authors needed the above theorem as a technical ingredient in
the proof.



Sketch of the proof.

(a) Consider the smooth in s family of diffeomorphisms
TM (s) : M →M of a manifold M into itself, s ∈ R. We extend TM to
a family of diffeomorphisms T s of R×M putting by definition

R×M ∋ (t, x) 7→ T s(t, x) =
(
t+ s, TM (t+ s) ◦ T −1

M (t)(x)
)
. (1)

Direct computation shows that T s is a flow i.e.,

T 0 = id and T s2 ◦ T s1 = T s1+s2 for any s1, s2 ∈ R.

The flow T s generates the vector field U on R×M :

U =
( d

ds

∣∣∣
s=0
T s

)
◦ T −s, DπR(U) = 1, (2)

where πR : R×M → R is a natural projection.



(b) We put v̂ =
1

vT
v. Then DπT v̂ = 1. Let

(t, x) 7→ gsv̂(t, x), (t, x) ∈ T×M

be the flow of the vector field v̂. Then gsv̂ preserves the form vTω.
The Poincaré maps Pv and Pv̂ coincide. Hence, g1v̂(0, x) = (1, Pv(x))
for any x ∈M .
Let Gs be the lift of the flow gsv̂ to the covering space R×M . We
determine the family σs : M →M by

Gs(0, x) = (s, σs(x)), s ∈ R.



(c) Let γs be a smooth in s isotopy from conditions of the theorem:
for any s ∈ [0, 1] the map γs is a λ-preserving diffeomorphism of
M ∼= {0} ×M , and γ0 = Pv, γ1 = Q.
Changing smoothly parametrization on γs, we can assume that
γs = Pv in a neighborhood of {s = 0} and γs = Q in a neighborhood
of {s = 1}.
We extend γs to all the axis R = {s}, for example, putting γs = Pv

for s < 0 and γs = Q for s > 0.



(d) Consider the family of maps TM (s) : M →M ,

TM (s) = σs ◦ P−1
v̂ ◦ γs, s ∈ R.

Then TM (0) = id, TM (1) = Q, hence TM (1) preserves the form λ.
Let T s be the flow on R×M generated by the family TM (s) and let
U be the corresponding vector field on R×M . Then by (1)

DπT U = 1, T 0 = idT×M , T 1(0, x) = (1, Q(x)).

Near the points t = 0 and t = 1 we have: dγt/dt = 0. Therefore the
vector field U coincides with v̂. Hence U|s∈[0,1] can be extended to a
periodic vector field Û on R×M . Let ϑ̂s be the corresponding flow on
R×M . Due to periodicity of ϑ̂s and Û their projections to the flow
ϑs and the vector field U on T×M are well-defined.



(e) Let 1 be the vector field on R×M determined by the equations

DπT1 = 1, DπM1 = 0.

The flow ϑ̂s preserves some volume form Ω on R×M such that
ı1Ω|{t=0} = λ.
Any volume form on T×M equals ρ̂ω. where ρ̂ : M → R is a
function. Therefore Ω = ρ̂ω, where ı1Ω|t=0 = ı1Ω|t=1 = λ.
This equation and periodicity of ϑ̂s imply that the function ρ̂ is
1-periodic in t. Hence there exists a function ρ : T×M → R such that
ρ̂ = ρ ◦ πT. The flow ϑs preserves the volume form ρω.
The vector field u = ρU preserves ω. It remains to note that
Pu = PU = Q.




