On Some Applications of Differential Equations to Problems in Additive Number Theory

Ilya Vyugin
Department of Mathematics of HSE and IITP RAS
Dynamics in Siberia - 2021

$$
5.03 .2021
$$

Additive Number Theory

Sum and product of sets
Let $R=R(+; \cdot)$ be a ring and $A, B \subset R$ be any finite sets.

- $A+B:=\{a+b: a \in A, b \in B\} \quad$ (sumset)
- $A \cdot B:=\{a \cdot b: a \in A, b \in B\} \quad$ (product set)

We study both operations simultaneously (= Arithmetic Combinatorics).

Additive shift

- $A+q:=\{a+q: a \in A\} \quad$ (additive shift)

Sum-product problem

Conjecture (Erdos-Szemerédi, 1983)
Let $A \subset \mathbb{Z},|A|<\infty$. Then

$$
\max (|A+A|,|A \cdot A|) \geq C|A|^{2-\varepsilon}
$$

for sum constant C and any arbitrary $\varepsilon>0$.
The Conjecture is proved for $\varepsilon=2 / 3$ (Solymosi, Konyagin, Shkredov, Rudnev, Stevens).

Sum-product problem over \mathbb{F}_{p}

Conjecture (Erdos-Szemerédi in \mathbb{F}_{p})
Let $A \subset \mathbb{F}_{p},|A|<p^{1 / 3}$. Then

$$
\max (|A+A|,|A \cdot A|) \geq C|A|^{2-\varepsilon}
$$

for sum constant C and any arbitrary $\varepsilon>0$.
Theorem (Askoy-Yazici-Murphy-Rudnev-Shkredov, 2017)
Let $A \subset \mathbb{F}_{p},|A|<p^{5 / 8}$. Then

$$
\max (|A+A|,|A \cdot A|)>C|A|^{6 / 5}
$$

for sum constant C.

Definitions

Simple finite field

- $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}=\{0,1, \ldots, p-1\}, p$ - is a prime number;
- $\mathbb{F}_{p}^{*}=\mathbb{F}_{p} \backslash\{0\}$ is the multiplicative group of \mathbb{F}_{p};
- G is a subgroup of $\mathbb{F}_{p}^{*},|G|=t(|\cdot|$ — the number of elements.)

The case of linear equations

Theorem (Garcia, Voloch)
Let $G \subset \mathbb{F}_{p}^{*}$ be a subgroup, such that $|G|<(p-1) /\left((p-1)^{1 / 4}+1\right)$.
Then

$$
|G \cap(G+q)| \leqslant 4|G|^{2 / 3}, \quad q \neq 0
$$

Heath-Brown and Konyagin reproved this result by Stepanov's method and obtained its average version.

The bound in average

Theorem (Konyagin)
In conditions of previous theorem we have the following bound

$$
\bigcup_{i=1}^{h}\left|G \cap\left(G+q_{i}\right)\right| \leqslant C h^{2 / 3}|G|^{2 / 3}
$$

where $q_{i}, i=1, \ldots, h$ belong to different cosets by subgroup G.

Sum-product problem for subgroup

Theorem (Shkredov, I.V.)
Let $G \subset \mathbb{F}_{p}^{*}$ be subgroup and $|G|<C_{1} p^{1 / 2}$. Then

$$
|G \pm G|>C_{2} \frac{|G|^{5 / 3}}{\log ^{1 / 2}|G|}
$$

for some constants C_{1}, C_{2}.

Case of many shifts

Theorem (Shkredov, I.V., 2013)
Let G be a subgroup of \mathbb{F}_{p}^{*}, such that $|G|>32 n 2^{20 n \log (n+1)}$, $p>4 n|G|\left(|G|^{\frac{1}{2 n+1}}+1\right)$ and $q_{1}, \ldots, q_{n} \in \mathbb{F}_{p}^{*}$ be different and nonzero. Then

$$
\left|G \cap \ldots \cap\left(G+q_{n}\right)\right| \leqslant 4 n(n+1)\left(|G|^{\frac{1}{2 n+1}}+1\right)^{n+1}
$$

Asymptotic form of the previous theorem

Theorem
If $C_{1}(n)<|G|<C_{2}(n) p^{1-\alpha_{n}}$, then

$$
\left|G \cap \ldots \cap\left(G+q_{n}\right)\right|<C_{3}(n)|G|^{1 / 2+\beta_{n}}
$$

where $\alpha_{n}, \beta_{n} \rightarrow 0, n \rightarrow \infty, C_{1}(n), C_{2}(n), C_{3}(n)$ are some constants.

On the sum-set hypothesis for subgroups

Let G be a subgroup of \mathbb{F}_{p}^{*}.
Suppose that $G=A+B$, where A and B are some subsets of \mathbb{F}_{p}. Then $|A|$ and $|B|$ are around of \sqrt{G}.

Ilya Shkredov has proved that a subgroup G can not be represented as a sum of two sets $G \neq A+B$ (in some restriction on the size of subgroup).

Application to cryptography

Let p be a large prime number;
\mathbb{F}_{p} be a field of residues modulo prime p;
t is a divisor of $(p-1)$;
Oracle give us the number $(x+s)^{t}$ by x in \mathbb{F}_{p}.

Problem

Find the unknown number s by the minimal number of arithmetic operations (complexity) and questions to Oracle.

Application to cryptography

Theorem (Bourgain, Konyagin, Shparlinsky)
Let $q \in \mathbb{F}_{p}$ be some prime number and at least one non-residue of the order q is known. Then for any $\varepsilon>0$ there exists an algorithm, that find s such that the number of questions to Oracle does not exceed
$O_{\varepsilon}\left(\frac{\log p}{\log (p / t)}\right)$ and complexity does not exceed

$$
t^{1+\varepsilon}(\log p)^{O(1)}
$$

The case of polynomial map

Definition
The set $f_{1}(x), \ldots, f_{n}(x)$ of polynomials is called admissible if there exist such x_{1}, \ldots, x_{n} that

$$
f_{i}\left(x_{i}\right)=0, \quad f_{i}\left(x_{j}\right) \neq 0, \quad i \neq j
$$

Let us define the set

$$
M=\left\{x \mid f_{i}(x) \in G_{i}, i=1, \ldots, n\right\}
$$

Figure: $M=\left\{x \in \mathbb{C} \mid f_{i}^{t}(x)=1, i=1, \ldots, n\right\}$

Theorem (I.V., 2019)

Let G be subgroup of \mathbb{F}_{p}^{*} (p is prime), and let G_{1}, \ldots, G_{n} be cosets by $G, n \geqslant 2, f_{1}(x), \ldots, f_{n}(x)$ - admissible set of polynomials $\operatorname{deg} f_{i}(x)=m_{i}(i=1, \ldots, n)$:

$$
C_{1}(\boldsymbol{m}, n)<|G|<C_{2}(\boldsymbol{m}, n) p^{1-\frac{1}{2 n+1}}
$$

where $C_{1}(\boldsymbol{m}, n), C_{2}(\boldsymbol{m}, n)$ depend only on n and $\boldsymbol{m}=\left(m_{1}, \ldots, m_{n}\right)$. Then

$$
|M|=\left|\left\{x \mid f_{i}(x) \in G_{i}, i=1, \ldots, n\right\}\right| \leqslant C_{3}(\boldsymbol{m}, n)|G|^{\frac{1}{2}+\frac{1}{2 n}}
$$

where $C_{3}(\boldsymbol{m}, n)$ depends only on n, \boldsymbol{m}.

$$
\begin{gathered}
C_{1}(\mathbf{m}, n)=2^{2 n} m_{n}^{4 n}, \quad C_{2}(\mathbf{m}, n)=(n+1)^{-\frac{2 n}{2 n+1}}\left(m_{1} \ldots m_{n}\right)^{-\frac{2}{2 n+1}} \\
C_{3}(\mathbf{m}, n)=4(n+1)\left(m_{1} \ldots m_{n}\right)^{\frac{1}{n}} \sum_{i=1}^{n} m_{i} .
\end{gathered}
$$

Stepanov's method

If we construct the polynomial $\Psi(x)$ such that:

1) $\Psi(x) \not \equiv 0$;
2) $\operatorname{deg} \Psi(x)<p$;
3) all $x \in M$ be roots of $\Psi(x)$ of orders at least D :

$$
\Psi(x)=\Psi^{\prime}(x)=\ldots=\Psi^{(D-1)}(x)=0, \quad x \in M
$$

Then

$$
|M| \leqslant \frac{\operatorname{deg} \Psi}{D}, \quad M=G \cap\left(G+q_{1}\right) \cap \ldots \cap\left(G+q_{n}\right) .
$$

Stepanov's polynomial

Consider the polynomial

$$
\Psi(x)=\sum_{a, b} \lambda_{a, b} x^{a} f_{1}^{b_{0} t}(x) \ldots f_{n}^{b_{n} t}(x)
$$

with variable coefficients $\lambda_{a, b}\left(a<A, b_{i}<B_{i}, t=|G|\right)$.
If $x \in M$ then

$$
\Psi(x)=\sum_{a, b} \lambda_{a, b} x^{a}
$$

because $f_{1}^{t}(x)=\ldots=f_{n}^{t}(x)=1$.
If $\sum_{b} \lambda_{a, b}=0$ for any a, then

$$
\Psi(x)=0, \quad x \in M
$$

Vanishing conditions
Conditions

$$
0=\Psi(x)=\Psi^{\prime}(x)=\ldots=\Psi^{(D-1)}(x), \quad x \in M
$$

is equivalent to a system of linear homogeneous equations.

Step of induction

Let us suppose that functions:

$$
x^{a} f_{1}^{b_{1} t}(x) \ldots f_{n-1}^{b_{n-1} t}(x)
$$

are linear independent. If

$$
0=\sum_{a, b} C_{a, b} x^{a} f_{1}^{b_{1} t}(x) \ldots f_{n}^{b_{n} t}(x)=
$$

$$
\left(\sum_{a, b, b_{n} \geq 1} C_{a, b} x^{a} f_{1}^{b_{1} t}(x) \ldots f_{n}^{\left(b_{n}-1\right) t}(x)\right) f_{n}^{t}(x)+\sum_{a, b, b_{n}=0} C_{a, b} x^{a} f_{1}^{b_{1} t}(x) \ldots f_{n-1}^{b_{n-1} t}(x)
$$

Step of induction

then

$$
\sum_{a, b, b_{n}=0} C_{a, b} x^{a} f_{1}^{b_{1} t}(x) \ldots f_{n-1}^{b_{n-1} t}(x) \vdots f_{n}^{t}(x)
$$

and

$$
\sum_{a, b, b_{n}=0} C_{a, b} x^{a} f_{1}^{b_{1} t}(x) \ldots f_{n-1}^{b_{n-1} t}(x):\left(x-x_{n}\right)^{t}
$$

On the differential equations

Fuchsian equation

Let a_{1}, \ldots, a_{n} be Fuchsian points of the equation

$$
\begin{equation*}
u^{(m)}+b_{1}(z) u^{(m-1)}+\ldots+b_{m}(z) u(z)=0 . \tag{1}
\end{equation*}
$$

$\left(z=a_{i}\right.$ - Fuchsian point of $(1) \Longleftrightarrow b_{j}(z)$ has a pole of order $\leqslant j$ in $z=a_{i}$.)

Fuchs relation
Let u_{1}, \ldots, u_{m} be the basis of solutions space of equations (1) and β_{i}^{j} be power exponents of solutions $u_{j}(z)$ in points a_{i}. Then we have Fuchs inequality:

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} \beta_{i}^{j} \leqslant \frac{(n-2) m(m-1)}{2}
$$

Corvaja and Zannier's bound

Theorem (Corvaja, Zannier,2013)
Let X be a smooth projective absolutely irreducible curve over a field κ of characteristic p. Let $u, v \in \kappa(X)$ be rational functions, multiplicatively independent modulo κ^{*}, and with non-zero differentials; let S be the set of their zeros and poles; and let $\chi=|S|+2 g-2$ be the Euler characteristic of $X \backslash S$. Then
$\sum_{\nu \in X(\bar{\kappa}) \backslash S} \min \{\nu(1-u), \nu(1-v)\} \leqslant\left(3 \sqrt[3]{2}(\operatorname{deg} u \operatorname{deg} v)^{1 / 3}, 12 \frac{\operatorname{deg} u \operatorname{deg} v}{p}\right)$,
where $\nu(f)$ denotes the multiplicity of vanishing of f at the point ν.

Equations in subgroups

Let G be a subgroup of \mathbb{F}_{p}^{*}, p is prime.
The bound of the number N of solutions of the equation

$$
P(x, y)=0, \quad P \in \mathbb{F}_{p}[x, y]
$$

such that $x \in G_{1}, y \in G_{2}$, where G_{1}, G_{2} are costes by subgroup G is

$$
N \leqslant\left(3 \sqrt[3]{2}|G|^{2 / 3}, 12 \frac{|G|^{2}}{p}\right)
$$

P. Corvaja, U. Zannier, Gratest Common Divisor $u-1, v-1$ in positiv characteristic and rational points on curves over finite fields, J. of Eur. Math. Soc., V. 15, I. 5, pp. 1927-1942, 2013.

Bound in average

Let us suppose that $P(x, y)$ is a homogeneous of degree n, l_{1}, \ldots, l_{h} belongs to different cosets by subgroup G of \mathbb{F}_{p}^{*}.

Theorem (I.V., 2019)

Let us consider a homogeneous polynomial $P(x, y)$ of degree n, such that $\operatorname{deg} P(x, 0) \geqslant 1$. Then the set of equations

$$
\begin{equation*}
P(x, y)=l_{i}, \quad i=1, \ldots, h, \tag{2}
\end{equation*}
$$

$h<\min \left(\frac{1}{81}|G|^{4 / 3}, \frac{1}{3} p t^{-4 / 3}\right)$ the sum N_{h} of numbers of solutions $(x, y) \in G \times G$ of the set of equations does not exceed

$$
N_{h} \leqslant 32 n^{5} h^{2 / 3}|G|^{2 / 3}
$$

On some generalization of sum-product problem

Let $P(x, y)$ be a polynomial, then let us define

$$
P(A, B)=\{P(a, b) \mid a \in A, b \in B\}
$$

Theorem (Aleshina, I.V.)
For any n there exists $C>0$ such that for any prime number p, (n, p)-admitted subgroup $G \in \mathbb{F}_{p}^{*}$ and a good polynomial $P(x, y)$ of degree n we have the bound

$$
|P(G, G)|>C|G|^{3 / 2}
$$

Markoff equation

Markoff equation

$$
x^{2}+y^{2}+z^{2}=3 x y z
$$

Any solution of this equation in \mathbb{Z} can be obtained from two basic solutions $(0,0,0)$ and ($1,1,1$) by combination following transforms
a) permutations of components;
b) $(x, y, z) \mapsto(-x,-y, z)$;
c) $(x, y, z) \mapsto(x, y, 3 x y-z)$

Solutions of Markoff's equation in \mathbb{Z} generate a graph.

Figure: Markoff graph

Markoff's equation in \mathbb{F}_{p}

$$
x^{2}+y^{2}+z^{2}=3 x y z, \quad x, y, z \in \mathbb{F}_{p}
$$

Conjecture: Any solution of this equation in \mathbb{F}_{p} can be obtained from two basic solutions $(0,0,0)$ and $(1,1,1)$ by combination transforms a), b) and c).

The main problem: prove the conjecture.

Structure of Markoff's graph

Theorem (Bourgain, Gamburd and Sarnak, 2016)
For any fixed $\varepsilon>0$ and sufficiently large p there exists the orbit $C(p)$ in the solutions space $X^{*}(p)$ such that

$$
\left|X^{*}(p) \backslash C(p)\right| \leqslant p^{\varepsilon}
$$

and for any nonzero orbit $D(p)$

$$
|D(p)|>(\log p)^{1 / 3}
$$

Structure of Markoff's graph

Theorem (Konyagin, Makarychev, Shparlinski and Vyugin, 2017)
There exists the orbit $C(p)$ in the solutions space $X^{*}(p)$ such that

$$
\left|X^{*}(p) \backslash C(p)\right| \leqslant \exp \left((\log p)^{1 / 2+o(1)}\right), \quad p \rightarrow \infty
$$

and for any nonzero orbit $D(p)$

$$
|D(p)|>c(\log p)^{7 / 9}
$$

where c is an absolute constant.

Idea of the proof

Consider the following chain of Markoff triples

$$
\left(a, u_{i-1}, u_{i}\right) \longrightarrow\left(a, u_{i}, u_{i+1}\right),
$$

where $u_{i+1}=3 a u_{i}-u_{i-1}$.

These triples $\left(a, u_{i}, u_{i+1}\right)$ generate a linear recurrent chain

$$
u_{1}, u_{2}, \ldots \quad\left(u_{i+1}=3 a u_{i}-u_{i-1}\right)
$$

with characteristic equation $\lambda^{2}-3 a \lambda+1=0$,

$$
u_{k}=\alpha \lambda^{k}+\beta \lambda^{-k}, \quad \lambda=\frac{3 a+\sqrt{9 a^{2}-4}}{2}
$$

λ belongs to a subgroup $G \subset \mathbb{F}_{p^{2}}$.

Let us consider two different sequences: $u_{1}, u_{2}, \ldots, u_{t}$ and $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{t}^{\prime}$, where

$$
u_{k}=\alpha \lambda^{k}+\beta \lambda^{-k}, \quad u_{k}^{\prime}=\gamma \lambda^{k}+\delta \lambda^{-k} .
$$

The intersection of these two sequences is defined by:

$$
u_{k}=u_{l}^{\prime} \Longleftrightarrow \alpha \lambda^{k}+\beta \lambda^{-k}=\gamma \lambda^{l}+\delta \lambda^{-l} .
$$

It is equivalent to the equation:

$$
\alpha x+\frac{\beta}{x}=\gamma y+\frac{\delta}{y},
$$

where $x=\lambda^{k} \in G, y=\lambda^{l} \in G$.

The number of solutions $(x, y) \in G \times G$ of equation

$$
\alpha x^{2} y-\gamma x y^{2}+\beta x-\delta y=0
$$

does not exceed $C|G|^{2 / 3}$.

Markoff's equation in \mathbb{F}_{p}

Markoff's equation in \mathbb{F}_{p}

$$
x^{2}+y^{2}+z^{2}=3 x y z, \quad x, y, z \in \mathbb{F}_{p}
$$

Theorem (W. Chen, 2020)
Every nonzero connection component of Markoff's graph $X^{*}(p)$ has size congruent to $0 \bmod p$.

Bourgain, Gamburd, Sarnak:

$$
\left|X^{*}(p) \backslash C(p)\right| \leqslant p^{\varepsilon} .
$$

William Chen, Strong approximation for the Markoff equation, arXiv:2011.12940 (Nov 26, 2020).

Bibliography

盢 S．V．Konyagin，I．E．Shparlinski，I．V．Vyugin，Polynomial Equations in Subgroups and Applications／／arXiv：2005．05315．

S．V．Konyagin，S．V．Makarychev，I．E．Shparlinski，I．V． VYUGIN，On the structure of graphs of Markoff triples／／Quart． Journal Math．，72：2（2020），637－648．
围 I．V．V＇Yugin，A Bound for the Number of Preimages of a Polynomial Mapping．／／Math Notes 106，203－211（2019）．
S．Makarychev，I．Vyugin，Solutions of Polynomial Equations in Subgroups of $\mathbb{F}_{p} / /$ Arnold Math J．5，105－121（2019）．
嗇 I．V．VYUGIN，I．D．ShKREDOV，On additive shifts of multiplicative subgroups／／Sbornik：Mathematics，2012，203：6，844－863．

Thank you for your attention!!!

