On Some Applications of Differential Equations to Problems in Additive Number Theory

Ilya Vyugin

Department of Mathematics of HSE and IITP RAS Dynamics in Siberia – 2021

5.03.2021

Ilya Vyugin (HSE and IITP RAS) On Some Applications of Differential Equation

5.03.2021 1/39

Additive Number Theory

Sum and product of sets

Let $R = R(+; \cdot)$ be a ring and $A, B \subset R$ be any finite sets.

- $A + B := \{a + b : a \in A, b \in B\}$ (sumset)
- $A \cdot B := \{a \cdot b : a \in A, b \in B\}$ (product set)

We study both operations simultaneously (= Arithmetic Combinatorics).

Additive shift

•
$$A + q := \{a + q : a \in A\}$$
 (additive shift)

Conjecture (Erdos–Szemerédi, 1983) Let $A \subset \mathbb{Z}$, $|A| < \infty$. Then

$$\max(|A + A|, |A \cdot A|) \ge C|A|^{2-\varepsilon}$$

for sum constant *C* and any arbitrary $\varepsilon > 0$.

The Conjecture is proved for $\varepsilon = 2/3$ (Solymosi, Konyagin, Shkredov, Rudnev, Stevens).

Sum-product problem over \mathbb{F}_p

```
Conjecture (Erdos–Szemerédi in \mathbb{F}_p)
```

Let $A \subset \mathbb{F}_p$, $|A| < p^{1/3}$. Then

$$\max(|A + A|, |A \cdot A|) \ge C|A|^{2-\varepsilon}$$

for sum constant C and any arbitrary $\varepsilon > 0$.

Theorem (Askoy-Yazici-Murphy-Rudnev-Shkredov, 2017) Let $A \subset \mathbb{F}_p$, $|A| < p^{5/8}$. Then

$$\max(|A + A|, |A \cdot A|) > C|A|^{6/5}$$

for sum constant C.

- Terr (s)

Definitions

Simple finite field

•
$$\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0, 1, \dots, p-1\}, p$$
 — is a prime number;

- $\mathbb{F}_p^* = \mathbb{F}_p \setminus \{0\}$ is the multiplicative group of \mathbb{F}_p ;
- *G* is a subgroup of \mathbb{F}_p^* , |G| = t ($| \cdot |$ the number of elements.)

Theorem (Garcia, Voloch)

Let $G \subset \mathbb{F}_p^*$ be a subgroup, such that $|G| < (p-1)/((p-1)^{1/4}+1).$ Then

$$|G \cap (G+q)| \le 4|G|^{2/3}, \quad q \neq 0.$$

Heath-Brown and Konyagin reproved this result by Stepanov's method and obtained its average version.

Theorem (Konyagin)

In conditions of previous theorem we have the following bound

$$\bigcup_{i=1}^{h} |G \cap (G+q_i)| \leqslant Ch^{2/3} |G|^{2/3},$$

where q_i , i = 1, ..., h belong to different cosets by subgroup G.

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Sum-product problem for subgroup

Theorem (Shkredov, I.V.)

Let $G \subset \mathbb{F}_p^*$ be subgroup and $|G| < C_1 p^{1/2}$. Then

$$|G \pm G| > C_2 \frac{|G|^{5/3}}{\log^{1/2} |G|}$$

for some constants C_1 , C_2 .

Theorem (Shkredov, I.V., 2013)

Let *G* be a subgroup of \mathbb{F}_p^* , such that $|G| > 32n2^{20n \log(n+1)}$, $p > 4n|G|(|G|^{\frac{1}{2n+1}}+1)$ and $q_1, \ldots, q_n \in \mathbb{F}_p^*$ be different and nonzero. Then

 $|G \cap \ldots \cap (G+q_n)| \leq 4n(n+1)(|G|^{\frac{1}{2n+1}}+1)^{n+1}.$

Asymptotic form of the previous theorem

Theorem

If $C_1(n) < |G| < C_2(n)p^{1-\alpha_n}$, then

$$|G \cap \ldots \cap (G+q_n)| < C_3(n)|G|^{1/2+\beta_n}$$

where $\alpha_n, \beta_n \to 0$, $n \to \infty$, $C_1(n), C_2(n), C_3(n)$ are some constants.

Ilya Vyugin (HSE and IITP RAS) On Some Applications of Differential Equation

5.03.2021 10/39

< ロ > < 同 > < 回 > < 回 >

On the sum-set hypothesis for subgroups

Let G be a subgroup of \mathbb{F}_p^* .

Suppose that G = A + B, where A and B are some subsets of \mathbb{F}_p . Then |A| and |B| are around of \sqrt{G} .

Ilya Shkredov has proved that a subgroup G can not be represented as a sum of two sets $G \neq A + B$ (in some restriction on the size of subgroup).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let *p* be a large prime number; \mathbb{F}_p be a field of residues modulo prime *p*; *t* is a divisor of (p-1);

Oracle give us the number $(x+s)^t$ by x in \mathbb{F}_p .

Problem

Find the unknown number *s* by the minimal number of arithmetic operations (complexity) and questions to Oracle.

Theorem (Bourgain, Konyagin, Shparlinsky)

Let $q \in \mathbb{F}_p$ be some prime number and at least one non-residue of the order q is known. Then for any $\varepsilon > 0$ there exists an algorithm, that find s such that the number of questions to Oracle does not exceed $O_{\varepsilon}\left(\frac{\log p}{\log(p/t)}\right)$ and complexity does not exceed

 $t^{1+\varepsilon} (\log p)^{O(1)}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

5.03.2021

13/39

Ilya Vyugin (HSE and IITP RAS) On Some Applications of Differential Equation

The case of polynomial map

Definition

The set $f_1(x), \ldots, f_n(x)$ of polynomials is called admissible if there exist such x_1, \ldots, x_n that

$$f_i(x_i) = 0, \quad f_i(x_j) \neq 0, \quad i \neq j.$$

Let us define the set

$$M = \{ x \mid f_i(x) \in G_i, \ i = 1, \dots, n \}.$$

Ilya Vyugin (HSE and IITP RAS) On Some Applications of Differential Equation

5.03.2021 14/39

Figure:
$$M = \{x \in \mathbb{C} \mid f_i^t(x) = 1, i = 1, ..., n\}$$

Ilya Vyugin (HSE and IITP RAS) On Some Applications of Differential Equation

Theorem (I.V., 2019)

Let *G* be subgroup of \mathbb{F}_p^* (*p* is prime), and let G_1, \ldots, G_n be cosets by $G, n \ge 2, f_1(x), \ldots, f_n(x)$ — admissible set of polynomials $\deg f_i(x) = m_i$ ($i = 1, \ldots, n$):

$$C_1(\mathbf{m}, n) < |G| < C_2(\mathbf{m}, n) p^{1 - \frac{1}{2n+1}}$$

where $C_1(\boldsymbol{m}, n), C_2(\boldsymbol{m}, n)$ depend only on n and $\boldsymbol{m} = (m_1, \dots, m_n)$. Then

 $|M| = |\{x \mid f_i(x) \in G_i, i = 1, ..., n\}| \leq C_3(\mathbf{m}, n)|G|^{\frac{1}{2} + \frac{1}{2n}},$

A B A A B A

5.03.2021

16/39

where $C_3(\mathbf{m}, n)$ depends only on n, **m**.

$$C_1(\mathbf{m}, n) = 2^{2n} m_n^{4n}, \qquad C_2(\mathbf{m}, n) = (n+1)^{-\frac{2n}{2n+1}} (m_1 \dots m_n)^{-\frac{2}{2n+1}},$$
$$C_3(\mathbf{m}, n) = 4(n+1)(m_1 \dots m_n)^{\frac{1}{n}} \sum_{i=1}^n m_i.$$

Ilya Vyugin (HSE and IITP RAS) On Some Applications of Differential Equation

5.03.2021 17/39

◆□> ◆圖> ◆理> ◆理> 「理

If we construct the polynomial $\Psi(x)$ such that:

- 1) $\Psi(x) \not\equiv 0$;
- **2)** $\deg \Psi(x) < p;$

3) all $x \in M$ be roots of $\Psi(x)$ of orders at least D:

$$\Psi(x) = \Psi'(x) = \ldots = \Psi^{(D-1)}(x) = 0, \quad x \in M.$$

Then

$$|M| \leqslant \frac{\deg \Psi}{D}, \quad M = G \cap (G+q_1) \cap \ldots \cap (G+q_n).$$

Ilya Vyugin (HSE and IITP RAS) On Some Applications of Differential Equation

5.03.2021 18/39

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Stepanov's polynomial

Consider the polynomial

$$\Psi(x) = \sum_{a,b} \lambda_{a,b} x^a f_1^{b_0 t}(x) \dots f_n^{b_n t}(x),$$

with variable coefficients $\lambda_{a,b}$ (a < A, $b_i < B_i$, t = |G|).

If $x \in M$ then

$$\Psi(x) = \sum_{a,b} \lambda_{a,b} \, x^a,$$

because $f_1^t(x) = \ldots = f_n^t(x) = 1$.

If
$$\sum_{b} \lambda_{a,b} = 0$$
 for any a , then

$$\Psi(x) = 0, \qquad x \in M.$$

Ilya Vyugin (HSE and IITP RAS)

On Some Applications of Differential Equation

< 日 > < 同 > < 回 > < 回 > < 回 > <

Vanishing conditions

Conditions

$$0 = \Psi(x) = \Psi'(x) = \dots = \Psi^{(D-1)}(x), \quad x \in M$$

is equivalent to a system of linear homogeneous equations.

Ilya Vyugin (HSE and IITP RAS) On Some Applications of Differential Equation

5.03.2021 20/39

< 6 b

Step of induction

Let us suppose that functions:

$$x^{a} f_{1}^{b_{1}t}(x) \dots f_{n-1}^{b_{n-1}t}(x)$$

are linear independent. If

$$0 = \sum_{a,b} C_{a,b} x^a f_1^{b_1 t}(x) \dots f_n^{b_n t}(x) = \left(\sum_{a,b,n \ge 1} C_{a,b} x^a f_1^{b_1 t}(x) \dots f_n^{(b_n - 1)t}(x)\right) f_n^t(x) + \sum_{a,b,n=0} C_{a,b} x^a f_1^{b_1 t}(x) \dots f_{n-1}^{b_{n-1} t}(x)$$

Step of induction

then

$$\sum_{a,b,b_n=0} C_{a,b} x^a f_1^{b_1 t}(x) \dots f_{n-1}^{b_{n-1} t}(x) \vdots f_n^t(x)$$

and

$$\sum_{a,b,b_n=0} C_{a,b} x^a f_1^{b_1 t}(x) \dots f_{n-1}^{b_{n-1} t}(x) \vdots (x-x_n)^t.$$

Ilya Vyugin (HSE and IITP RAS) On Some Applications of Differential Equation

・ E つへの
 5.03.2021 22/39

イロト イヨト イヨト イヨト

On the differential equations

Fuchsian equation

1

Let a_1, \ldots, a_n be Fuchsian points of the equation

$$u^{(m)} + b_1(z)u^{(m-1)} + \ldots + b_m(z)u(z) = 0.$$
 (1)

 $(z = a_i - \text{Fuchsian point of (1)} \iff b_j(z) \text{ has a pole of order} \leqslant j \text{ in } z = a_i.)$

Fuchs relation

Let u_1, \ldots, u_m be the basis of solutions space of equations (1) and β_i^j be power exponents of solutions $u_j(z)$ in points a_i . Then we have Fuchs inequality:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \beta_i^j \leqslant \frac{(n-2)m(m-1)}{2}.$$

Theorem (Corvaja, Zannier, 2013)

Let *X* be a smooth projective absolutely irreducible curve over a field κ of characteristic *p*. Let $u, v \in \kappa(X)$ be rational functions, multiplicatively independent modulo κ^* , and with non-zero differentials; let *S* be the set of their zeros and poles; and let $\chi = |S| + 2g - 2$ be the Euler characteristic of $X \setminus S$. Then

$$\sum_{\nu \in X(\overline{\kappa}) \setminus S} \min\{\nu(1-u), \nu(1-v)\} \leqslant \left(3\sqrt[3]{2} (\deg u \deg v)^{1/3}, 12 \frac{\deg u \deg v}{p}\right),$$

where $\nu(f)$ denotes the multiplicity of vanishing of f at the point ν .

A B F A B F

Equations in subgroups

Let *G* be a subgroup of \mathbb{F}_p^* , *p* is prime. The bound of the number *N* of solutions of the equation

$$P(x,y) = 0, \qquad P \in \mathbb{F}_p[x,y],$$

such that $x \in G_1$, $y \in G_2$, where G_1 , G_2 are costes by subgroup G is

$$N \leqslant \left(3\sqrt[3]{2}|G|^{2/3}, 12\frac{|G|^2}{p}\right).$$

P. Corvaja, U. Zannier, Gratest Common Divisor u - 1, v - 1 in positiv characteristic and rational points on curves over finite fields, J. of Eur. Math. Soc., V. 15, I. 5, pp. 1927-1942, 2013.

Bound in average

Let us suppose that P(x, y) is a homogeneous of degree n, l_1, \ldots, l_h belongs to different cosets by subgroup G of \mathbb{F}_p^* .

Theorem (I.V., 2019)

Let us consider a homogeneous polynomial P(x, y) of degree n, such that deg $P(x, 0) \ge 1$. Then the set of equations

$$P(x, y) = l_i, \quad i = 1, \dots, h,$$
 (2)

 $h < \min\left(\frac{1}{81}|G|^{4/3}, \frac{1}{3}pt^{-4/3}\right)$ the sum N_h of numbers of solutions $(x, y) \in G \times G$ of the set of equations does not exceed

$$N_h \leqslant 32n^5 h^{2/3} |G|^{2/3}$$

On some generalization of sum-product problem

Let P(x, y) be a polynomial, then let us define

$$P(A, B) = \{ P(a, b) \mid a \in A, b \in B \}.$$

Theorem (Aleshina, I.V.)

For any *n* there exists C > 0 such that for any prime number *p*, (n, p)-admitted subgroup $G \in \mathbb{F}_p^*$ and a good polynomial P(x, y) of degree *n* we have the bound

$$P(G,G)| > C|G|^{3/2}.$$

Ilya Vyugin (HSE and IITP RAS) On Some Applications of Differential Equation

5.03.2021 27/39

Markoff equation

$$x^2 + y^2 + z^2 = 3xyz$$

Any solution of this equation in \mathbb{Z} can be obtained from two basic solutions (0,0,0) and (1,1,1) by combination following transforms

a) permutations of components;

- **b)** $(x, y, z) \mapsto (-x, -y, z);$
- c) $(x, y, z) \mapsto (x, y, 3xy z)$

Solutions of Markoff's equation in \mathbb{Z} generate a graph.

Figure: Markoff graph

Ilya Vyugin (HSE and IITP RAS)

On Some Applications of Differential Equation

5.03.2021 29/39

Markoff's equation in \mathbb{F}_p

$$x^2 + y^2 + z^2 = 3xyz, \qquad x, y, z \in \mathbb{F}_p.$$

Conjecture: Any solution of this equation in \mathbb{F}_p can be obtained from two basic solutions (0,0,0) and (1,1,1) by combination transforms a), b) and c).

The main problem: prove the conjecture.

Theorem (Bourgain, Gamburd and Sarnak, 2016)

For any fixed $\varepsilon > 0$ and sufficiently large p there exists the orbit C(p) in the solutions space $X^*(p)$ such that

 $|X^*(p) \setminus C(p)| \leqslant p^{\varepsilon}$

and for any nonzero orbit D(p)

 $|D(p)| > (\log p)^{1/3}.$

Ilya Vyugin (HSE and IITP RAS) On Some Applications of Differential Equation

5.03.2021 31/39

Theorem (Konyagin, Makarychev, Shparlinski and Vyugin, 2017) There exists the orbit C(p) in the solutions space $X^*(p)$ such that

 $|X^*(p) \setminus C(p)| \leqslant \exp((\log p)^{1/2 + o(1)}), \quad p \to \infty$

and for any nonzero orbit D(p)

 $|D(p)| > c(\log p)^{7/9},$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

5.03.2021

32/39

where c is an absolute constant.

Consider the following chain of Markoff triples

$$(a, u_{i-1}, u_i) \longrightarrow (a, u_i, u_{i+1}),$$

where $u_{i+1} = 3au_i - u_{i-1}$.

Ilya Vyugin (HSE and IITP RAS) On Some Applications of Differential Equation

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

These triples (a, u_i, u_{i+1}) generate a linear recurrent chain

$$u_1, u_2, \dots$$
 $(u_{i+1} = 3au_i - u_{i-1})$

with characteristic equation $\lambda^2 - 3a\lambda + 1 = 0$,

$$u_k = \alpha \lambda^k + \beta \lambda^{-k}, \qquad \lambda = \frac{3a + \sqrt{9a^2 - 4}}{2},$$

 λ belongs to a subgroup $G \subset \mathbb{F}_{p^2}$.

Let us consider two different sequences: u_1, u_2, \ldots, u_t and u'_1, u'_2, \ldots, u'_t , where

$$u_k = \alpha \lambda^k + \beta \lambda^{-k}, \quad u'_k = \gamma \lambda^k + \delta \lambda^{-k}.$$

The intersection of these two sequences is defined by:

$$u_k = u'_l \iff \alpha \lambda^k + \beta \lambda^{-k} = \gamma \lambda^l + \delta \lambda^{-l}.$$

It is equivalent to the equation:

$$\alpha x + \frac{\beta}{x} = \gamma y + \frac{\delta}{y},$$

where $x = \lambda^k \in G$, $y = \lambda^l \in G$.

5.03.2021 35/39

The number of solutions $(x, y) \in G \times G$ of equation

$$\alpha x^2 y - \gamma x y^2 + \beta x - \delta y = 0$$

does not exceed $C|G|^{2/3}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Markoff's equation in \mathbb{F}_p

Markoff's equation in \mathbb{F}_p

$$x^2 + y^2 + z^2 = 3xyz, \qquad x, y, z \in \mathbb{F}_p.$$

Theorem (W. Chen, 2020)

Every nonzero connection component of Markoff's graph $X^*(p)$ has size congruent to $0 \mod p$.

Bourgain, Gamburd, Sarnak:

$$|X^*(p) \setminus C(p)| \leqslant p^{\varepsilon}.$$

William Chen, Strong approximation for the Markoff equation, arXiv:2011.12940 (Nov 26, 2020).

Ilya Vyugin (HSE and IITP RAS) On Some Applications of Differential Equation

5.03.2021 37/39

Bibliography

- S. V. KONYAGIN, I. E. SHPARLINSKI, I. V. VYUGIN, *Polynomial Equations in Subgroups and Applications //* arXiv:2005.05315.
- S. V. KONYAGIN, S. V. MAKARYCHEV, I. E. SHPARLINSKI, I. V. VYUGIN, *On the structure of graphs of Markoff triples //* Quart. Journal Math., 72:2 (2020), 637-648.
- I. V. V'YUGIN, A Bound for the Number of Preimages of a Polynomial Mapping. // Math Notes 106, 203-211 (2019).
- S. MAKARYCHEV, I. VYUGIN, Solutions of Polynomial Equations in Subgroups of \mathbb{F}_p // Arnold Math J. 5, 105-121 (2019).
- I. V. VYUGIN, I. D. SHKREDOV, *On additive shifts of multiplicative subgroups* // Sbornik: Mathematics, 2012, 203:6, 844-863.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you for your attention!!!

Ilya Vyugin (HSE and IITP RAS) On Some Applications of Differential Equation

5.03.2021 39/39

A b