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CONVEX PLANAR BILLIARDS

L

VAV Billiard reflection.
Acts on the cylinder =
space of oriented lines.

A curve © is a causlic,
if its tangent lines
are reflected to its
tangent lines
Example: billiard in a disk
Caustics - concentric
circles

Family of tangent lines to a caustic = invariant curve for billiard map.

‘
%

Billiard map preserves area form dp A d¢, ¢ =azimuth, p = +dist to O.
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Billiard in an ellipse

G

Caustic:=curve whose tang. lines are reflected from 90X to its tang. lines.
Confocal elliptic caustics are closed and foliate Q \ [F1, F].

Def. A billiard ©Q with smooth strictly convex 052 is Birkhoff integrable,
if an inner neighborhood of 9 in , is foliated by closed caustics,
and 0Q is a leaf. Example: ellipse is Birkhoff integrable.

Birkhoff Conjecture. Q — Birkhoff integrable. ==> 99 - ellipse. )
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Foliation is an important condition.

V.Lazutkin (1973) Every strictly convex bounded planar billiard has a
Cantor family of closed caustics. A KAM-like theorem. J

Billiard map acts on Phase cylinder Nq:= {oriented lines intersecting Q}.

Birkhoff integrable billiard:
caustics — closed T-invariant curves in g near its boundary.
Two invariant curves per caustic.

cutted HQ
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Case 9f) = circle: phase cylinder is foliated by invariant closed curves:
- families of lines tangent to concentric circles, two curves per each circle;
- and one "central curve": family of oriented lines through the center.

Theorem (M.Bialy) (1993). Let the phase cylinder of a billiard Q be
completely foliated by invariant closed curves. Then Q is a disk.
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Case of ellipse. Foliation of phase cylinder: "cutted view".
A singular foliation by T2-invariant curves:

4 Brown curves = families of lines through foci
2 Red sing. points = small axis with two possible orientations. Centers.

2 Violet sing. points = big axis with two possible orientations. Saddles.
T := the billiard map acting on the phase cylinder.

cutted

o
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Numerical experience and Conjecture (D.V.Treschev, 2013).
3 a planar billiard whose squared billiard map T2 has a fixed point
where germ of T2 is conjugated to rotation (r, ®) — (r, ¢ + 276), 6 ¢ Q.

Not true for ellipses. Proof of existence is open problem.

V.Kaloshin, A.Sorrentino (2016): proof of local Birkhoff Conjecture:
any integrable deformation of an ellipse is an ellipse. Ann. Math. 18.

v

Very recent result: Mikhail Bialy and Andrei Mironov.

Proof of Birkhoff conjecture for

- centrally-symmetric billiards, where

- foliation by closed caustics extends to caustic tang. to 4-periodic orbits.

Ann. of Math.
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Billiard flow on TR2| o

— geodesic flow moves (Q,P)

until Q reaches the boundary
— reflection: (Q,P) —> (Q,P*)
— geodesic flow moves (Q,P*)

— Trivial first integral: ||P||2

Birkhoff integrability <=> existence of a first integral indep. with ||P||?
on a neighborhood of the unit tangent bundle of 9Q in TR?|q.

Def. Q is polynom. integrable,

if the flow has a 1st integral /(Q, P), polyn. in P, I|fp|=1} # const.

Bolotin’s Polynomial version of Birkhoff Conjecture (1992).
Now Thm (M.Bialy, A.Mironov, A.G., '17-'18).
1) 0Q — convex, C?. It is polynomially integrable, iff 9Q is a conic.

2) 0Q is piecewise C2. It is polyn. integr. <=> confocal billiard: =

082 = U(conical arcs of confoc. pencil C + segm. of C-admissible lines.)
3) min deg (integral) € {2,4}. Similar results on billiards in S2, HZ.

S.Bolotin 1992: statement and partial results.
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Billiards in R"”, S”, H" bounded by confocal quadrics.
A.P.Veselov (1988): compl. integr. with quadr. integrals in involution.
V.Dragovi¢, M.Radnovi¢: Dynamics and interrelations.

Today’s main results. Classification of rationally integrable piecewise
smooth non-polygonal projective billiards.

New phenomena:

1) mindeg(integral) is realized by arbitrary even number.

2) Projective generalization of confocal billiards, namely,
the so-called dual pencil type projective billiards

may have integrals of deg. 2, 4, 12.
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Projective billiards = billiards with variable reflection law

Introduced by S.Tabachnikov, 1997.
Planar projective billiard: a curve C C R? with transversal line field A/

Reflection transformation acting on oriented lines intersecting C:

- Each oriented line L is reflected from C at its last intersection point Q
with C by affine involution Ag : R? — R? preserving Tov and N(Q):
- AQlToc = 1d, Al (@) — central symmetry with respect to Q.

Q

B

=

Figure: Projective billiard and its reflection law.

Ex: A usual billiard is a projective billiard with A/ = normal line field.
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Billiards on S? and H? viewed as projective billiards
S? and hyp. plane H? ~ surfaces in (R3, < Ax,x >), A = diag(1,1,+1).

SPP=Y={F+x3+x3=1}CR3}, A=1d.
H2 = ¥ := {< Ax,x >= —1 | x3 > 0} C R3}, A =diag(1,1,-1).

Geodesics are sections of ¥ by two-dimensional vector subspaces in R3.

Yy :=XN{x3>0}, T} is S2 or H2
The tautological projection 7 : R3\ {0} — RP? ] sends X to

[x1:x0:x3

R? = {x3 = 1}, respectively to D; = {x? + x2 < 1} C R2.

A curve v C L equipped with the normal line field is projected
to a curve C = 7(7y) C R? equipped with a transversal line field N/

Orbits in the billiard on v +— orbits of the projective billiard on C.
(refl. of geodesics from ) (reflection of lines from (C,N))
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A Birkhoff integrable
Projective billiard

Tabachnikov’s Conjecture (a generalization of Birkhoff Conjecture).
Let v C R? be a strictly convex closed curve with a transversal line field.
Let the corresponding projective billiard have a family of closed caustics
foliating a topological annulus adjacent to ~y; the curve  being a leaf.

Then ~ is an ellipse, and the foliation is dual to a pencil of conics.

Implies Birkhoff Conjecture for billiards on R2, S2 HZ2.
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Projective billiard flow

Birkhoff integrability <=>> existence of a
non-constant 0-homogeneous first integral /(x, v), I(x,\v) = I(x, V),
on a neighborhood of the unit tangent bundle of 9Q in TR?|q.

Main result. Criterion of existence of rational 0-homogeneous integral in
velocity for piecewise-smooth non-polygonal projective billiards.
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Definition. A projective billiard is rationally integrable, if its flow has a
first integral that is a rational 0-homogeneous function of the velocity.

v

Prop. For usual billiards rational integr. <=> polynom. integrability.

Proof of <=. Let 3 polyn. int. F,(v) # const on {||v|| = 1}, deg = 2n

F
=> ﬁ‘% is a rational 0-homogeneous integral.

Remark. General projective billiard flow doesn’t preserve ||v||?.

Open problem. Describe all projective billiards
having polynomial integrals.

M = M(x,v) := (—va,vi,x1v2 — xav1). Univ. invariant of geodesic flow.

=> Each rational 0-homog. integral of billiard has form R(M).
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Basic example of rationally integrable projective billiard
A, B — symmetric 3x3-matrices, B is non-degenerate. < , > — Euclidean.

C; =< (B—MA)"1x,x >=0 C RP3. C* = (C}) - dual pencil of conics.

v

Let «, 5 € C* - two (nested) conics, 3 is smaller.

3! a projective billiard structure on « for which 3 - caustic.
Called dual pencil type structure (or C*-projective billiard structure.)

v

Rk. It is Birkhoff integrable: each conic C} inside « is a caustic. J

Tabachnikov Conjecture: These are the only Birkhoff integrable examples.

S. Bolotin => Thm. The C*-projective billiard is rationally integrable.

M= M(x,v) :=(—va,vi,x1v2a — xpv1) — the moment vector.

V(x,v) = zgg:tjgﬁﬁi is an integral V \; # \o.
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Classif. of rationally integrable smooth connected projective billiards.

Theorem (A.G., 2021). Let C C Rxl «, — nonlinear C*-smooth germ of
curve equipped with transversal line field A/ (projective bill. structure).

It is rationally integrable, iff C — conic and N is one of following:

1) A dual pencil type projective billiard structure, with quadratic integral.
2) Exotic structures: C = {c; = x?} and N is directed by one of the
following vector fields:

2a) (1,%) = (p,2(p —2)x1), pe{2— 4 | meN},

Case 2al), p=2— 2k2+1 Set A := x3vo — xpvi. An integral is

A A — y2)2k+1 42k 41—
VS PR CUL S ) 272" CJ’—_H'
VI (dnd - i) (2k +1—2j)

Case 2a2), p=2— ﬁ: an integral is

(4v1A — v3)k+l o _Jj(2k+2-))
ViVvo Hj:1(4v1A —Gjvs )2’ T (k+1 )2

Vs, (X1, X2, V1, v2) 1=

Alexey Glutsyuk On rationally integrable projective billiards 16 / 37



A= x1vo — Xovy.
2b1) N: (x1,%2) = (5x1 + 3,2(x2 — x1)). An integral is

(4ni A — v22)2
(4viA +3v3)(2vi + ) (2A + vo)’

Vop, =

2b2) NV: (x1,x2) = (3x1,2x2 — 4). An integral is
(4viA — v3)?
V3 4+ 4A2 + 4y A + 4v2) (V3 + 4vE)

W2b2(X1,X2, Vi, VZ) — (

2cl) N: (x1,%) = (x2, x1x2 — 1). An integral is

(4viA — v3)3
vi + A3 + vinnA)2’
2c2) N: (x1,%) = (2x1 + 1,x2 — x1). An integral is
(4viA — v3)3

Woc1(x1, X0, v, Vo) = (

Voo (x1, X0, V1, Vo) = (
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2d) NV : (x1,x) = (7x1 + 4,2x2 — 4x1). An integral is
Wy (x1, X2, V1, V2)
B (4n A — v22)3

 (viA +2v3)(2vy + v2)(8vivs + 2v3 + (4vF + 5v3 + 28vi o)A + 16V A?)

New result: piecewise-smooth case.

Theorem. A projective billiard on piecewise C*-smooth curve with a
nonlinear arc is rationally integrable, iff it is of one of the following types:

1) A dual pencil type billiard: by definition, it consists of

- arcs of conics from a dual pencil C*, with C*-projective billiard structure;
- maybe some segments of the so-called C*-admissible lines

(with extra conditions on their collection if the pencil is degenerate).

The mindeg(integral) = 2, 4 or 12.

2) An exotic piecewise smooth billiard: it consists of
- arcs of just one conic with an exotic line field from previous theorem;
- maybe some segments of so-called admissible lines for the exotic field.

v
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Dual pencil C* of conics tangent to complex lines a, b, ¢, d.
(non-degenerate
dual pencil)

Each conic in C* is equipped
with C*-projective structure

Admissible lines:

3 standard lines m;: m3 with transv. line field through my N m;y etc;
6 skew lines k., numer. by unordered {e, n} C {a,b,c,d}, e # n:
kpc is equipped with transversal field of lines through and, etc...

Thm. Each projective billiard consisting of arcs of conics from C* and
segments of admissible lines is rationally integrable.

min deg(integral) = 2, if there are no skew line segments;

min deg(integral) = 12, if 3 segments of some neghbor skew lines kep, kne;

min deg(integral) = 4 in any other case.
Alexey Glutsyuk On rationally integrable projective billiards 19 / 37




Two dual pencil type billiards with integral of mindeg = 12:
these are the billiards with the boldest boundaries

Remark. A dual pencil may induce a projective billiard with integral of
mindeg =12 <=> it consist of conics tangent to four distinct real lines.

v

Example. Confocal ellipses and hyperbolas are tangent to
four non-real complex lines (isotropic lines through foci).
=> For this confocal pencil case of integral of mindeg = 12 is impossible.

Case deg = 4 is possible: ellipse with L line field; vert. line through focus.
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Admissible lines for exotic dual billiards on v = {xo = x?}

2a)

°"/\/II\II

X2

/o
/’Vij(Z’P)’H

L X4

Case 2a): V|, = R(p,2(p — 2)),
pe{2—2|keNy.

The only admissible line is the Ox;-axis.
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Admissible lines for exotic dual billiard structures

2b1) |

\Y

2b2) \ X,

A\

-1

2bl): V|, =R(5x1 4+ 3,2(x2 — x1)).  2b2): N|y = R(3x1,2x2 — 4).

2¢1) |

2c2) | e=2x %
\

2cl): N, = R(x2, x1x2 — 1). 2c2): N, =R(2x1 + 1,x0 — x1).
v v

Case 2d): V|, = R(7x1 +4,2x; — 4x1). No admissible lines.
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Dual billiards (to projective billiards)

Orthogonal polarity: 2-dimensional subspace W C R>3<1,X2,X3 — line W+,
Induces a projective duality: RP* = {lines in RP?} + RP? = {points},

L:=7n(W\{0})~ L* :== m(WL\ {0}). Preserves incidence relations.

a b

L

EI L ¥ orthogonal polarity L+ L* is
the composition of polar duality
1
N/ w and central symmetry: ab=1
o

The duality map L — L* is given by the moment map:

X3

r=(x_1,x_2,1)
L M=[r,v]
1
% X L*=[M,: M_; M@]
r :’7 2 1 2

Alexey Glutsyuk
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The dual reflection: projective involution o
Curve C C R?2 ¢ RP?, N\ - transv. line field on C: v = C* - dual curve.

The projective billiard reflection involution T defined by

acting on the space RIP%Q of lines through a given point Q € C,

is conjugated via duality to a projective involution
oc=op: Q" — QF of the dual line Q*; P := LZ,.

T = billiard reflection o=T* is a projective
of lines through Q involution Q* " Q*

The involution o = op : @* — Q* fixes P and N'* = (NV(Q))*,
permutes intersection points of @* with the curve §* dual to caustic S.
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A curve v C RP[le:MzzM3]' P € v. Lp := proj. tangent line to v at P.

Definition. A dual billiard structure on v is a family of projective
involutions op : Lp — Lp fixing P; parametrized by P € ~.

A straightline interval J C L equipped with a projective billiard structure.

Its dual is the point Q@ = L* with a point dual billiard structure:=
family of projective involutions ¢ — ¢ of lines ¢ through Q, fixing Q.

Defined for ¢ from an open U C RP!, U := {lines dual to points of J}.

A dual multibilliard is a collection of
- nonlinear C*-smooth curves equipped with dual billiard structures;
- points, called vertices equipped with point dual billiard structures.

R(M) - integral of proj. billiard flow <=> R(M) is integral of dual
multibilliard: its restrictions to tangent lines to its curves (to lines
through vertices) are invariant under involutions.
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Theorem. A proj. billiard formed by conics of real non-degen. dual pencil
C* and segments of adm. lines incl. k,p, kpc has integral of min deg = 12.

Proof. Prove the same for the dual multibilliard.

Duality: C* — pencil C of conics through A, B, C, D.
line kap — point Kag with proj. invol. ok,, : RP? — RP?.

1) V rational integral of the multibilliard is constant on each conic of C.
2) OK,51 OKge Permute conics of C: acts on its parameter space C.

3) Their actions on C generate group ~ S3, since
they permute conics ABU CD, AD U BC, AC U BD; permut. gener. S3.

=> a generic orbit of the group consists of six conics.
=> min deg (int) = 12.
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Main result <=> classif. of rationally integrable dual multibilliards
Goal: 1) show that each curve is a conic; 2) describe vertices.

Step 1. Let v - C*-curve, dual billiard; Roop =R on Lp ¥V P € v. Then

R|, = const. |

Proof. R is an even function on Lp: Roop = R, Hence, (R|.,) (P) =0.
=> % = 0 along every vector v tangent to v => R|, = const.

—=> ~ - piecewise algebraic: C-Zariski closure 7 — algebr. curve in CP?2.

Fix an irreducible component o C 7. Goal: prove that o — conic.

Step 2. op extends to a holom. family of project. invol. op : Lp — Lp,
Pea®:=a\{Pi,...,Ps}, = sing. holom. dual billiard struct. on «. J
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Step 3. Thm A. Let an irred. alg. curve o C CP? admit a rationally
integrable sing. holomorphic dual billiard structure. Then « is a conic.

Proof. Show that: (i) all the local branches of a are quadratic;
(ii) at most one singular point is a base point of a singular branch. J

Theorem B: (i) + (ii) => « is a conic.

Step 4. Proj. billiard structure at V vertex @ is a birational involution:
- either a projective involution RP? — RP? fixing each line through Q;
- or fixing all points of a regular conic through Q; Q is indeterminacy.

The second type of involutions arises only in degenerate pencil cases.
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Show that: (i) all the local branches of « are quadratic;
(ii) at most one singular point is a base point of a singular branch.

Thm C. Let an irreducible germ b of complex analytic curve at O € C?
admit a germ of singular holomorphic dual billiard structure with
meromorphic first integral R: Roop|, = R|, ¥V P €. Then

1) the germ b is quadratic;

2) if b is singular, then R is rational,

- R = const along the tangent line Lp to « at O.

- Lo \ {O} is a regular leaf of the foliation R = const.

Theorem C implies statements (i), (ii).
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Birkhoff Conjecture. Let 2 — Birkhoff integrable, i.e., a neighborhood
of 0Q in Q is foliated by closed caustics. Then JN) — ellipse. J

Partial results

H.Poritsky (1950), E.Amiran (1988).
Let Q Birkhoff integrable, 'y — closed caustics, and let each Iy be also a
caustic of the billiard in each bigger I',. Then 2 is an ellipse.

Open Problem. Extend Poritsky result to projective billiards
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Thm C. Let an irreducible germ b of complex analytic curve at O € C?
admit a germ of singular holomorphic dual billiard structure with
meromorphic first integral R. Then

1) the germ b is quadratic;

2) if b is singular, then R is rational,

- R = const along the tangent line Lo to « at O.

- Lo \ {O} is a regular leaf of the foliation R = const.

Plan of proof of Theorem C.

Idea going back to S.Tabachnikov’s paper (2008) on outer billiards,
used and developed in papers of M.Bialy and A.Mironov (2016-2017):

work with the Hessian of appropriately normalized integral.

R|o = const. Normalize to R|, = 0.
f — defining polynomial of a: a = {f =0}. R=fkg, gla Z0.
The normalized integral:

G := R% = fg%.

Alexey Glutsyuk On rationally integrable projective billiards 33 /37



R|o =0, a={f =0}, f —irred. polynomial. R = f¥g, g|, #0.

x| =

G=R :fg%. Goopl, =G J

The Hessian:

592G (86)2_2 2G 0G G  9°G (3@)2

H(G) i = — | — i AT il
( ) aX12 8X2 aX18X2 8X2 axl + (9X22 8X1

Key property: H(G)|, # 0 outside singular and inflection points of the
curve v and zeros (poles) of the function g|.

Step 1 of the proof of Thm C. Differential equation on H(G) along a. )

Fix affine coord. (z,w). In the coord. z on Lp the invol. op : Lp — Lp is
conjug. tof— —0 byamap Fp:Cy — Lp;, Fp:0+— z(P)+ﬁ}P)9.
Goopl, = G => G(f) = G(—0) => G(0) has no 6>-term.

> B o) — 6 (pyrG).
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2 2 2 2 2
H(G)::8G<8G> 5 0°G 0G 0G 8G<8G> '

B)  “Oxi0x Ox 0x1 | 052 \Ox
Fix affine coord. (z, w). Involution op : Lp — Lp acting in coord. z on Lp
is conjugated to 6 — —0 via a map Fp : 0 — z(P) + %.

IO (p) = 6us(P)H(G).

Fix an O € «, a local branch b of @ at O. Coord. (z,w) adapted to b:
centered at O, b is tangent to the z-axis.

Corollary. Let d € Q s.t. H(G)|p = cz9(1 + o(1)), as z — 0. Then

= ﬁ, ap(C) = mp(C) = %, as P — O.

y
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O € a, (b, O)-local branch. H(G)|p = cz?(1 + o(1)).

In coordinate ( := ﬁ onlp, as P — O,

op(C) = np(C) = %, p= —%, p := the residue of op at O.

Param. of b: t — (t%,ctP*(1 4+ 0(1))), 1 <g<p, p,g €N, (p,q) = 1.

The (p, g; p)-billiard: the dual billiard structure on v, ; :== {w9 = z"}
given in the coord. ¢ on Lp, P € v, 4 by involutions op(C) := 1,(C).

Theorem 1. Let b be equipped with a singular dual billiard structure
having a germ of meromorphic integral R. Let G = R%, H(G), p, p, q
be as above. Then the (p, g; p)-billiard is quasihomogeneously
integrable: has a (p, g)-quasihomogeneous rational integral.

Theorem 2. A (p, g; p)-billiard is quasihomogeneously integrable, iff
g=1,p=2and pe M:={0,1,2,3,4,U{2+ 2 | me Nx3}.
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Theorem 2. A (p, q; p)-billiard is quasihomogeneously integrable, iff
g=1,p=2,and pe M = {0,1,2,3,4}U{2i% | me N3} J

Implies quadraticity of b and yields a priori possible valies of residue p.

Classification of rationally integrable singular dual billiards on conics.

Residue formula: Let a sing. holom. dual billiard on conic have
well-defined residues at singularities. Then the sum or residues = 4. J

Rational integrability => the residues lie in M (Thm 2).
=> The only possible residue configurations are:
-(1,1,1,1), (2,1,1), (2,2), (3,1), (4,0) (correspond to pencils of conics)

- exotic ones: (2 .2+ 7). (3,3.1). (5:3.3) (5. 3. 1)

Miracle. All these residue configurations correspond to complex
rationally integrable dual billiards!
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