On rationally integrable projective billiards

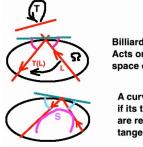
Alexey Glutsyuk

Dynamics in Siberia - 2023

Novosibirsk February 27 – March 4 2023

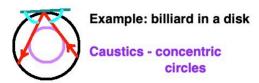
• • = • • = •

CONVEX PLANAR BILLIARDS



Billiard reflection. Acts on the cylinder = space of oriented lines.

A curve S is a caustic, if its tangent lines are reflected to its tangent lines

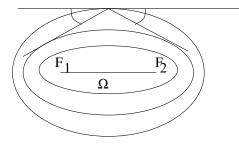


Family of tangent lines to a caustic = invariant curve for billiard map.

Billiard map preserves area form $dp \wedge d\phi$, $\phi =$ azimuth, $p = \pm$ dist to O.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Billiard in an ellipse



Caustic:=curve whose tang. lines are reflected from $\partial \Omega$ to its tang. lines. **Confocal elliptic caustics are closed and foliate** $\Omega \setminus [F_1, F_2]$.

Def. A billiard Ω with smooth strictly convex $\partial \Omega$ is **Birkhoff integrable**, if an inner **neighborhood of** $\partial \Omega$ in Ω , is foliated by **closed caustics**, and $\partial \Omega$ is a leaf. **Example: ellipse** is Birkhoff integrable.

Birkhoff Conjecture. Ω – **Birkhoff integrable.** ==> $\partial \Omega$ – ellipse.

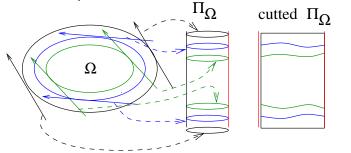
Foliation is an important condition.

V.Lazutkin (1973) Every strictly convex bounded planar billiard has a Cantor family of closed caustics. A KAM-like theorem.

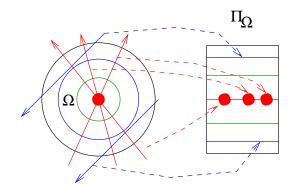
Billiard map acts on **Phase cylinder** $\Pi_{\Omega} := \{ \text{oriented lines intersecting } \Omega \}.$

Birkhoff integrable billiard:

caustics \rightarrow closed *T*-invariant curves in Π_{Ω} near its boundary. Two invariant curves per caustic.



Case $\partial \Omega = \text{circle:}$ phase cylinder is **foliated** by invariant **closed curves:** - families of lines tangent to concentric circles, two curves per each circle; - and one "central curve": family of oriented lines through the center.

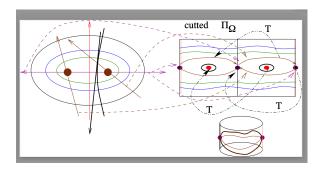


Theorem (M.Bialy) (1993). Let the **phase cylinder** of a billiard Ω be **completely foliated** by invariant **closed curves**. Then Ω is a **disk**.

Case of ellipse. Foliation of phase cylinder: "cutted view".

A singular foliation by T^2 -invariant curves:

- **4 Brown curves** = families of lines through foci
- 2 Red sing. points = small axis with two possible orientations. Centers.
- 2 Violet sing. points = big axis with two possible orientations. Saddles.
- T := the billiard map acting on the phase cylinder.



Numerical experience and Conjecture (D.V.Treschev, 2013). \exists a planar billiard whose squared billiard map T^2 has a fixed point where germ of T^2 is conjugated to rotation $(r, \phi) \mapsto (r, \phi + 2\pi\theta), \theta \notin \mathbb{Q}$.

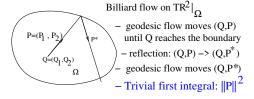
Not true for ellipses. Proof of existence is open problem.

V.Kaloshin, A.Sorrentino (2016): proof of local Birkhoff Conjecture: any integrable deformation of an ellipse is an ellipse. Ann. Math. 18.

Very recent result: **Mikhail Bialy and Andrei Mironov.** Proof of Birkhoff conjecture for

- centrally-symmetric billiards, where
- foliation by closed caustics extends to caustic tang. to 4-periodic orbits.

Ann. of Math.



Birkhoff integrability $\langle = \rangle$ existence of a **first integral** indep. with $||P||^2$ on a neighborhood of the unit tangent bundle of $\partial\Omega$ in $T\mathbb{R}^2|_{\Omega}$. **Def.** Ω is **polynom. integrable**, if the flow has a 1st integral I(Q, P), **polyn. in** P, $I|_{\{||P||=1\}} \not\equiv const$.

Bolotin's Polynomial version of Birkhoff Conjecture (1992). Now Thm (M.Biały, A.Mironov, A.G., '17-'18). 1) $\partial \Omega$ – convex, C^2 . It is polynomially integrable, iff $\partial \Omega$ is a conic. 2) $\partial \Omega$ is piecewise C^2 . It is polyn. integr. <=> confocal billiard: = $\partial \Omega = \cup$ (conical arcs of confoc. pencil C + segm. of C-admissible lines.)

3) min deg (integral) \in {**2,4**}. Similar results on billiards in S^2 , \mathbb{H}^2 .

S.Bolotin 1992: statement and partial results.

Billiards in \mathbb{R}^n , S^n , \mathbb{H}^n bounded by confocal quadrics. **A.P.Veselov (1988):** compl. integr. with quadr. integrals in involution. **V.Dragović, M.Radnović:** Dynamics and interrelations.

Today's main results. Classification of rationally integrable piecewise smooth non-polygonal **projective billiards.**

New phenomena:

1) min deg(integral) is realized by arbitrary even number.

2) Projective generalization of **confocal billiards**, namely, the so-called **dual pencil type projective billiards**

may have integrals of deg. 2, 4, 12.

Projective billiards = billiards with variable reflection law

Introduced by S.Tabachnikov, 1997.

Planar projective billiard: a curve $C \subset \mathbb{R}^2$ with transversal line field \mathcal{N} .

Reflection transformation acting on **oriented lines** intersecting *C*: - Each oriented line *L* is reflected from *C* at its last intersection point *Q* with *C* by **affine involution** $\mathbf{A}_Q : \mathbb{R}^2 \to \mathbb{R}^2$ **preserving** $\mathcal{T}_Q \gamma$ **and** $\mathcal{N}(Q)$: - $\mathbf{A}_Q|_{\mathcal{T}_Q C} \equiv Id$, $\mathbf{A}_Q|_{\mathcal{N}(Q)}$ – **central symmetry** with respect to *Q*.

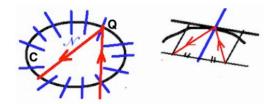


Figure: Projective billiard and its reflection law.

Ex: A usual billiard is a projective billiard with $\mathcal{N} =$ normal line field.

Billiards on S^2 and \mathbb{H}^2 viewed as projective billiards S^2 and hyp. plane $\mathbb{H}^2 \simeq$ surfaces in (\mathbb{R}^3 , $\langle Ax, x \rangle$), $A = \text{diag}(1, 1, \pm 1)$.

$$\begin{split} S^2 &= \Sigma := \{x_1^2 + x_2^2 + x_3^2 = 1\} \subset \mathbb{R}^3\}, \ A &= \textit{Id}.\\ \mathbb{H}^2 &= \Sigma := \{<\textit{Ax}, \textit{x} > = -1 \mid x_3 > 0\} \subset \mathbb{R}^3\}, \ A &= \textsf{diag}(1, 1, -1). \end{split}$$

Geodesics are **sections** of Σ by two-dimensional vector subspaces in \mathbb{R}^3 .

$$\begin{split} \Sigma_+ &:= \Sigma \cap \{x_3 > 0\}, \ \Sigma_+ \text{ is } S^2_+ \text{ or } \mathbb{H}^2.\\ \text{The tautological projection } \pi : \mathbb{R}^3 \setminus \{0\} \to \mathbb{RP}^2_{[x_1:x_2:x_3]} \text{ sends } \Sigma_+ \text{ to}\\ \mathbb{R}^2 &= \{x_3 = 1\}, \text{ respectively to } D_1 = \{x_1^2 + x_2^2 < 1\} \subset \mathbb{R}^2. \end{split}$$

A curve $\gamma \subset \Sigma_+$ equipped with the **normal line field** is projected to a curve $C = \pi(\gamma) \subset \mathbb{R}^2$ equipped with a **transversal line field** \mathcal{N}

Orbits in the billiard on $\gamma \mapsto$ orbits of the **projective billiard** on *C*. (refl. of geodesics from γ) (reflection of lines from (C, N))

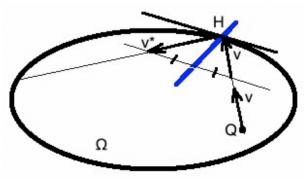


Tabachnikov's Conjecture (a generalization of **Birkhoff Conjecture**). Let $\gamma \subset \mathbb{R}^2$ be a strictly convex closed curve with a transversal line field. Let the corresponding projective billiard have a family of closed caustics foliating a topological annulus adjacent to γ ; the curve γ being a leaf.

Then γ is an ellipse, and the foliation is dual to a pencil of conics.

Implies **Birkhoff Conjecture** for billiards on \mathbb{R}^2 , S^2 , \mathbb{H}^2 .

Projective billiard flow



Birkhoff integrability $\langle = \rangle$ existence of a non-constant **0-homogeneous first integral** I(x, v), $I(x, \lambda v) = I(x, v)$, on a neighborhood of the unit tangent bundle of $\partial\Omega$ in $T\mathbb{R}^2|_{\Omega}$.

Main result. Criterion of existence of **rational** 0-homogeneous integral in velocity for piecewise-smooth non-polygonal projective billiards.

Definition. A projective billiard is **rationally integrable**, if its flow has a first integral that is a rational 0-homogeneous function of the velocity.

Prop. For usual billiards **rational integr.** <=> **polynom. integrability. Proof of** <=. Let \exists polyn. int. $F_x(v) \not\equiv const$ on $\{||v|| = 1\}$, deg = 2n => $\frac{F_X(v)}{||_V||2n}$ is a rational 0-homogeneous integral.

Remark. General projective billiard flow doesn't preserve $||v||^2$.

ヘロマ ヘ動 マイロマ

Open problem. Describe all **projective** billiards having polynomial integrals.

 $\mathcal{M} = \mathcal{M}(x, v) := (-v_2, v_1, x_1v_2 - x_2v_1)$. Univ. invariant of geodesic flow.

= Each rational 0-homog. integral of billiard has form $R(\mathcal{M})$.

Basic example of rationally integrable projective billiard A, B – symmetric 3x3-matrices, B is non-degenerate. <, > – Euclidean.

 $\mathcal{C}^*_{\lambda} := \langle (\mathcal{B} - \lambda \mathcal{A})^{-1} x, x \rangle = 0 \subset \mathbb{RP}^3. \ \mathcal{C}^* = (\mathcal{C}^*_{\lambda}) - \text{dual pencil of conics.}$

Let $\alpha, \beta \in \mathcal{C}^*$ - two (nested) conics, β is smaller.

 \exists ! a projective billiard structure on α for which β - caustic. Called **dual pencil** type structure (or C^* -**projective billiard structure**.)

Rk. It is **Birkhoff integrable:** each conic C^*_{λ} inside α is a caustic.

 Tabachnikov Conjecture:
 These are the only Birkhoff integrable examples.

S. Bolotin => Thm. The C^* -projective billiard is rationally integrable.

$$\mathcal{M} = \mathcal{M}(x, v) := (-v_2, v_1, x_1v_2 - x_2v_1)$$
 – the moment vector.

$$\Psi(x, \mathbf{v}) = \frac{\langle (\mathcal{B} - \lambda_1 \mathcal{A}) \mathcal{M}, \mathcal{M} \rangle}{\langle (\mathcal{B} - \lambda_2 \mathcal{A}) \mathcal{M}, \mathcal{M} \rangle} \text{ is an integral } \forall \ \lambda_1 \neq \lambda_2.$$

Classif. of rationally integrable smooth connected projective billiards.

Theorem (A.G., 2021). Let $C \subset \mathbb{R}^2_{x_1,x_2}$ – nonlinear C^4 -smooth germ of curve equipped with transversal line field \mathcal{N} (projective bill. structure). It is **rationally integrable**, iff C – **conic** and \mathcal{N} is one of following: **1)** A **dual pencil type** projective billiard structure, with quadratic integral. **2) Exotic structures:** $C = \{c_2 = x_1^2\}$ and \mathcal{N} is directed by one of the following vector fields:

2a)
$$(\dot{x}_1, \dot{x}_2) = (\rho, 2(\rho - 2)x_1), \ \rho \in \{2 - \frac{2}{m} \mid m \in \mathbb{N}\}.$$

Case 2a1), $\rho = 2 - \frac{2}{2k+1}$. Set $\Delta := x_1v_2 - x_2v_1$. An integral is

$$\Psi_{2a_1}(x_1, x_2, v_1, v_2) := rac{(4v_1\Delta - v_2^2)^{2k+1}}{v_1^2\prod_{j=1}^k (4v_1\Delta - c_jv_2^2)^2}, \ c_j = -rac{4j(2k+1-j)}{(2k+1-2j)^2}.$$

Case 2a2), $\rho = 2 - \frac{1}{k+1}$: an integral is

$$\Psi_{2a_2}(x_1, x_2, v_1, v_2) := \frac{(4v_1\Delta - v_2^2)^{k+1}}{v_1v_2\prod_{j=1}^k (4v_1\Delta - c_jv_2^2)^2}, \ c_j = -\frac{j(2k+2-j)}{(k+1-j)^2}.$$

$$\Delta := x_1 v_2 - x_2 v_1.$$
2b1) \mathcal{N} : $(\dot{x}_1, \dot{x}_2) = (5x_1 + 3, 2(x_2 - x_1)).$ An integral is
$$\Psi_{2b_1} = \frac{(4v_1\Delta - v_2^2)^2}{(4v_1\Delta + 3v_2^2)(2v_1 + v_2)(2\Delta + v_2)}.$$
2b2) \mathcal{N} : $(\dot{x}_1, \dot{x}_2) = (3x_1, 2x_2 - 4).$ An integral is

$$\Psi_{2b2}(x_1, x_2, v_1, v_2) = \frac{(4v_1\Delta - v_2^2)^2}{(v_2^2 + 4\Delta^2 + 4v_1\Delta + 4v_1^2)(v_2^2 + 4v_1^2)}$$

2c1) \mathcal{N} : $(\dot{x}_1, \dot{x}_2) = (x_2, x_1x_2 - 1)$. An integral is $\Psi_{2c1}(x_1, x_2, v_1, v_2) = \frac{(4v_1\Delta - v_2^2)^3}{(v_1^3 + \Delta^3 + v_1v_2\Delta)^2}$. **2c2)** \mathcal{N} : $(\dot{x}_1, \dot{x}_2) = (2x_1 + 1, x_2 - x_1)$. An integral is $\Psi_{2c2}(x_1, x_2, v_1, v_2) = \frac{(4v_1\Delta - v_2^2)^3}{(v_2^3 + 2v_2^2v_1 + (v_1^2 + 2v_2^2 + 5v_1v_2)\Delta + v_1\Delta^2)^2}$. 2d) $\mathcal{N}: (\dot{x}_1, \dot{x}_2) = (7x_1 + 4, 2x_2 - 4x_1)$. An integral is $\Psi_{2d}(x_1, x_2, v_1, v_2)$ $= \frac{(4v_1\Delta - v_2^2)^3}{(v_1\Delta + 2v_2^2)(2v_1 + v_2)(8v_1v_2^2 + 2v_2^3 + (4v_1^2 + 5v_2^2 + 28v_1v_2)\Delta + 16v_1\Delta^2)}$

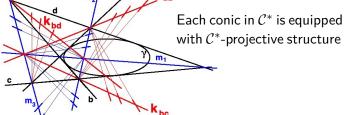
New result: piecewise-smooth case.

Theorem. A projective billiard on **piecewise** C^4 -**smooth** curve with a nonlinear arc is **rationally integrable**, iff it is of one of the following types:

1) A **dual pencil type** billiard: by **definition**, it consists of - arcs of conics from a dual pencil C^* , with C^* -projective billiard structure; - maybe some segments of the so-called C^* -**admissible lines** (with extra conditions on their collection if the pencil is degenerate). The min deg(integral) = 2, 4 or **12**.

- 2) An exotic piecewise smooth billiard: it consists of
- arcs of just one conic with an exotic line field from previous theorem;
- maybe some segments of so-called **admissible** lines for the **exotic field**.

Dual pencil C^* of conics tangent to complex lines *a*, *b*, *c*, *d*. (non-degenerate dual pencil)



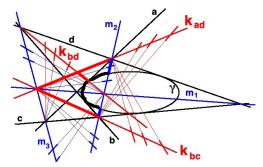
Admissible lines:

3 standard lines m_j : m_3 with transv. line field through $m_2 \cap m_1$ etc.; **6 skew lines** k_{en} **numer. by unordered** $\{e, n\} \subset \{a, b, c, d\}, e \neq n$: k_{bc} is equipped with transversal field of lines through $a \cap d$, etc...

Thm. Each projective billiard consisting of arcs of conics from C^* and segments of admissible lines is rationally integrable. min deg(integral) = 2, if there are no skew line segments; min deg(integral) = **12**, if \exists segments of some **neghbor** skew lines k_{en} , $k_{n\ell}$; min deg(integral) = **4** in any other case.

Alexey Glutsyuk

Two dual pencil type billiards with integral of min deg = 12: these are the billiards with the boldest boundaries

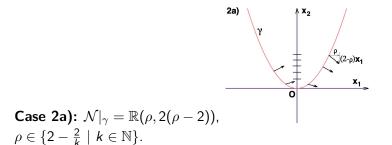


Remark. A dual pencil may induce a projective billiard with integral of min deg $=12 \ll$ it consist of conics tangent to **four distinct real lines.**

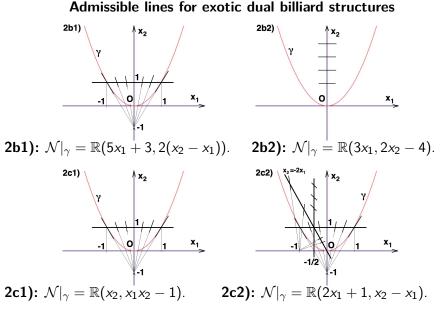
Example. Confocal ellipses and hyperbolas are tangent to four **non-real** complex lines (isotropic lines through foci). => For this confocal pencil case of integral of min deg = 12 is impossible.

Case deg = 4 is possible: ellipse with \perp line field; vert. line through focus.

Admissible lines for exotic dual billiards on $\gamma = \{x_2 = x_1^2\}$



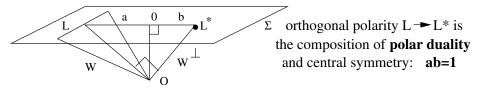
The **only admissible line** is the *Ox*₂-axis.



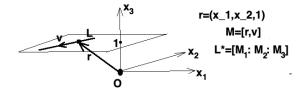
Case 2d): $\mathcal{N}|_{\gamma} = \mathbb{R}(7x_1 + 4, 2x_2 - 4x_1)$. No admissible lines.

Dual billiards (to projective billiards)

Orthogonal polarity: 2-dimensional subspace $W \subset \mathbb{R}^3_{x_1,x_2,x_3} \mapsto \text{line } W^{\perp}$. Induces a **projective duality:** $\mathbb{RP}^{2*} = \{\text{lines in } \mathbb{RP}^2\} \mapsto \mathbb{RP}^2 = \{\text{points}\}, L := \pi(W \setminus \{0\}) \mapsto L^* := \pi(W^{\perp} \setminus \{0\})$. **Preserves incidence relations.**



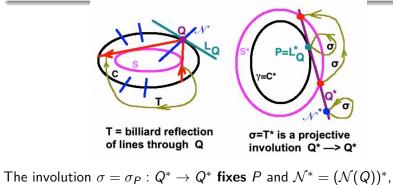
The **duality map** $L \mapsto L^*$ is given by the **moment map**:



The dual reflection: projective involution σ Curve $C \subset \mathbb{R}^2 \subset \mathbb{RP}^2$, \mathcal{N} - transv. line field on C; $\gamma = C^*$ - dual curve.

The projective billiard reflection involution T defined by \mathcal{N} , acting on the space \mathbb{RP}^1_Q of lines through a given point $Q \in C$, is conjugated via duality to a projective involution

 $\sigma = \sigma_P : Q^* \to Q^*$ of the dual line Q^* ; $P := L_Q^*$.



permutes intersection points of Q^* with the curve S^* dual to caustic S.

A curve $\gamma \subset \mathbb{RP}^2_{[\mathcal{M}_1:\mathcal{M}_2:\mathcal{M}_3]}$, $P \in \gamma$. $L_P :=$ proj. tangent line to γ at P.

Definition. A dual billiard structure on γ is a family of projective involutions $\sigma_P : L_P \to L_P$ fixing *P*; parametrized by $P \in \gamma$.

A straightline interval $J \subset L$ equipped with a projective billiard structure.

Its dual is the **point** $Q = L^*$ with a **point dual billiard structure**:= family of **projective** involutions $\ell \to \ell$ of lines ℓ through Q, fixing Q.

Defined for ℓ from an open $U \subset \mathbb{RP}^1$, $U := \{ \text{lines dual to points of } J \}$.

A dual multibilliard is a collection of

- nonlinear C^4 -smooth curves equipped with dual billiard structures;

- points, called **vertices** equipped with **point** dual billiard structures.

 $R(\mathcal{M})$ - integral of proj. billiard flow $\langle = \rangle R(\mathcal{M})$ is **integral of dual multibilliard:** its restrictions to tangent lines to its curves (to lines through vertices) are invariant under involutions.

Theorem. A proj. billiard formed by conics of real non-degen. dual pencil C^* and segments of adm. lines incl. k_{ab} , k_{bc} has integral of min deg = 12.

Proof. Prove the same for the dual multibilliard.

Duality: $\mathcal{C}^* \mapsto \text{pencil } \mathcal{C} \text{ of conics through } A, B, C, D.$ line $k_{ab} \mapsto \text{point } K_{AB}$ with proj. invol. $\sigma_{K_{AB}} : \mathbb{RP}^2 \to \mathbb{RP}^2.$

∀ rational integral of the multibiliard is constant on each conic of C.
 σ_{KAB}, σ_{KBC} permute conics of C: acts on its parameter space C.
 Their actions on C generate group ~ S₃, since they permute conics AB ∪ CD, AD ∪ BC, AC ∪ BD; permut. gener. S₃.
 => a generic orbit of the group consists of six conics.

 $=> \min \text{ deg (int)} = 12.$

Main result <=> classif. of rationally integrable dual multibilliards

Goal: 1) show that each curve is a conic; 2) describe vertices.

Step 1. Let γ - C^4 -curve, dual billiard; $R \circ \sigma_P = R$ on $L_P \forall P \in \gamma$. Then

 $R|_{\gamma} \equiv const.$

Proof. *R* is an **even** function on L_P : $R \circ \sigma_P = R$, Hence, $(R|_{L_P})'(P) = 0$. => $\frac{dR}{dv} = 0$ along every vector *v* tangent to $\gamma => R|_{\gamma} \equiv const$.

 $=> \gamma$ - piecewise algebraic: \mathbb{C} -Zariski closure $\overline{\gamma}$ – algebr. curve in \mathbb{CP}^2 .

Fix an **irreducible component** $\alpha \subset \overline{\gamma}$. **Goal**: prove that α – **conic**.

Step 2. σ_P extends to a **holom.** family of project. invol. $\sigma_P : L_P \to L_P$, $P \in \alpha^o := \alpha \setminus \{P_1, \ldots, P_\ell\}, :=$ sing. holom. dual billiard struct. on α .

Step 3. Thm A. Let an irred. alg. curve $\alpha \subset \mathbb{CP}^2$ admit a rationally integrable sing. holomorphic dual billiard structure. Then α is a conic.

Proof. Show that: (i) all the local branches of α are **quadratic**; (ii) **at most one** singular point is a base point of a **singular branch**.

Theorem B: (i) + (ii) => α is a conic.

Step 4. Proj. billiard structure at \forall vertex Q is a **birational involution:** - either a projective involution $\mathbb{RP}^2 \to \mathbb{RP}^2$ fixing each line through Q;

- or fixing all points of a regular conic through Q; Q is indeterminacy.

The second type of involutions arises only in **degenerate pencil cases**.

THANK YOU FOR YOUR ATTENTION!

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Show that: (i) all the local branches of α are **quadratic**;

(ii) at most one singular point is a base point of a singular branch.

Thm C. Let an irreducible germ *b* of complex analytic curve at $O \in \mathbb{C}^2$ admit a germ of singular holomorphic dual billiard structure with **meromorphic** first integral $R: R \circ \sigma_P|_{L_P} = R|_{L_P} \quad \forall P \in \gamma$. Then 1) the germ *b* is **quadratic**; 2) if *b* is **singular**, then *R* is **rational**, - $R \equiv const$ along the tangent line L_O to α at *O*. - $L_O \setminus \{O\}$ is a **regular leaf** of the foliation R = const.

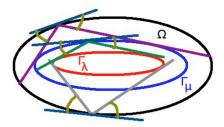
Theorem C implies statements (i), (ii).

Birkhoff Conjecture. Let Ω – **Birkhoff integrable**, *i.e.*, *a* neighborhood of $\partial\Omega$ in Ω is foliated by closed caustics. Then $\partial\Omega$ – ellipse.

Partial results

H.Poritsky (1950), E.Amiran (1988).

Let Ω Birkhoff integrable, Γ_{λ} – closed caustics, and let each Γ_{λ} be also a caustic of the **billiard in each bigger** Γ_{μ} . Then Ω is an ellipse.



Open Problem. Extend Poritsky result to projective billiards

Alexey Glutsyuk

THANK YOU FOR YOUR ATTENTION!

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thm C. Let an irreducible germ *b* of complex analytic curve at $O \in \mathbb{C}^2$ admit a germ of singular holomorphic dual billiard structure with **meromorphic** first integral *R*. Then

- 1) the germ *b* is **quadratic**;
- 2) if b is singular, then R is rational,
- $R \equiv const$ along the tangent line L_O to α at O.
- $L_O \setminus \{O\}$ is a **regular leaf** of the foliation R = const.

Plan of proof of Theorem C.

Idea going back to **S.Tabachnikov's** paper (2008) on outer billiards, used and developed in papers of **M.Bialy** and **A.Mironov** (2016-2017):

work with the **Hessian** of appropriately normalized integral.

 $R|_{\alpha} \equiv const.$ Normalize to $R|_{\alpha} \equiv 0.$

f – defining polynomial of α : $\alpha = \{f = 0\}$. $R = f^k g, g|_{\alpha} \neq 0$. The normalized integral:

$$G:=R^{\frac{1}{k}}=fg^{\frac{1}{k}}.$$

 $R|_{\alpha} \equiv 0$, $\alpha = \{f = 0\}$, f - irred. polynomial. $R = f^{k}g$, $g|_{\alpha} \not\equiv 0$.

$$G := R^{\frac{1}{k}} = fg^{\frac{1}{k}}, \qquad G \circ \sigma_P|_{L_P} = G$$

The Hessian:

$$H(G) := \frac{\partial^2 G}{\partial x_1^2} \left(\frac{\partial G}{\partial x_2}\right)^2 - 2 \frac{\partial^2 G}{\partial x_1 \partial x_2} \frac{\partial G}{\partial x_2} \frac{\partial G}{\partial x_1} + \frac{\partial^2 G}{\partial x_2^2} \left(\frac{\partial G}{\partial x_1}\right)^2$$

Key property: $H(G)|_{\gamma} \neq 0$ outside singular and inflection points of the curve γ and zeros (poles) of the function $g|_{\gamma}$.

Step 1 of the proof of Thm C. **Differential equation** on H(G) along α .

Fix affine coord. (z, w). In the coord. z on L_P the **invol**. $\sigma_P : L_P \to L_P$ is **conjug.** to $\theta \mapsto -\theta$ by a map $\mathcal{F}_P : \mathbb{C}_{\theta} \to L_P$; $\mathcal{F}_P : \theta \mapsto z(P) + \frac{\theta}{1 + \psi(P)\theta}$. $G \circ \sigma_P|_{L_P} = G \Longrightarrow G(\theta) = G(-\theta) \Longrightarrow G(\theta)$ has no θ^3 -term. $\Longrightarrow \qquad \frac{dH(G)|_{\alpha}}{dz}(P) = 6\psi(P)H(G)$.

$$H(G) := \frac{\partial^2 G}{\partial x_1^2} \left(\frac{\partial G}{\partial x_2} \right)^2 - 2 \frac{\partial^2 G}{\partial x_1 \partial x_2} \frac{\partial G}{\partial x_2} \frac{\partial G}{\partial x_1} + \frac{\partial^2 G}{\partial x_2^2} \left(\frac{\partial G}{\partial x_1} \right)^2$$

Fix affine coord. (z, w). Involution $\sigma_P : L_P \to L_P$ acting in coord. z on L_P is **conjugated** to $\theta \mapsto -\theta$ via a map $\mathcal{F}_P : \theta \mapsto z(P) + \frac{\theta}{1+\psi(P)\theta}$.

$$\frac{dH(G)|_{\alpha}}{dz}(P) = 6\psi(P)H(G).$$

Fix an $O \in \alpha$, a local branch *b* of α at *O*. Coord. (z, w) **adapted** to *b*: centered at *O*, *b* is tangent to the *z*-axis.

Corollary. Let $d \in \mathbb{Q}$ s.t. $H(G)|_b = cz^d(1 + o(1))$, as $z \to 0$. Then

$$\psi(P) = \frac{1}{z(P)} \left(\frac{d}{6} + o(1) \right); \quad \rho := -\frac{d}{3}.$$

 $=> \text{ In coord. } \zeta|_{L_P}:= \tfrac{z}{z(P)}, \ \sigma_P(\zeta) \to \eta_\rho(\zeta):= \tfrac{(\rho-1)\zeta-(\rho-2)}{\rho\zeta-(\rho-1)}, \text{ as } P \to O.$

 $O \in \alpha$, (b, O)-local branch. $H(G)|_b = cz^d(1 + o(1))$.

In coordinate $\zeta := \frac{z}{z(P)}$ on L_P , as $P \to O$, $\sigma_P(\zeta) \to \eta_\rho(\zeta) := \frac{(\rho-1)\zeta - (\rho-2)}{\rho\zeta - (\rho-1)}, \ \rho = -\frac{d}{3}, \ \rho := \text{the residue of } \sigma_P \text{ at } O.$

Param. of b: $t\mapsto (t^{qs},ct^{ps}(1+o(1))),\ 1\leq q< p,\ p,q\in\mathbb{N},\ (p,q)=1.$

The $(p, q; \rho)$ -**billiard:** the dual billiard structure on $\gamma_{p,q} := \{w^q = z^p\}$ given in the coord. ζ on L_P , $P \in \gamma_{p,q}$ by involutions $\sigma_P(\zeta) := \eta_\rho(\zeta)$.

Theorem 1. Let *b* be equipped with a singular dual billiard structure having a germ of **meromorphic integral** *R*. Let $G = R^{\frac{1}{k}}$, H(G), ρ , p, q be as above. Then the $(p, q; \rho)$ -billiard is **quasihomogeneously integrable:** has a (p, q)-quasihomogeneous rational integral.

Theorem 2. A $(p, q; \rho)$ -billiard is **quasihomogeneously integrable**, iff q = 1, p = 2, and $\rho \in \mathcal{M} := \{0, 1, 2, 3, 4\} \cup \{2 \pm \frac{2}{m} \mid m \in \mathbb{N}_{\geq 3}\}.$

Theorem 2. A $(p, q; \rho)$ -billiard is quasihomogeneously integrable, iff q = 1, p = 2, and $\rho \in \mathcal{M} := \{0, 1, 2, 3, 4\} \cup \{2 \pm \frac{2}{m} \mid m \in \mathbb{N}_{\geq 3}\}.$

Implies quadraticity of b and yields a priori possible values of residue ρ .

Classification of rationally integrable singular dual billiards on conics.

Residue formula: Let a sing. holom. dual billiard on conic have well-defined residues at singularities. Then **the sum or residues** = **4**.

Rational integrability => **the residues lie in** \mathcal{M} (Thm 2).

=> The only possible residue configurations are:

- (1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1), (4, 0) (correspond to **pencils of conics**) - **exotic ones:** $(2 - \frac{2}{m}, 2 + \frac{2}{m})$, $(\frac{3}{2}, \frac{3}{2}, 1)$, $(\frac{4}{3}, \frac{4}{3}, \frac{4}{3})$, $(\frac{4}{3}, \frac{5}{3}, 1)$.

Miracle. All these residue configurations correspond to complex rationally integrable dual billiards!