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CONVEX PLANAR BILLIARDS

Family of tangent lines to a caustic = invariant curve for billiard map.

Billiard map preserves area form dp ∧ dφ, φ =azimuth, p = ±dist to O.
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Billiard in an ellipse
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    1
F                          F

       2

Caustic:=curve whose tang. lines are reflected from ∂Ω to its tang. lines.
Confocal elliptic caustics are closed and foliate Ω \ [F1,F2].

Def. A billiard Ω with smooth strictly convex ∂Ω is Birkhoff integrable,
if an inner neighborhood of ∂Ω in Ω, is foliated by closed caustics,
and ∂Ω is a leaf. Example: ellipse is Birkhoff integrable.

Birkhoff Conjecture. Ω – Birkhoff integrable. ==> ∂Ω – ellipse.
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Foliation is an important condition.

V.Lazutkin (1973) Every strictly convex bounded planar billiard has a
Cantor family of closed caustics. A KAM-like theorem.

Billiard map acts on Phase cylinder ΠΩ:= {oriented lines intersecting Ω}.

Birkhoff integrable billiard:
caustics → closed T -invariant curves in ΠΩ near its boundary.
Two invariant curves per caustic.

Ω

Ω
                                        

Ω
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cutted Π
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Case ∂Ω = circle: phase cylinder is foliated by invariant closed curves:
- families of lines tangent to concentric circles, two curves per each circle;
- and one "central curve": family of oriented lines through the center.

Ω

Π
    Ω

Theorem (M.Bialy) (1993). Let the phase cylinder of a billiard Ω be
completely foliated by invariant closed curves. Then Ω is a disk.
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Case of ellipse. Foliation of phase cylinder: "cutted view".
A singular foliation by T 2-invariant curves:

4 Brown curves = families of lines through foci
2 Red sing. points = small axis with two possible orientations. Centers.
2 Violet sing. points = big axis with two possible orientations. Saddles.
T := the billiard map acting on the phase cylinder.
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Numerical experience and Conjecture (D.V.Treschev, 2013).
∃ a planar billiard whose squared billiard map T 2 has a fixed point
where germ of T 2 is conjugated to rotation (r , φ) 7→ (r , φ+ 2πθ), θ /∈ Q.

Not true for ellipses. Proof of existence is open problem.

V.Kaloshin, A.Sorrentino (2016): proof of local Birkhoff Conjecture:
any integrable deformation of an ellipse is an ellipse. Ann. Math. 18.

Very recent result: Mikhail Bialy and Andrei Mironov.
Proof of Birkhoff conjecture for
- centrally-symmetric billiards, where
- foliation by closed caustics extends to caustic tang. to 4-periodic orbits.
Ann. of Math.
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Billiard flow on TR  |2
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− Trivial first integral: ||P||

−  geodesic flow moves (Q,P)
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− reflection: (Q,P) −> (Q,P  )

Birkhoff integrability <=> existence of a first integral indep. with ||P||2
on a neighborhood of the unit tangent bundle of ∂Ω in TR2|Ω.

Def. Ω is polynom. integrable,
if the flow has a 1st integral I(Q,P), polyn. in P, I|{||P||=1} 6≡ const.

Bolotin’s Polynomial version of Birkhoff Conjecture (1992).
Now Thm (M.Bialy, A.Mironov, A.G., ’17-’18).
1) ∂Ω – convex, C2. It is polynomially integrable, iff ∂Ω is a conic.

2) ∂Ω is piecewise C2. It is polyn. integr. <=> confocal billiard: =

∂Ω = ∪(conical arcs of confoc. pencil C + segm. of C-admissible lines.)
3) min deg (integral) ∈ {2,4}. Similar results on billiards in S2, H2.

S.Bolotin 1992: statement and partial results.
Alexey Glutsyuk On rationally integrable projective billiards 8 / 37



Billiards in Rn, Sn, Hn bounded by confocal quadrics.
A.P.Veselov (1988): compl. integr. with quadr. integrals in involution.
V.Dragović, M.Radnović: Dynamics and interrelations.

Today’s main results. Classification of rationally integrable piecewise
smooth non-polygonal projective billiards.

New phenomena:

1) min deg(integral) is realized by arbitrary even number.
2) Projective generalization of confocal billiards, namely,
the so-called dual pencil type projective billiards
may have integrals of deg. 2, 4, 12.
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Projective billiards = billiards with variable reflection law
Introduced by S.Tabachnikov, 1997.
Planar projective billiard: a curve C ⊂ R2 with transversal line field N .

Reflection transformation acting on oriented lines intersecting C :
- Each oriented line L is reflected from C at its last intersection point Q
with C by affine involution AQ : R2 → R2 preserving TQγ and N (Q):
- AQ|TQC ≡ Id , AQ|N (Q) – central symmetry with respect to Q.

Figure: Projective billiard and its reflection law.

Ex: A usual billiard is a projective billiard with N = normal line field.
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Billiards on S2 and H2 viewed as projective billiards
S2 and hyp. plane H2 ' surfaces in (R3, < Ax , x >), A = diag(1, 1,±1).

S2 = Σ := {x2
1 + x2

2 + x2
3 = 1} ⊂ R3}, A = Id .

H2 = Σ := {< Ax , x >= −1 | x3 > 0} ⊂ R3}, A = diag(1, 1,−1).

Geodesics are sections of Σ by two-dimensional vector subspaces in R3.

Σ+ := Σ ∩ {x3 > 0}, Σ+ is S2
+ or H2.

The tautological projection π : R3 \ {0} → RP2
[x1:x2:x3] sends Σ+ to

R2 = {x3 = 1}, respectively to D1 = {x2
1 + x2

2 < 1} ⊂ R2.

A curve γ ⊂ Σ+ equipped with the normal line field is projected
to a curve C = π(γ) ⊂ R2 equipped with a transversal line field N

Orbits in the billiard on γ 7→ orbits of the projective billiard on C .
(refl. of geodesics from γ) (reflection of lines from (C ,N ))
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Tabachnikov’s Conjecture (a generalization of Birkhoff Conjecture).
Let γ ⊂ R2 be a strictly convex closed curve with a transversal line field.
Let the corresponding projective billiard have a family of closed caustics
foliating a topological annulus adjacent to γ; the curve γ being a leaf.

Then γ is an ellipse, and the foliation is dual to a pencil of conics.

Implies Birkhoff Conjecture for billiards on R2, S2, H2.
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Projective billiard flow

Birkhoff integrability <=> existence of a
non-constant 0-homogeneous first integral I(x , v), I(x , λv) = I(x , v),
on a neighborhood of the unit tangent bundle of ∂Ω in TR2|Ω.

Main result. Criterion of existence of rational 0-homogeneous integral in
velocity for piecewise-smooth non-polygonal projective billiards.
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Definition. A projective billiard is rationally integrable, if its flow has a
first integral that is a rational 0-homogeneous function of the velocity.

Prop. For usual billiards rational integr. <=> polynom. integrability.

Proof of <=. Let ∃ polyn. int. Fx (v) 6≡ const on {||v || = 1}, deg = 2n

=>
Fx (v)
||v ||2n is a rational 0-homogeneous integral.

Remark. General projective billiard flow doesn’t preserve ||v ||2.

Open problem. Describe all projective billiards
having polynomial integrals.

M =M(x , v) := (−v2, v1, x1v2 − x2v1). Univ. invariant of geodesic flow.

=> Each rational 0-homog. integral of billiard has form R(M).
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Basic example of rationally integrable projective billiard
A, B – symmetric 3x3-matrices, B is non-degenerate. < , > – Euclidean.

C∗λ :=< (B− λA)−1x , x >= 0 ⊂ RP3. C∗ = (C∗λ) – dual pencil of conics.

Let α, β ∈ C∗ - two (nested) conics, β is smaller.

∃! a projective billiard structure on α for which β - caustic.
Called dual pencil type structure (or C∗-projective billiard structure.)

Rk. It is Birkhoff integrable: each conic C∗λ inside α is a caustic.

Tabachnikov Conjecture: These are the only Birkhoff integrable examples.

S. Bolotin => Thm. The C∗-projective billiard is rationally integrable.

M =M(x , v) := (−v2, v1, x1v2 − x2v1) – the moment vector.

Ψ(x , v) = <(B−λ1A)M,M>
<(B−λ2A)M,M> is an integral ∀ λ1 6= λ2.

Alexey Glutsyuk On rationally integrable projective billiards 15 / 37



Classif. of rationally integrable smooth connected projective billiards.

Theorem (A.G., 2021). Let C ⊂ R2
x1,x2 – nonlinear C4-smooth germ of

curve equipped with transversal line field N (projective bill. structure).
It is rationally integrable, iff C – conic and N is one of following:
1) A dual pencil type projective billiard structure, with quadratic integral.
2) Exotic structures: C = {c2 = x2

1 } and N is directed by one of the
following vector fields:
2a) (ẋ1, ẋ2) = (ρ, 2(ρ− 2)x1), ρ ∈ {2− 2

m | m ∈ N}.
Case 2a1), ρ = 2− 2

2k+1 . Set ∆ := x1v2 − x2v1. An integral is

Ψ2a1(x1, x2, v1, v2) := (4v1∆− v2
2 )2k+1

v2
1
∏k

j=1(4v1∆− cjv2
2 )2

, cj = − 4j(2k + 1− j)
(2k + 1− 2j)2 .

Case 2a2), ρ = 2− 1
k+1 : an integral is

Ψ2a2(x1, x2, v1, v2) := (4v1∆− v2
2 )k+1

v1v2
∏k

j=1(4v1∆− cjv2
2 )2

, cj = − j(2k + 2− j)
(k + 1− j)2 .
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∆ := x1v2 − x2v1.

2b1) N : (ẋ1, ẋ2) = (5x1 + 3, 2(x2 − x1)). An integral is

Ψ2b1 = (4v1∆− v2
2 )2

(4v1∆ + 3v2
2 )(2v1 + v2)(2∆ + v2)

.

2b2) N : (ẋ1, ẋ2) = (3x1, 2x2 − 4). An integral is

Ψ2b2(x1, x2, v1, v2) = (4v1∆− v2
2 )2

(v2
2 + 4∆2 + 4v1∆ + 4v2

1 )(v2
2 + 4v2

1 )
.

2c1) N : (ẋ1, ẋ2) = (x2, x1x2 − 1). An integral is

Ψ2c1(x1, x2, v1, v2) = (4v1∆− v2
2 )3

(v3
1 + ∆3 + v1v2∆)2 .

2c2) N : (ẋ1, ẋ2) = (2x1 + 1, x2 − x1). An integral is

Ψ2c2(x1, x2, v1, v2) = (4v1∆− v2
2 )3

(v3
2 + 2v2

2 v1 + (v2
1 + 2v2

2 + 5v1v2)∆ + v1∆2)2 .
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2d) N : (ẋ1, ẋ2) = (7x1 + 4, 2x2 − 4x1). An integral is
Ψ2d (x1, x2, v1, v2)

= (4v1∆− v2
2 )3

(v1∆ + 2v2
2 )(2v1 + v2)(8v1v2

2 + 2v3
2 + (4v2

1 + 5v2
2 + 28v1v2)∆ + 16v1∆2)

.

New result: piecewise-smooth case.

Theorem. A projective billiard on piecewise C4-smooth curve with a
nonlinear arc is rationally integrable, iff it is of one of the following types:

1) A dual pencil type billiard: by definition, it consists of
- arcs of conics from a dual pencil C∗, with C∗-projective billiard structure;
- maybe some segments of the so-called C∗-admissible lines
(with extra conditions on their collection if the pencil is degenerate).
The min deg(integral) = 2, 4 or 12.

2) An exotic piecewise smooth billiard: it consists of
- arcs of just one conic with an exotic line field from previous theorem;
- maybe some segments of so-called admissible lines for the exotic field.
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Dual pencil C∗ of conics tangent to complex lines a, b, c, d .
(non-degenerate
dual pencil)

Each conic in C∗ is equipped
with C∗-projective structure

Admissible lines:
3 standard lines mj : m3 with transv. line field through m2 ∩m1 etc.;
6 skew lines ken numer. by unordered {e, n} ⊂ {a, b, c, d}, e 6= n:
kbc is equipped with transversal field of lines through a ∩ d , etc...

Thm. Each projective billiard consisting of arcs of conics from C∗ and
segments of admissible lines is rationally integrable.
min deg(integral) = 2, if there are no skew line segments;
min deg(integral) = 12, if ∃ segments of some neghbor skew lines ken, kn`;
min deg(integral) = 4 in any other case.
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Two dual pencil type billiards with integral of min deg = 12:
these are the billiards with the boldest boundaries

Remark. A dual pencil may induce a projective billiard with integral of
min deg =12 <=> it consist of conics tangent to four distinct real lines.

Example. Confocal ellipses and hyperbolas are tangent to
four non-real complex lines (isotropic lines through foci).
=> For this confocal pencil case of integral of min deg = 12 is impossible.

Case deg = 4 is possible: ellipse with ⊥ line field; vert. line through focus.
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Admissible lines for exotic dual billiards on γ = {x2 = x2
1 }

Case 2a): N|γ = R(ρ, 2(ρ− 2)),
ρ ∈ {2− 2

k | k ∈ N}.

The only admissible line is the Ox2-axis.
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Admissible lines for exotic dual billiard structures

2b1): N|γ = R(5x1 + 3, 2(x2 − x1)). 2b2): N|γ = R(3x1, 2x2 − 4).

2c1): N|γ = R(x2, x1x2 − 1). 2c2): N|γ = R(2x1 + 1, x2 − x1).

Case 2d): N|γ = R(7x1 + 4, 2x2 − 4x1). No admissible lines.
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Dual billiards (to projective billiards)
Orthogonal polarity: 2-dimensional subspace W ⊂ R3

x1,x2,x3 7→ line W⊥.
Induces a projective duality: RP2∗ = {lines in RP2} 7→ RP2 = {points},
L := π(W \ {0}) 7→ L∗ := π(W⊥ \ {0}). Preserves incidence relations.

        O

and central symmetry: ab=1

    orthogonal polarity L      L* is  

the composition of   polar duality

  
W W

L L     *
Σ

a        0       b             

     

The duality map L 7→ L∗ is given by the moment map:
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The dual reflection: projective involution σ
Curve C ⊂ R2 ⊂ RP2, N - transv. line field on C ; γ = C∗ - dual curve.

The projective billiard reflection involution T defined by N ,
acting on the space RP1

Q of lines through a given point Q ∈ C ,
is conjugated via duality to a projective involution

σ = σP : Q∗ → Q∗ of the dual line Q∗; P := L∗Q.

The involution σ = σP : Q∗ → Q∗ fixes P and N ∗ = (N (Q))∗,
permutes intersection points of Q∗ with the curve S∗ dual to caustic S.
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A curve γ ⊂ RP2
[M1:M2:M3], P ∈ γ. LP := proj. tangent line to γ at P.

Definition. A dual billiard structure on γ is a family of projective
involutions σP : LP → LP fixing P; parametrized by P ∈ γ.

A straightline interval J ⊂ L equipped with a projective billiard structure.

Its dual is the point Q = L∗ with a point dual billiard structure:=
family of projective involutions `→ ` of lines ` through Q, fixing Q.

Defined for ` from an open U ⊂ RP1, U := {lines dual to points of J}.

A dual multibilliard is a collection of
- nonlinear C4-smooth curves equipped with dual billiard structures;
- points, called vertices equipped with point dual billiard structures.

R(M) - integral of proj. billiard flow <=> R(M) is integral of dual
multibilliard: its restrictions to tangent lines to its curves (to lines
through vertices) are invariant under involutions.
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Theorem. A proj. billiard formed by conics of real non-degen. dual pencil
C∗ and segments of adm. lines incl. kab, kbc has integral of min deg = 12.

Proof. Prove the same for the dual multibilliard.

Duality: C∗ 7→ pencil C of conics through A, B, C , D.
line kab 7→ point KAB with proj. invol. σKAB : RP2 → RP2.

1) ∀ rational integral of the multibilliard is constant on each conic of C.
2) σKAB , σKBC permute conics of C: acts on its parameter space C.

3) Their actions on C generate group ' S3, since
they permute conics AB ∪ CD, AD ∪ BC , AC ∪ BD; permut. gener. S3.

=> a generic orbit of the group consists of six conics.
=> min deg (int) = 12.
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Main result <=> classif. of rationally integrable dual multibilliards

Goal: 1) show that each curve is a conic; 2) describe vertices.

Step 1. Let γ - C4-curve, dual billiard; R ◦ σP = R on LP ∀ P ∈ γ. Then

R|γ ≡ const.

Proof. R is an even function on LP : R ◦ σP = R, Hence, (R|LP )′(P) = 0.
=> dR

dv = 0 along every vector v tangent to γ => R|γ ≡ const.

=> γ - piecewise algebraic: C-Zariski closure γ – algebr. curve in CP2.

Fix an irreducible component α ⊂ γ. Goal: prove that α – conic.

Step 2. σP extends to a holom. family of project. invol. σP : LP → LP ,
P ∈ αo := α \ {P1, . . . ,P`}, := sing. holom. dual billiard struct. on α.
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Step 3. Thm A. Let an irred. alg. curve α ⊂ CP2 admit a rationally
integrable sing. holomorphic dual billiard structure. Then α is a conic.

Proof. Show that: (i) all the local branches of α are quadratic;
(ii) at most one singular point is a base point of a singular branch.

Theorem B: (i) + (ii) => α is a conic.

Step 4. Proj. billiard structure at ∀ vertex Q is a birational involution:
- either a projective involution RP2 → RP2 fixing each line through Q;
- or fixing all points of a regular conic through Q; Q is indeterminacy.

The second type of involutions arises only in degenerate pencil cases.
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Show that: (i) all the local branches of α are quadratic;
(ii) at most one singular point is a base point of a singular branch.

Thm C. Let an irreducible germ b of complex analytic curve at O ∈ C2

admit a germ of singular holomorphic dual billiard structure with
meromorphic first integral R: R ◦ σP |LP = R|LP ∀ P ∈ γ. Then
1) the germ b is quadratic;
2) if b is singular, then R is rational,
- R ≡ const along the tangent line LO to α at O.
- LO \ {O} is a regular leaf of the foliation R = const.

Theorem C implies statements (i), (ii).
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Birkhoff Conjecture. Let Ω – Birkhoff integrable, i.e., a neighborhood
of ∂Ω in Ω is foliated by closed caustics. Then ∂Ω – ellipse.

Partial results

H.Poritsky (1950), E.Amiran (1988).
Let Ω Birkhoff integrable, Γλ – closed caustics, and let each Γλ be also a
caustic of the billiard in each bigger Γµ. Then Ω is an ellipse.

Open Problem. Extend Poritsky result to projective billiards
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Thm C. Let an irreducible germ b of complex analytic curve at O ∈ C2

admit a germ of singular holomorphic dual billiard structure with
meromorphic first integral R. Then
1) the germ b is quadratic;
2) if b is singular, then R is rational,
- R ≡ const along the tangent line LO to α at O.
- LO \ {O} is a regular leaf of the foliation R = const.

Plan of proof of Theorem C.

Idea going back to S.Tabachnikov’s paper (2008) on outer billiards,
used and developed in papers of M.Bialy and A.Mironov (2016-2017):

work with the Hessian of appropriately normalized integral.

R|α ≡ const. Normalize to R|α ≡ 0.
f – defining polynomial of α: α = {f = 0}. R = f kg , g |α 6≡ 0.
The normalized integral:

G := R
1
k = fg

1
k .
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R|α ≡ 0, α = {f = 0}, f – irred. polynomial. R = f kg , g |α 6≡ 0.

G := R
1
k = fg

1
k . G ◦ σP |LP = G

The Hessian:

H(G) := ∂2G
∂x2

1

(
∂G
∂x2

)2
− 2 ∂2G

∂x1∂x2

∂G
∂x2

∂G
∂x1

+ ∂2G
∂x2

2

(
∂G
∂x1

)2
.

Key property: H(G)|γ 6= 0 outside singular and inflection points of the
curve γ and zeros (poles) of the function g |γ .

Step 1 of the proof of Thm C. Differential equation on H(G) along α.

Fix affine coord. (z ,w). In the coord. z on LP the invol. σP : LP → LP is
conjug. to θ 7→ −θ by a map FP : Cθ → LP ; FP : θ 7→ z(P) + θ

1+ψ(P)θ .
G ◦ σP |LP = G => G(θ) = G(−θ) => G(θ) has no θ3-term.

=> dH(G)|α
dz (P) = 6ψ(P)H(G).
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H(G) := ∂2G
∂x2

1

(
∂G
∂x2

)2
− 2 ∂2G

∂x1∂x2

∂G
∂x2

∂G
∂x1

+ ∂2G
∂x2

2

(
∂G
∂x1

)2
.

Fix affine coord. (z ,w). Involution σP : LP → LP acting in coord. z on LP
is conjugated to θ 7→ −θ via a map FP : θ 7→ z(P) + θ

1+ψ(P)θ .

dH(G)|α
dz (P) = 6ψ(P)H(G).

Fix an O ∈ α, a local branch b of α at O. Coord. (z ,w) adapted to b:
centered at O, b is tangent to the z-axis.

Corollary. Let d ∈ Q s.t. H(G)|b = czd(1 + o(1)), as z → 0. Then

ψ(P) = 1
z(P)

(d
6 + o(1)

)
; ρ := −d

3 .

=> In coord. ζ|LP := z
z(P) , σP(ζ)→ ηρ(ζ) := (ρ−1)ζ−(ρ−2)

ρζ−(ρ−1) , as P → O.
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O ∈ α, (b,O)-local branch. H(G)|b = czd (1 + o(1)).

In coordinate ζ := z
z(P) on LP , as P → O,

σP(ζ)→ ηρ(ζ) := (ρ−1)ζ−(ρ−2)
ρζ−(ρ−1) , ρ = −d

3 , ρ := the residue of σP at O.

Param. of b: t 7→ (tqs , ctps(1 + o(1))), 1 ≤ q < p, p, q ∈ N, (p, q) = 1.

The (p, q; ρ)-billiard: the dual billiard structure on γp,q := {wq = zp}
given in the coord. ζ on LP , P ∈ γp,q by involutions σP(ζ) := ηρ(ζ).

Theorem 1. Let b be equipped with a singular dual billiard structure
having a germ of meromorphic integral R. Let G = R 1

k , H(G), ρ, p, q
be as above. Then the (p, q; ρ)-billiard is quasihomogeneously
integrable: has a (p, q)-quasihomogeneous rational integral.

Theorem 2. A (p, q; ρ)-billiard is quasihomogeneously integrable, iff
q = 1, p = 2, and ρ ∈M := {0, 1, 2, 3, 4} ∪ {2± 2

m | m ∈ N≥3}.
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Theorem 2. A (p, q; ρ)-billiard is quasihomogeneously integrable, iff
q = 1, p = 2, and ρ ∈M := {0, 1, 2, 3, 4} ∪ {2± 2

m | m ∈ N≥3}.

Implies quadraticity of b and yields a priori possible valies of residue ρ.

Classification of rationally integrable singular dual billiards on conics.

Residue formula: Let a sing. holom. dual billiard on conic have
well-defined residues at singularities. Then the sum or residues = 4.

Rational integrability => the residues lie in M (Thm 2).
=> The only possible residue configurations are:
- (1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1), (4, 0) (correspond to pencils of conics)
- exotic ones: (2− 2

m , 2 + 2
m ), (3

2 ,
3
2 , 1), (4

3 ,
4
3 ,

4
3), (4

3 ,
5
3 , 1).

Miracle. All these residue configurations correspond to complex
rationally integrable dual billiards!
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