О классификации особых трехмерных многообразий Фано

Ю. Г. Прохоров

Математический институт им. В. А. Стеклова

Dynamics in Siberia Новосибирск 28 февраля 2023 г

Ю.Г. Прохоров (МИАН)

Особые многообразия Фано

1/21

Многообразия Фано

Соглашение:

Основное поле $= \mathbb{C}$.

Определение

Многообразие Φ_{aho} – проективное алгебраическое многообразие X с обильным (положительным) антиканоническим классом $-K_X = c_1(X)$.

Многообразия Фано

Соглашение:

Основное поле $= \mathbb{C}$.

Определение

Многообразие Φ_{aho} – проективное алгебраическое многообразие X с обильным (положительным) антиканоническим классом $-K_X = c_1(X)$.

Примеры

- проективные пространства,
- ullet гиперповерхности $X_d \subset \mathbb{P}^n$ степени $d \leq n$,
- грассманианы Gr(k, n),
- однородные пространства *G*/*P*, *G* полупростая линейная группа,
 P параболическая подгруппа.

Свойства

Предложение

Пусть Х – неособое многообразие Фано. Тогда

•
$$H^0(X,(\Omega_X)^{\otimes q})=0$$
 для $q>0$;

•
$$\pi_1^{ ext{alg}}(X) = \{1\};$$

- ${\rm Pic}(X)\simeq H^2(X,\mathbb{Z})-\kappa$. п. свободная абелева группа;
- Aut(X) линейная алгебраическая группа.

Свойства

Предложение

Пусть Х – неособое многообразие Фано. Тогда

•
$$H^0(X,(\Omega_X)^{\otimes q})=0$$
 для $q>0$;

•
$$\pi_1^{ ext{alg}}(X) = \{1\};$$

- ${\sf Pic}(X)\simeq H^2(X,\mathbb{Z})-\kappa.$ п. свободная абелева группа;
- Aut(X) линейная алгебраическая группа.

Многообразия Фано <mark>очень близки</mark> к рациональным:

Теорема (Campana, Kollár–Miyaoka–Mori, Qi Zhang 2006)

Если X – многообразие Фано (возможно с логтерминальными особенностями), то оно рационально связно, т.е. любые две точки $P_1, P_2 \in X$ могут быть соединены рациональной кривой (образом \mathbb{P}^1).

Важный инвариант

$$b_2(X) := \operatorname{rk} H^2(X, \mathbb{Z}) = \operatorname{rk} \operatorname{Pic}(X)$$
 (число Пикара).

Наиболее интересны многообразия Фано с $b_2(X) = 1$ ("примитивные").

Важный инвариант

$$\mathrm{b}_2(X) := \mathsf{rk}\, H^2(X,\mathbb{Z}) = \mathsf{rk}\,\mathsf{Pic}(X)$$
 (число Пикара).

Наиболее интересны многообразия Фано с $b_2(X) = 1$ ("примитивные").

Пример

Существует ровно 10 семейств двумерных неособых многообразий Фано. Они называются поверхностями дель Пеццо.

$$ullet$$
 Если $\mathrm{b}_2(X)=1$, то $X\simeq \mathbb{P}^2.$

• Если
$$\mathrm{b}_2(X)>1$$
, то

$$X\simeq \mathbb{P}^1 imes \mathbb{P}^1$$
или

X получается из \mathbb{P}^2 раздутием $10-\mathrm{b}_2(X)$ точек в общем положении.

Трехмерные неособые многообразия Фано

Теорема (В. А. Исковских)

Существует ровно 17 семейств трехмерных неособых многообразий Φ ано с $b_2(X) = 1$. Они различаются индексом

$$\iota(X) := \max\{i \mid -K_X = iA\}$$

и степенью $(-K_X)^3$. В частности,

Трехмерные неособые многообразия Фано

Теорема (В. А. Исковских)

Существует ровно 17 семейств трехмерных неособых многообразий Φ ано с $b_2(X) = 1$. Они различаются индексом

$$\iota(X) := \max\{i \mid -K_X = iA\}$$

и степенью $(-K_X)^3$. В частности,

•
$$\iota(X) \leq 4;$$

$$ullet$$
 если $\iota(X)=$ 4, то $X\simeq \mathbb{P}^3$;

- ullet если $\iota(X)=3$, то $X\simeq Q\subset \mathbb{P}^4$ квадрика;
- если $\iota(X) = 2$, то $(-K_X)^3 = 8d$, $1 \le d \le 5$;
- если $\iota(X)=1$, то $(-K_X)^3=2g-2$, $2\leq g\leq 12$, $g\neq 11$.

Теория минимальных моделей (теория Мори)

Теорема

Пусть Y – трехмерное неособое проективное алгебраическое многообразие. Следующие условия эквивалентны:

• $H^0(Y,(\omega_Y)^{\otimes m})=0$ для m>0, где $\omega_Y:=\Omega^3_Y;$

Теория минимальных моделей (теория Мори)

Теорема

Пусть Y – трехмерное неособое проективное алгебраическое многообразие. Следующие условия эквивалентны:

- $H^0(Y,(\omega_Y)^{\otimes m})=0$ для m>0, где $\omega_Y:=\Omega^3_Y;$
- Ү унилинейчато, т.е. покрывается рациональными кривыми;

Теория минимальных моделей (теория Мори)

Теорема

Пусть Y – трехмерное неособое проективное алгебраическое многообразие. Следующие условия эквивалентны:

- $H^0(Y,(\omega_Y)^{\otimes m})=0$ для m>0, где $\omega_Y:=\Omega^3_Y;$
- Ү унилинейчато, т.е. покрывается рациональными кривыми;
- существует бирациональное преобразование Y --→ X, где X многообразие с терминальными Q-факториальными особенностями и выполнено одно из следующих:
 - существует морфизм на поверхность π : X → S с общим слоем коника;
 - существует морфизм на кривую π : X → S с общим слоем поверхностью дель Пеццо;

X – многообразие \mathbb{Q} -Фано, т.е. – K_X обилен и $b_2(X) = 1$.

Многообразия Q-Фано

Определение

Многообразие \mathbb{Q} -Фано – это проективное алгебраическое многообразие X такое, что

- Х имеет лишь терминальные особенности;
- -K_X обилен;
- $\mathsf{rk} \operatorname{Cl}(X) = 1$, в частности $\mathrm{b}_2(X) = 1$.

Здесь CI(X) – группа классов дивизоров Вейля:

 ${
m Cl}(X):=($ дивизоры Вейля)/линейная эквивалентность

Имеет место

$$\operatorname{Cl}(X) \supset \operatorname{Pic}(X).$$

Терминальные особенности

Теорема (M. Reid)

Любая трехмерная терминальная особенность $(X \ni P)$ принадлежит одному из двух классов:

• (X
i P) – изолированная гиперповерхностная особенность вида

$$(*)$$
 $f(x,y,z)+tg(x,y,z,t)=0,$ f – уравнение A-D-E

Терминальные особенности

Теорема (M. Reid)

Любая трехмерная терминальная особенность $(X \ni P)$ принадлежит одному из двух классов:

• (X
i P) – изолированная гиперповерхностная особенность вида

$$f(x,y,z)+tg(x,y,z,t)=0, \ \ f$$
 – уравнение A-D-E

$$(X \ni P) = (X^{\sharp} \ni P^{\sharp})/\mu_m$$

где $(X^{\sharp} \ni P^{\sharp})$ – особенность (*), а $\mu_m = \mathbb{Z}/m\mathbb{Z}$ действует свободно вне P^{\sharp} .

т называется *индексом особенности*.

Ю.Г. Прохоров (МИАН)

Терминальные особенности (пример)

Тип сА/т (основная серия)

Фактор

$$\left\{xy+f(z^m,t)=0\right\}/\mu_m$$

– терминальная особенность, где особенность xy+f=0 изолирована, а μ_m действует диагонально

$$\boldsymbol{\mu}_m: (x, y, z, t) \longmapsto \left(\zeta x, \, \zeta^{-1} y, \, \zeta^{\boldsymbol{a}} z, \, t\right)$$

где $\zeta^m = 1$, $\gcd(m, a) = 1$.

Терминальные особенности (пример)

Тип сА/т (основная серия)

Фактор

$$\{xy+f(z^m,t)=0\}/\mu_m$$

– терминальная особенность, где особенность xy+f=0 изолирована, а μ_m действует диагонально

$$\boldsymbol{\mu}_m: (x, y, z, t) \longmapsto \left(\zeta x, \, \zeta^{-1} y, \, \zeta^{\boldsymbol{a}} z, \, t\right)$$

где $\zeta^m = 1$, gcd(m, a) = 1.

Крайний случай f = t не исключается. Тогда $(X \ni P) \simeq \mathbb{C}^3 / \mu_m(1, -1, a)$ называется терминальной циклической факторособенностью.

Dynamics in Siberia Новосибирск 2

9/21

Основные инварианты

• Множество особенностей

Ю. Г. Прохоров (МИАН) Особые многообразия Фано 10/21

Основные инварианты

- Множество особенностей
- Группа классов дивизоров Вейля: CI(X).
 Если X многообразие Q-Фано, то rk CI(X) = 1, но возможно, что CI(X) имеет кручения.

Основные инварианты

- Множество особенностей
- Группа классов дивизоров Вейля: CI(X).
 Если X многообразие Q-Фано, то rk CI(X) = 1, но возможно, что CI(X) имеет кручения.
- Степень: $(-K_X)^3$ (рациональное число)

Основные инварианты

- Множество особенностей
- Группа классов дивизоров Вейля: CI(X).
 Если X многообразие Q-Фано, то rk CI(X) = 1, но возможно, что CI(X) имеет кручения.
- Степень: $(-K_X)^3$ (рациональное число)
- Индекс Фано: q(X) максимальное целое, на которое делится класс K_X в группе CI(X)/Tors.

Основные инварианты

- Множество особенностей
- Группа классов дивизоров Вейля: CI(X).
 Если X многообразие Q-Фано, то rk CI(X) = 1, но возможно, что CI(X) имеет кручения.
- Степень: $(-K_X)^3$ (рациональное число)
- Индекс Фано: q(X) максимальное целое, на которое делится класс K_X в группе Cl(X)/Tors. При этом обильный дивизор Вейля А такой, что – $K_X = qA$ (в группе Cl(X)/Tors) называется фундаментальным дивизором.

Примеры многообразий Q-Фано

Пусть X – торическое трехмерное многообразие Q-Фано. Тогда X – одно из следующих:

-O . I	п	рохоров	(МИАН)

Примеры многообразий Q-Фано

Пусть X — <mark>торическое</mark> трехмерное многообразие Q-Фано. Тогда X — одно из следующих:

q(X)	A ³	CI(X)
4	1	\mathbb{Z}
4	1/5	$\mathbb{Z}\oplus\mathbb{Z}/5\mathbb{Z}$
5	1/2	\mathbb{Z}
7	1/6	\mathbb{Z}
11	1/30	\mathbb{Z}
13	1/60	\mathbb{Z}
17	1/210	\mathbb{Z}
19	1/420	\mathbb{Z}
	q(X) 4 5 7 11 13 17 19	q(X) A^3 4141/551/271/6111/30131/60171/210191/420

Ю.Г. Прохоров (МИАН)

11 / 21

Теорема Римана-Роха

Пусть X – трехмерное многообразие с терминальными особенностями, пусть q := q(X) и A – фундаментальный дивизор. Формула Римана–Роха (при $n \ge 0$):

dim
$$H^0(X, nA) = 1 + \frac{n(q+n)(q+2n)}{12}A^3 + \frac{nA \cdot c_2}{12} + \sum_{P \in B} c_P(nA),$$

$$c_P(nA) = -i_{P,n} \frac{r_P^2 - 1}{12r_P} + \sum_{j=1}^{i_{P,n}-1} \frac{\overline{b_P j}(r_P - \overline{b_P j})}{2r_P}.$$

где $i_{P,n}$ – целое такое, что $0 \leq i_{P,n} < r$ и $D \sim i_{P,n} K_X$ вблизи P.

Ю.Г. Прохоров (МИАН)

Пусть X – трехмерное многообразие Q-Фано, A – фундаментальный дивизор.

Градуированная алгебра:

$$R(X) = \bigoplus_{n \ge 0} H^0(X, nA)$$

Многообразие X восстанавливается по алгебре R(X): пусть x_1, \ldots, x_m (однородные элементы) порождают R(X), deg $x_i = d_i$ и пусть f_1, \ldots, f_n – соотношения. Тогда

$$X \subset \mathbb{P}(d_1,\ldots,d_m)$$

задается уравнениями $f_1, \ldots f_n$.

Dynamics in Siberia Новосибирск 2

13 / 21

Пусть X – трехмерное многообразие Q-Фано, A – фундаментальный дивизор.

Градуированная алгебра:

$$R(X) = \bigoplus_{n \ge 0} H^0(X, nA)$$

Многообразие X восстанавливается по алгебре R(X): пусть x_1, \ldots, x_m (однородные элементы) порождают R(X), deg $x_i = d_i$ и пусть f_1, \ldots, f_n – соотношения. Тогда

$$X \subset \mathbb{P}(d_1,\ldots,d_m)$$

задается уравнениями $f_1, \ldots f_n$.

Ряд Гильберта – Пуанкаре :

$$P_X(t) = \sum_{n \ge 0} \dim H^0(X, nA) \cdot t^n = ($$
рациональная функция $)$

Ю. Г. Прохоров (МИАН)

Ограниченность

Теорема (Y. Kawamata (dim = 3), C. Birkar (\forall dim))

Множество всех многообразий Фано (фиксированной размерности) с терминальными особенностями ограничено.

Ограниченность

Теорема (Y. Kawamata (dim = 3), C. Birkar (\forall dim))

Множество всех многообразий Фано (фиксированной размерности) с терминальными особенностями ограничено.

Теорема (Kawamata)

Пусть X – трехмерное многообразие \mathbb{Q} -Фано. • $\sum \left(m_i - \frac{1}{m_i}\right) < 24$, где m_i – индексы особых точек

Dynamics in Siberia Новосибирск 2

14 / 21

Ограниченность

Теорема (Y. Kawamata (dim = 3), C. Birkar (\forall dim))

Множество всех многообразий Фано (фиксированной размерности) с терминальными особенностями ограничено.

Теорема (Kawamata)

Пусть X – трехмерное многообразие \mathbb{Q} -Фано. • $\sum \left(m_i - \frac{1}{m_i}\right) < 24$, где m_i – индексы особых точек • $(-K_X)^3 \leq b$, где b – вычислимая (но большая) константа.

База данных

15 / 21

База данных

Примеры (A. Fletcher, M. Reid, G. Brown, ...)

- Существует 130 семейств многообразий Q-Фано коразмерности 1
- Существует 125 семейств многообразий Q-Фано коразмерности 2
- Существует 74 семейств многообразий Q-Фано коразмерности 3

База данных

Примеры (A. Fletcher, M. Reid, G. Brown, ...)

- Существует 130 семейств многообразий Q-Фано коразмерности 1
- Существует 125 семейств многообразий Q-Фано коразмерности 2
- Существует 74 семейств многообразий Q-Фано коразмерности 3

Замечание

Ряд Гильберта $P_X(t)$ не определяет кольцо R(X) и многообразие X.

Теорема (Прохоров)

Пусть X – особое трехмерное многообразие \mathbb{Q} -Фано. Тогда $(-K_X)^3 \leq 125/2.$

Теорема (Прохоров)

Пусть X – особое трехмерное многообразие \mathbb{Q} -Фано. Тогда $(-K_X)^3 \leq 125/2$. Если $(-K_X)^3 = 125/2$, то X $\simeq \mathbb{P}(1, 1, 1, 2)$.

Теорема (Прохоров)

Пусть X – особое трехмерное многообразие \mathbb{Q} -Фано. Тогда $(-K_X)^3 \leq 125/2$. Если $(-K_X)^3 = 125/2$, то X $\simeq \mathbb{P}(1, 1, 1, 2)$.

Теорема (J. A. Chen & M. Chen)

Пусть X – многообразие трехмерное многообразие \mathbb{Q} -Фано. Тогда $(-K_X)^3 \geq 1/330.$

Dynamics in Siberia Новосибирск 2

16 / 21

Теорема (Прохоров)

Пусть X – особое трехмерное многообразие \mathbb{Q} -Фано. Тогда $(-K_X)^3 \leq 125/2$. Если $(-K_X)^3 = 125/2$, то X $\simeq \mathbb{P}(1, 1, 1, 2)$.

Теорема (J. A. Chen & M. Chen)

Пусть X – многообразие трехмерное многообразие \mathbb{Q} -Фано. Тогда $(-K_X)^3 \geq 1/330.$

Teopeмa (Chen Jiang)

Если $(-K_X)^3 = 1/330$, то $X \simeq X_{66} \subset \mathbb{P}(1,5,6,22,33)$.

Индекс Фано

Теорема (K. Suzuki)

•
$$q(X) \le 19$$
.

• $q(X) \in \{1, \dots, 11, 13, 17, 19\}.$

Индекс Фано

Теорема (K. Suzuki)

q(X) ≤ 19.
q(X) ∈ {1,..., 11, 13, 17, 19}.

Теорема

- $q(X) \neq 10$.
- Если q(X) = 19, то $\mathbb{P}(3,4,5,7)$.
- Если q(X) = 17, то $\mathbb{P}(2,3,5,7)$.

$$\mathbb{P}(1,3,4,5)$$
 или

 $X = X_{12} \subset \mathbb{P}(3, 4, 5, 6, 7)$

Индекс Фано

Теорема (K. Suzuki)

• $q(X) \le 19$. • $q(X) \in \{1, \ldots, 11, 13, 17, 19\}.$

Теорема

- $q(X) \neq 10$.
- Если q(X) = 19, то $\mathbb{P}(3, 4, 5, 7)$.
- Если q(X) = 17, то $\mathbb{P}(2,3,5,7)$.

 $X = X_{12} \subset \mathbb{P}(3, 4, 5, 6, 7)$

Теорема

Торические многообразия Q-Фано полностью определяются своим рядом Гильберта $P_X(t)$.

Ю. Г. Прохоров (МИАН)

Теорема (Y. Namikawa)

Пусть X – трехмерное многообразие Фано с терминальными (горенштейновыми) особенностями. Тогда X сглаживаемо, т.е. существует семейство

$\mathfrak{X} \to B \ni o$

такое, что центральный слой \mathfrak{X}_o изоморфен X, а общий слой \mathfrak{X}_b является неособым многообразием Фано.

Теорема (Y. Namikawa)

Пусть X – трехмерное многообразие Фано с терминальными (горенштейновыми) особенностями. Тогда X сглаживаемо, т.е. существует семейство

 $\mathfrak{X} \to B \ni o$

такое, что центральный слой \mathfrak{X}_o изоморфен X, а общий слой \mathfrak{X}_b является неособым многообразием Фано.

При этом основные инварианты;

$$(-K_X)^3$$
, $b_2(X)$, $\iota(X)$

постоянны в семействе.

Теорема (А. Кузнецов, Прохоров)

Существует ровно 17 семейств трехмерных многообразий Фано с $b_2(X) = 1$, особое множество которых состоит ровно из одной нефакториальной обыкновенной двойной точки.

Теорема (А. Кузнецов, Прохоров)

Существует ровно 17 семейств трехмерных многообразий Фано с $b_2(X) = 1$, особое множество которых состоит ровно из одной нефакториальной обыкновенной двойной точки.

Пример

 $X^\lambda \subset \mathbb{P}(1,1,1,1,2,3)$ — пересечение 2 гиперповерхностей

$$\begin{split} \lambda y_2 + f_2(x_1^{(1)}x_1^{(2)}, x_1^{(3)}, x_1^{(4)}) &= 0, \\ z_3^2 + f_6(y_2, x_1^{(1)}x_1^{(2)}, x_1^{(3)}, x_1^{(4)}) &= 0 \end{split}$$

- $\lambda \neq 0$: X^{λ} неособо;
- $\lambda = 0$: X^{λ} имеет единственную особую точку обыкновенную двойную.

Многообразия Фано с особенностями. Пример

Пример

Пусть $B \subset \mathbb{P}^3$ – неособая рациональная кривая-квинтика, которая не содержится в квадрике. Существует следующая диаграмма

где f – раздутие B, f^+ – раздутие рациональной кривой-квинтики $B^+ \subset \mathbb{P}^3$, морфизм π (соотв. π^+) стягивает рациональную кривую L (соотв. L^+) – прообраз 4-секущей кривой B (соотв. кривой B^+) в обыкновенную двойную особую точку $P = \pi(L) = \pi^+(L^+)$, X – многообразие Фано с одной особой точкой P.

Спасибо за внимание!