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We will consider equations of motion in the phase space T �Rn

_qi = pi , _pi = � @

@qi
V (q)

defined by Hamilton function which is polynomial of second order
in momenta

HA =
1

2

nX
i=1

p2i + VA(q) .

Linear integrals of motion Ik can be easily found using modern
computer software or Noether’s symmetry theory.
Thus, first really ”hard” problem is a search of polynomial of
second order in momenta

HB =
X

ij
B ij(q) pipj + VB(q)

in the involution fHA, HBg = 0 and with VA,B 6= 0.
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Let A and B be non-degenerate symmetric second-order tensor
fields on Euclidean space Rn. If the Schouten bracket between
them is zero

[[A, B]] = 0

and the eigenvalue problem

(A� �B) = 0

has n simple real eigenvalues and normal eigenvectors, then A and
B generate a n-dimensional linear space of second-order tensor
fields, all in involution and with the common eigenvectors.
It allows us to calculate n independent functions on the cotangent
bundle T �Rn

T1=
P

ij Aij pi pj , T2=
P

ij Bij pi pj , T3=
P

ij K ij
3 pi pj , ..., Tn=

P
ij K ij

n pi pj

in the involution
fTi , Tjg = 0 .
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By adding suitable potentials (without changing Ti !!!)

H1=T1+V1(q1,...,qn) , H2=T2+V2(q1,...,qn), ..., Hn=Tn+Vn(q1,...,qn)

we obtain the n-dimensional space of first integrals in involution.
Thus, two second-order tensors A and B define the completely
integrable system, if they satisfy a set of conditions in Rn which
can be verified without an explicit calculation of all the integrals
of motion.
Levi-Civita, “Sul le trasformazioni del le equazioni dinamiche”,Ann. di
Mat., serie 2a, 24 (1896), 255-300.
L. P. Eisenhart, “Separable systems of Stäckel”, Ann. Math., 35:2
(1934), 284-305.
J. Haantjes, “On Xm-forming sets of eigenvectors”, Indag. Mathematicae,
17 (1955), 158-162.
Horwood J., McLenaghan R., Smirnov R., ”Invariant classification of
orthogonally separable Hamiltonian systems in Euclidean space”,
Commun. Math. Phys., 259, (2005), 679-709.
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If we take two second order polynomials in momenta

H1 = T1 + V1(q1, ... , qn) , H2 = T2 + V2(q1, ... , qn)

we can divide one equation

fH1, H2g = 0

on two equations

fT1, T2g = 0 , fT1, V2g = fT2, V1g

using Euler’s theorem on homogeneous functions.
Following to Levi-Chivita, Darboux, Liouville and Stäckel we can
divide the problem on two independent parts:
� study integrable geodesic flow;
� add suitable potentials.
In fact ”can” was replaced by ”must” after these classical works.
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Main proposition
In order to obtain new quadratic conservation laws for integrable
Newton’s equations of motion in Euclidean space

�qi = F (q1, ... , qn) ,

we need to abandon this very convenient, but already completely
studied, sequence of calculations.

In 2015-2022 we directly solved a system of ”indivisible” equations

fT1, T2g = 0 , fT1, V2g = fT2, V1g

and found a number of new integrable and superintegrable systems
in T �Rn, n > 3, see references in
Tsiganov A.V., On integrable systems outside Nijenhuis and Haantjes
geometry, J. Geom. Phys, v.178, 104571, 2022.
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Today we want to discuss second-order tensors A and B in the
Euclidean space Rn, corresponding to quadratic conservation laws
that arise in the study of Hamiltonian integrable systems
associated with a hierarchy of multicomponent nonlinear
Schrödinger equations (NLS) and symmetric space theory.
In this case, the corresponding spectral problem

(A� �B) = 0

does not have the necessary set of simple real eigenvalues and
normal eigenvectors, which does not prevent integrability by
Liouville theorem at all.

Integrability vs separation of variables
In fact the study of this spectral problem is necessary not for
integrability, but only for the separation of variables by means of a
narrow simplest class of point canonical transformations.
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Although a number of explicit expressions for the Hamiltonians

H =
1

2

nX
i=1

p2i + V (q1, ... , qn)

corresponding to hermitian symmetric spaces of the type A.III,
BD.I, C.I, and D.III in Cartan’s classification, have been
reproduced in various textbooks
Perelomov A.M., Integrable systems of classical mechanics and Lie
algebras, Springer Basel AG, 1989.
Trofimov, V. V., Fomenko, A. T., Geometric and algebraic mechanisms
of the integrability of Hamiltonian systems on homogeneous spaces and
Lie algebras, In: Dynamical Systems VII (Eds.: V. I. Arnold, S. P.
Novikov), Springer, 1994.
Reyman A.G., Semenov-Tian-Shansky M.A., Integrable Systems, RCD,
Moscow-Izhevsk, 2003.
The corresponding polynomial integrals of motion have not been
studied et al.
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Newton’s equations of motion

�q� =
X
�,,�

R�
�,,��q�qq� � !�q�, �,�, , � = 1, ... , N

and Hamiltonian

H =
1

2

X
�

g�,��p2� �
1

4

X
�,�,,�

R��,�,,��q�q�qq� + 1

2

X
�

!� (q�)2

was studied by Fordy, Kulish (1983), Fordy, Woiciechowski,
Marshall (1986) and Reiman (1986).
� q� = qi - Cartesian coordinates in RN ;
� p� = pi - momenta in T �RN ;
� g�,�� - constant metric in RN ;
� R�

�,,�� - constant curvature tensor on symm. space;
� !� - parameters (”frequencies”).
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In this case, A = g is metric in Euclidean space and B = K is a
Killing tensor, which satisfies the Killing equation

riK jk +rjK ki +rkK ij = 0,

where r is the Levi-Civita connection of g.
In Euclidean space, the generic Killing tensor of valency two is
given by

K =
X
i ,j

aijXi � Xj +
X
i ,j,k

bijkXi � Xj,k +
X

i ,j,k,m
cijkmXi ,j � Xk,m ,

where
Xi = @i Xi ,j = qiXj � qjXi , @k =

@

@qk

is a basis of translations and rotations and � denotes symmetric
product.
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We can find all the Killing tensors of valency two related to
Hamiltonian H = T + V solving the equation

d (KdV ) = 0 , (�)
which means that 1-form KdV is an exact

(KdV )� = g�,�K�,@V .

Substituting generic solution K and potential

V =
1

4

X
�,�,,�

R��,�,,��q�q�qq� � 1

2

X
�

!� (q�)2

into (*) we obtain a linear system of equations for coefficients aij ,
bijk and cijkm solvable on a computer.
Substituting obtained K and unknown V into (*) one gets
generalization of potential

Vg = c4V + c3V3 + c2V2 + C1V1 .
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Relation of these Hamiltonian systems with the generalised
multicomponent NLS hierarchy gives the Lax matrix

L(�) =�2A+ �
X
�

q�
�
e� � e��

�� 1

a
X
�

g�,��p�
�
e� + e��

�

+
1

a
X
�,�

q�q�[e�, e��] + Λ .

� A is an element of the Lie algebra g defining Cartan involution
� and decomposition

g = k�m� �m� , [A, X ] = 0 , [A, X ] = �aX

� e� and e�� are Weil generators in m+ and m�;
� Λ - constant matrix defined by ”frequencies” !�;
� metric and curvature tensor

g�,� = he�, e�i , R�,�,,� = h[e�, e�], [e , e�]i.
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There are Hamiltonian in so-called natural form

H =
1

4
tr L2(�)

����
�=0

= T + V

=
1

2

X
�

g�,��p2� �
1

4

X
�,�,,�

R��,�,,��q�q�qq� + 1

2

X
�

!� (q�)2

and integral of motion

G = tr L4(�)
���
�=0

=
X

�,�,,�
R��,�,,��p�p�pp�

+
X
�,�

S�,�(q)p�p� + W (q) ,

which is polynomial of fourth order in momenta, and other
independent polynomials of order two, four, six, eight, etc.
We consider only second order conservation laws.
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Symmetric spaces of A.III type
Consider Newton’s equations of motion in Euclidean space Rmn

associated with the Riemannian pair

SU(m + n)=S
�
U(m)� U(n)

�
, 1 < m � n , n + m � 4 .

The typical representation of su(m + n) is a set of
(m + n)� (m + n) matrices with an obvious block-matrix structure
related to Cartan decomposition

g � k�m, k = s(u(m)� u(n)) .

Here k consists of block-diagonal matrices, while the linear space m
is spanned by block-off-diagonal matrices:

k '
 

u(m) 0
0 u(n)

!
, m '

 
0 M

M� 0

!
.
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Lax matrix reads as

L(�) =
�

�2�2Im+QQT+a 0

0 2�2In�QT Q+b

�
+

�
0 P�2i�Q

PT+2i�QT 0

�
,

where Im and In are the m �m and n � n unit matrices,
a and b are diagonal matrices depending on m real numbers ak
and n real numbers parameters bi

a = diagm(a1, ... , am) , b = diagn(b1, ... , bn) , ai , bi 2 R ,

and T means matrix transposition, i =
p�1, and m � n matrices

Q and P are

Q =

0
@

q1 q2 ��� qn
qn+1 qn+2 ��� q2n
...

... . . . ...
qn(m�1)+1 qn(m�1)+2 ��� qmn

1
A P =

0
@

p1 p2 ��� pn
pn+1 pn+2 ��� p2n
...

... . . . ...
pn(m�1)+1 pn(m�1)+2 ��� pmn

1
A
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When ai = 0 and bi = 0 characteristic polynomial of the Lax
matrix

� (z ,�) = det
�
z I � L(�)

�
,

contains less than mn independent integrals of motion in
involution. Thus, similar to the full Toda lattice we have to use
other tensor invariants of the Lax matrix to prove integrability by
Liouville theorem.
When ai 6= 0 and bi 6= 0, there are two basic sets of integrals of
motion obtained from the characteristic polynomial of the Lax
matrix which are associated with so(m) and so(n), respectively.
Because

f� (x ,�), � (y ,�)g = 0 ,

all these integrals of motion are in the involution for each other.
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First basis of integrals of motion
The m residues of the function

∆1(z ,�) = � (z ,�)Qm
i=1(z � ai + 2�2)

at z = ai � 2�2 generate mn independent integrals of motion h(2`)i

Res∆1(z ,�)jz=ai�2�2 =
n�1X
k=0

�2kh
�
2(n�k)

�
i , i = 1, ... , m,

which are polynomials of degree at most 2m since we take m � n.
� m quadratic polynomials in momenta h(2)1 , ... , h(2)m ;
� m quartic polynomials in momenta h(4)1 , ... , h(4)m ;
� m sextic polynomials in momenta h(6)1 , ... , h(6)m ;
� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
� m polynomials of 2m-order in momenta h(2m)

1 , ... , h(2m)
m

and m(n �m) remaining polynomials of 2m-order in momenta.
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Second basis of integrals of motion
The n residues of the function

∆2(z ,�) = � (z ,�)Qn
i=1(z � bi � 2�2)

at z = bi + 2�2 generate mn independent integrals of motion H(2`)
i

Res∆2(z ,�)jz=bi+2�2 =
m�1X
k=0

�2kH
�
2(m�k)

�
i , i = 1, ... , n

which are polynomials of order 2` in momenta. So, there are
� n quadratic polynomials in momenta H(2)

1 , ... , H(2)
n ;

� n quartic polynomials in momenta H(4)
1 , ... , H(4)

n ;
� n sextic polynomials in momenta H(6)

1 , ... , H(6)
n ;

� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
� n polynomials of 2m-order in momenta H(2m)

1 , ... , H(2m)
n .

A.V. Tsiganov
On quadratic conservation laws for the Newton equations of motion in Euclidean space
19/34

19=34



First set of quadratic integrals of motion
Polynomials of the second order in momenta have the following
form

h(2)i =
mX

k 6=i

M2
ik

ai � ak
+ ti(p) + vi(q) ,

where functions

Mik =
nX

Jj` , Jj` = qjp` � q`pj ,

constitute realization of Lie algebra so�(m) associated with
compositions of n simple rotations in Rmn.
Functions ti(p) correspond to compositions of the n translations

ti(p) =
nX

p2` ,

and vi(q) are polynomials of the fourth order in coordinates qi .
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Second set of quadratic integrals of motion
Polynomials of the second order in momenta have the following
form

H(2)
i =

nX
k 6=i

N2
ik

bi � bk
+ Ti(p) + Ui(q) ,

where functions

Nik =
mX

Jj` , Jj` = qjp` � q`pj ,

form realization of so�(n) via compositions of m simple rotations
in Rmn.
Functions Ti(p) correspond to compositions of the m translations

Ti(p) =
mX
`

p2` ,

and Ui(q) are polynomials of the fourth order in coordinates.
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Summing up, we have n + m � 1 quadratic integrals of motion

h(2)1 + � � �+ h(2)m = 2H = H(2)
1 + � � �+ H(2)

n ,

associated with the linear combinations of rotations, which realise
so�(m) and so�(n), and with the linear combinations of
translations.
Proposition
Associated with A.III hermitian symmetric space Newton’s
equations of motion

�q� =
X
�,,�

R�
�,,��q�qq� � !�q�, �,�, , � = 1, ... , N

in Euclidean space Rmn have only n + m� 1 independent quadratic
integrals of motion in involution.

We have not a proof, only examples in Porubov, Tsiganov, ”Second
order Killing tensors related to symmetric spaces” arXiv:2301.02774
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Euclidean space R4

Lax matrix

L(�) =

0
BBB@

q21+q22+a1�2�2 q1q3+q2q4 p1�2i�q1 p2�2i�q2
q1q3+q2q4 q23+q24+a2�2�2 p3�2i�q3 p4�2i�q4
p1�2i�q1 p3�2i�q3 b1�q21�q23+2�2 �q1q2�q3q4
p2�2i�q2 p4�2i�q4 �q1q2�q3q4 b2�q22�q24+2�2

1
CCCA .

Hamiltonian

H =
4X

i=1

p2i
2

+ +
1

2
(q21 + q22)2 +

1

2
(q23 + q24)2 + (q1q3 + q2q4)2

+
a1 � b1

2
q21 +

a1 � b2
2

q22 +
a2 � b1

2
q23 +

a2 � b2
2

q24 ,

Spectral curve of the Lax matrix L(�) is a non-hyperelliptic curve,
its genus is equal to five g = 5.
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Second order integrals of motion

f1 = � M2
12

a1 � a2
+ p21 + p22 + v1 f2 =

M2
12

a1 � a2
+ p23 + p24 + v2,

F1 =
N2
12

b1 � b2
+ p21 + p23 + V1 F2 = � N2

12

b1 � b2
+ p22 + p24 + V2 .

Here functions

M12 = J1,3 + J2,4 = (q1p3 � q3p1) + (q2p4 � q4p2) .

N12 = J1,2 + J3,4 = (q1p2 � q2p1) + (q3p4 � p3q4) ,

describe two independent double rotations in R4

fM12, N12g = 0 .
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In R4 there are double isoclinic or equiangular rotations or Clifford
displacements, which can be associated with the left- and
right-multiplication of quaternion. They are classical objects in
the geometry of the fourth-dimensional Euclidean space and
Clifford algebras.
For integrable systems associated with SU(4)=S(U(2)� U(2))

f1 + f2 = 2H = F1 + F2

we have quadratic integrals of motion associated with these double
rotations and one integral of fourth order

G = trL4(� = 0) =
X

�,�,,�
R��,�,,��p�p�pp� + � � �

How to get this integral of motion in the framework of Euclidean
geometry or the Clifford algebras theory?
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Euclidean space R9

For the symmetric space SU(6)=S(U(3)� U(3)) second order
integrals of motion have the following form

f1 =
M2

12

a1 � a2
+

M2
13

a1 � a3
� p21 � p22 � p23 + v1

f2 =
M2

21

a2 � a1
+

M2
23

a2 � a3
� p24 � p25 � p26 + v2

f3 =
M2

31

a3 � a1
+

M2
32

a3 � a2
� p27 � p28 � p29 + v3

F1 = � N2
12

b1 � b2
� N2

13

b1 � b3
� p21 � p24 � p27 + V1

F2 = � N2
21

b2 � b1
� N2

23

b2 � b3
� p22 � p25 � p28 + V2

F3 = � N2
31

b3 � b1
� N2

32

b3 � b2
� p23 � p26 � p29 + V3
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Associated with triple rotations functions are

M12 =(q1p4 � p1q4) + (q2p5 � p2q5) + (q3p6 � p3q6) ,
M13 =(q1p7 � p1q7) + (q2p8 � p2q8) + (q3p9 � p3q9) ,
M23 =(q4p7 � p4q7) + (q5p8 � p5q8) + (q6p9 � p6q9) ,
N12 =(q1p2 � p1q2) + (q4p5 � p4q5) + (q7p8 � p7q8) ,
N13 =(q1p3 � p1q3) + (q4p6 � p4q6) + (q7p9 � p7q9) ,
N23 =(q2p3 � p2q3) + (q5p6 � p5q6) + (q8p9 � p8q9) .

Two independent realisations of so�(3) with Poisson brackets

fM12, M13g = M23 , fM13, M23g = M12 , fM23, M12g = M13 ,

fN12, N13g = N23 , fN13, N23g = N12 , fN23, N12g = N13 ,

and
fNij , Mklg = 0 .
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Symmetric spaces C.I and D.III type
Because

Sp(n)
U(n) � SU(2n)

S (U(n)� U(n))
there reduction of the A.III Lax matrices to C.I case

L(�) =
�

�2�2Im+QQT+a 0

0 2�2In�QT Q+b

�
+

�
0 P�2i�Q

PT+2i�QT 0

�
,

Roughly speaking we have to put m = n and make n � n matrices
Q and P symmetric.
Another reduction of the A.III to D.III case

SO(2n)
U(n) � SU(2n)

S (U(n)� U(n))

Roughly speaking we have to put m = n and make n � n matrices
Q and P antisymmetric.
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Symmetric spaces BD.I type
Symmetric space

SO(m + n)
SO(m)� SO(n)

is only Hermitian when m = 2 since in general so(m) + so(n) has
no centre.
When m = 2 the so(2) subalgebra is the centre and depending
upon whether q is odd or even this symmetric space is associated
with either B(n+1)=2 or D(n+2)=2 root systems.
Let us consider representation of the Lie algebra so(2n + 1) by
(2n + 1)� (2n + 1) matrices X , which satisfy

X + SXT S�1 = 0 , S =
2n+1X
k=1

(�1)k+1Ek,2n+2�k ,

where Eij are matrices whose only non-zero entry is a unit in row i
and column j .
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In this case Lax matrix has the following block structure

L(�) =

0
BBBBB@

2�2 ~xT 0

~y 0 s � ~x

0 ~yT � s �2�2

1
CCCCCA+ C + Λ ,

with (2n � 1)� (2n � 1) block of zeroes,

~xi = pi � 2iqi , ~yi = pi + 2iqi , i = 1, ... , 2n � 1 ,

and s is (2n � 1)� (2n � 1) matrix

s =
2n�1X
k=1

(�1)kEk,2n�k .

Matrix Λ is a non diagonal matrix which satisfies Λ+ SΛT S�1 = 0.
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Example - algebra so(5), config. space R5

The spectral curve of 7� 7 Lax matrix

z7�4(�4 � 2�2a1 + a21 + a22 + a23 + 2a24 + H=2)z5

+
�
16(a22 + a23 + 2a24)�4 + F1�

2 + G1

�
z3

�
�
64a22(a23 + 2a24)�4 + F2�

2 + G2

�
z = 0

contains Hamiltonian

H =
5X

k=1

p2k + 4

 
5X

k=1

q2k

!2

� 2(2q1q5 � 2q2q4 + q23)2 + (a1 � a2)q21

+ (a1 � a3)q22 + q3(a1q3 � 2a4q2 � 2a4q4) + (a1 + a3)q24 + (a2 + a1)q25 ,

two second order integrals of motion F1,2 and two fourth order
integrals of motion G1,2, one of which is

2(G1 + H2) = �1

4

X
�,�,,�

R��,�,,��p�p�pp� + � � �
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N-wave hierarchy
In similar manner we can study integrable systems associated with
the multicomponent Fokas-Lenells, Derivative NLS, massive
Thirring-like model, etc.
We can also consider reductive homogeneous spaces with non-zero
torsion, for instance associated with the N-wave hierarchy

SU(N)

S(U(n1)� U(1)� U(nk))
,

X
nk = N .

In this case we obtain integrable quadratic-linear ”magnetic”
Hamiltonians

HA = TA + VA(q) +
X

cipi ,

and nonhomogeneous cubic, quartic, etc, integrals of motion.
We can get also new Lax matrices for the integrable systems with
polynomial and rational potentials obtained by brute force method
in our previous works.
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Conclusion
The question about the existence of quadratic integrals of motion
for Hamiltonians of natural form

H =
X

ij
gijpipj +

X
ajVj(q)

has been discussed for quite a long time, starting with the works of
Levy-Civita, Darboux, Stäckel and up to the present time.
Most of the classical and modern works first study the question of
the existence of integrable geodesic flows at aj = 0. Then the class
of potentials Vj(q) is described which can be added to the given
geodesic flow while preserving integrability.

Experimental fact
If we abandon consideration of geodesics, it is possible to construct
quadratic conservation laws for a sufficiently broad class of
Hamiltonians describing motion in Euclidean space.

A.V. Tsiganov
On quadratic conservation laws for the Newton equations of motion in Euclidean space
33/34

33=34



Quadratic integrals of motion

Fi =
mX

k 6=i

M2
ik

ai � ak
+ ti(p) + vi(q, a1, ... , an) ,

consist of linear combinations of basis rotations and translations.
For example, in four-dimensional Euclidean space, right and left
isoclinic rotations (Clifford displacements), which are classical
objects in Euclidean geometry and Clifford algebra theory, are
used to construct integrals of motion.
Open questions remain:
� rigorous definition of this class of Killing tensors in RN ;
� construction of the corresponding integrals of motion of higher
degrees on momenta within the classical Euclidean geometry,
i.e. without using Lax matrices;

� generalization on Riemannian and pseudo-Riemannian spaces.
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