Differential Equations with a Small Parameter and Multipeak Self-Oscillations

G.A. Chumakov and N.A. Chumakova (Novosibirsk)

Critical phenomena – such as hysteresis of steady states, kinetic and thermokinetic self-oscillations of the chemical transformation rate, and regular and chaotic self-oscillations – are observed in various catalytic systems (for example, see [1–3]). The nonlinear effects in the dynamics of heterogeneous catalytic reactions were intensively studied since the last third of the twentieth century.

Under study is a nonlinear dynamical system of autonomous ordinary differential equations with two fast variables x and y and one slow variable z. The equation for z contains a small parameter μ , and for $\mu = 0$ the system of *fast motions* is included in a one-parameter family of two-dimensional subsystems with parameter z [2–5]. Let us assume that each subsystem has a rough periodic solution l_z and, moreover, the complete system has a rough periodic solution L which, as $\mu \to 0$, tends to the periodic solution l_{z_0} for some $z = z_0$.

Taking a plane (y, z) transversal to L, we construct a point Poincaré map and prove the existence of an invariant manifold for the steady point corresponding to the periodic solution L. Note that L has an invariant manifold on a guaranteed interval with respect to y, and this interval is separated from zero as $\mu \to 0$. The proved theorem allows us to give some sufficient conditions for the existence and absence of multipeak self-oscillations in the dynamical system under consideration.

As an example, we consider a kinetic model of the heterogeneous catalytic reaction of hydrogen oxidation over nickel.

Thanks. This work is supported by the State Task of the Ministry of Science and Higher Education of the Russian Federation to the Sobolev Institute of Mathematics (Project FWNF-2022-0005) and the Boreskov Institute of Catalysis (Project FWUR-2024-0037).

References

[1] G. Ertl, Oscillatory Catalytic Reactions at Single-Crystal Surfaces, Adv. Catal. **37** (1990), 213–277.

[2] G.A. Chumakov, M.G. Slinko, *Kinetic Turbulence (chaos) of the Reaction Rate of Hydrogen and Oxygen Interaction over Metallic Catalysts*, Dokl. Akad. Nauk USSR **266**:5 (1982), 1194–1198.

[3] G.A. Chumakov, N.A. Chumakova, Relaxation oscillations in a kinetic model of catalytic hydrogen oxidation involving a chase on canards, Chem. Eng. J. **91** (2003), 151–158.

[4] G.A. Chumakov, N.A. Chumakova, E.A. Lashina, Modeling the Complex Dynamics of Heterogeneous Catalytic Reactions with Fast, Intermediate, and Slow Variables, Chem. Eng. J. **282** (2015), 11–19.

[5] G.A. Chumakov, N.A. Chumakova, Localization of an Unstable Solution of a System of Three Nonlinear Ordinary Differential Equations with a Small Parameter, J. Appl. Indust. Math. **16**:4 (2022), 606–620.