Classification of Bedford-McMullen carpets that are dendrites D.A. Drozdov (Novosibirsk)

Definition: Let $S = \{S_1, \ldots, S_l\}$ be a system of (affine) contraction similarities in \mathbb{R}^n . A non-empty compact set K satisfying the equation $K = \bigcup_{i=1}^l S_i(K)$ is called the attractor of the system S.

We denote by $I = \{1, \ldots, l\}$ the set of indices of the system S, then $I^* = \bigcup_{n=1}^{\infty} I^n$ denotes the set of all words $\mathbf{i} = i_1 \ldots i_n$ of finite length in the alphabet I, called *multiindices*. We will use the notation $S_{\mathbf{j}} = S_{j_1 j_2 \ldots j_n} = S_{j_1} S_{j_2} \ldots S_{j_n}$, and denote the $S_{\mathbf{j}}(K)$ by $K_{\mathbf{j}}$.

Critical set of the attractor K of the system S is the set $C := \{x : x \in S_i(K) \cap S_j(K), S_i, S_j \in S\}$ of points of pairwise intersections of copies of K. The set ∂K of all $x \in K$ such that for some $\mathbf{j} \in I^*$, $S_{\mathbf{j}}(x) \in C$ is called the *self-similar* boundary of the set K.

A *dendrite* is a locally connected continuum containing no simple closed curve.

Let K be a self-similar dendrite possessing finite self-similar boundary ∂K . The minimal subdendrite $\hat{\gamma} \subset K$, containing ∂K is called the *main tree* of the dendrite K.

Definition 1. Let a set K = K(S) be a self-similar continuum which possesses one-point intersection property. The intersection graph $\Gamma(S)$ of the system S is a bipartite graph with parts $\mathcal{K} = \{K_i : i \in I\}$ and $\mathcal{P} = \{p : p \in K_i \cap K_j, i, j \in I, i \neq j\}$, and with a set of edges $E = \{(K_i, p) : p \in K_i\}$.

Definition 2. Let $D = \{d_1, \ldots, d_l\} \subset \{0, 1, \ldots, n-1\} \times \{0, 1, \ldots, m-1\}$, where $n, m \geq 2$, and $n, m \in \mathbb{N}$. A Bedford-McMullen carpet with a generating matrix M = diag(n,m) and a digit set D is a self-affine set $K \subset \mathbb{R}^2$, satisfying the equation $K = \bigcup_{i=1}^{l} S_i(K)$, where $S_i(z) = M^{-1}(z+d_i)$.

A way was found to express the self-similar boundary of the Bedford-McMullen carpet and make sure that this boundary is finite. Now we can prove and use the following theorem.

Theorem 1. A Bedford-McMullen carpet K is a dendrite iff its bipartite intersection graph is a tree.

This theorem allows us to construct an algorithm showing whether a Bedford-McMullen carpet is a dendrite.

Finally, the following result allows us to classify these Bedford-McMullen carpets that are dendrites.

Theorem 2. The Bedford-McMullen carpets dendrites may be divided to 7 types depending on the topology of their main tree.

References

[1] A.V. Tetenov, D.A. Drozdov, On the classification of fractal square dendrites, Advances in the Theory of Nonlinear Analysis and its Applications, **7**:3 (2023), 79– 96.

[2] A.V. Tetenov, *Finiteness properties for self-similar continua*, arXiv:2003.04202, 2021

[3] T. Bedford, *Crinkly curves, Markov partitions and dimension*, Ph.D. thesis, University of Warwick, 1984.

[4] C. McMullen, *The Hausdorff dimension of general Sierpiński carpets*, Nagoya Mathematical Journal, **96** (1984), 1–9.