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Let X be a proper metric measure space, that is, X is a set, which is equipped
with a metric d and a measure m defined on the Borel σ-algebra defined by the
topology on X induced by the metric, and all balls are compact. We say that a
discrete subspace D ⊂ X is uniformly discrete, if infg,h∈D,g ̸=h d(g, h) > 0, and has
bounded geometry, if, for any R > 0, the number of points of D in each ball of
radius R is uniformly bounded.

We will discuss the following question:

Question. Given a subspace H ⊂ L2(X), does it admit a D-compactly supported
Wannier basis, that is, an orthonormal basis {ϕx : x ∈ D} in H such that suppϕx ⊂
BR(x) for any x ∈ D, where R > 0 is independent of x and BR(x) denotes the ball
of radius R centered at x?

The answer is, in general, negative. There are topological obstructions to the
existence of D-finite Wannier bases. We say that a metric space X has bounded
geometry if there is an r > 0 such that for any R > 0 there is a natural N such
that any ball of radius R can be covered by at most N balls of radius r. If X
is a proper metric space of bounded geometry with measure and the subspace H
admits a D-finite Wannier basis with some uniformly discrete subspace of bounded
geometry D, then the orthogonal projector pH in the space L2(X,m) on H belongs
to some C∗-algebra of bounded operators in the space L2(X,m) — the so-called
Roe algebra C∗(X). Moreover, its class [pH ] in the K-theory K0(C

∗(X)) of the Roe
algebra C∗(X) is trivial: [pH ] = 0.

Under the assumption of polynomial growth of X, the case of Wannier functions
of rapid decay can be reduced to the case of compactly supported ones.
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