BIPARTITE GRAPHS, GENERATING SELF-SIMILAR DENDRITES

IVAN YUDIN

Let $S = \{S_1, \ldots, S_m\}$ be a system of contracting similarities in \mathbb{R}^n . A non-empty compact set K satisfying the equation $K = \bigcup_{i=1}^m S_i(K)$ is called *the attractor of the system* S.

Let $I = \{1, \ldots, m\}$ b the set of indices of the system S, and $I^* = \bigcup_{n=1}^{e} \infty I^n$ be the set of all finite words $\mathbf{i} = i_1 \ldots i_n$ in the alphabet I, so $S_{\mathbf{j}} = S_{j_1 j_2 \ldots j_n} = S_{j_1} S_{j_2} \ldots S_{j_n}$, and we denote the $S_{\mathbf{j}}(K)$ by $K_{\mathbf{j}}$.

The critical set of the attractor K of the system \mathcal{S} is the set $C := \{x : x \in S_i(K) \cap S_j(K), S_i, S_j \in \mathcal{S}\}$. The set ∂K of all $x \in K$ such that for some $\mathbf{j} \in I^*, S_{\mathbf{j}}(x) \in C$ is called the self-similar boundary of the set K.

A *dendrite* is a locally connected continuum containing no simple closed curve.

Let K be a self-similar dendrite possessing finite self-similar boundary ∂K in this case K possesses one point intersection property. The minimal subdendrite $\hat{\gamma} \subset K$, containing ∂K is called the *main tree* of the dendrite K.

Consider the intersection graph $\Gamma(\mathcal{S})$ of the system \mathcal{S} which is a bipartite graph with parts $\mathcal{K} = \{K_i : i \in I\}$ and $\mathcal{P} = \{p : p \in K_i \cap K_j, i, j \in I, i \neq j\} \cup \partial K$, and with a set of edges $E = \{(K_i, p) : p \in K_i\}$. There is a natural map φ of the set E to ∂K defined by $\varphi((K_i, p)) = S_i^{-1}(p)$, which defines the edge-marking on the graph $\Gamma(\mathcal{S})$. The pair $(\Gamma(\mathcal{S}), \varphi) = (\mathcal{K}, \mathcal{P}, E, \varphi)$ is called the sprout of the dendrite K, or k-sprout, where $k = \#\partial K$. Two k-sprouts (Γ_1, φ_1) , (Γ_2, φ_2) are isomorphic if there is an isomorphism of graphs Γ_1 and Γ_2 , compatible with φ_1 and φ_2 .

Theorem 1. Two self-similar dendrites are isomorphic iff their sprouts are isomorphic.We define a composition of k-sprouts and prove the following theorem:Theorem 2. The set of k-sprouts is a semigroup with unity.

References

[1] Tetenov, A., Finiteness properties for self-similar continua// arXiv:2003.04202 (2021)

SOBOLEV INSTITUTE OF MATHEMATICS, KOPTYUG AVE., 4, NOVOSIBIRSK, 630090, RUSSIA *Email address*: uivan5660gmail.com