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Models for sound propagation in the ocean

∂2U

∂x2
+
∂2U

∂y2
+ω2n2(y, x)U = 0 and i

∂U

∂x
+
∂2U

∂y2
+ω2n2(y, x)U = 0.

U is the acoustic field pressure,
ω is a sound frequency,
n is a refraction index,
x and y are is the horizontal and vertical coordinates.

1. Ocean as a layered medium: n = n(y),

Water: 0 < y < H, its depth: H; bottom: y > H.

Free ocean surface: U(x,0) = 0, bottom: U , Ux are continuous
at y = H, conditions at ∞ depend on the physical problem.



Ocean adiabatic inhomogeneities

Two-dimensional models:

n =


n−(y), x < x−
n(εx, y), x− < x < x+

n+(y), x > x+

n =


n0 > 1, 0 < y < −εx,

x < 0

1 otherwise

n = n(y, εx), 0 < ε << 1



Normal waves for equation ∂2U
∂x2 + ∂2U

∂y2 + ω2n2(y, εx)U = 0.

When there exist ψk(·, ξ) ∈ L2(R+) and µk(ξ) ∈ R satisfying

ψyy + ω2n2(y, ξ)ψ = ω2µ2ψ, ψ(0, ξ) = 0,

one constructs adiabatic normal wave, a formal asymptotic so-
lution,

Uk(x, y) = e

iω
ε

εx∫
ξ0

µk(ξ) dξ ∑
l≥0

εluk,l(y, εx), uk,0 = ψk. (1)

If n = n(y), by separation of variables, one constructs a normal
wave, an exact solution,

Uk(x, y) = eiωµkxψk(y).

Solutions (1) are constructed by “asymptotic separation of vari-
ables”.



Model problem for synoptic rings

Recall that n =

n−(y), x < x−
n+(y), x > x+

. One looks for solutions

Uk = U−k + reflected waves, εx < ξ−,

Uk =
∑
l

tklU
+
l , εx > ξ+,

U±k correspond to n±.

Problem: describe asymptotics of tkl as ε→ 0.

V.S. Buldyrev, 1981: if ωε→ 0, then ‖t‖kl ≈ δkl tkk
(formal asymptotic expansions)

Difficulty: for synoptic ring problems ωε can be large!



Branch points: points y(ξ) such that n(y, ξ) = µk(ξ).

V.A. Borovikov, A.V. Popov (early 80-ies): Assume that, ∀ξ,
• n(·, ξ) has one non-degenerate maximum,
• the number of branch points n(y, ξ) = µk(ξ) is constant,
• for a given m ∈ N, ωεm → 0.
Then tk,l ≈ δkl tkk
(two-scale Cherry-type formal asymptotic expansions).



For a given k, assume that

• n(0, ξ) < µk(ξ) ξ < ξ−, • n(0, ξ) > µk(ξ) ξ > ξ+,
• between ξ− and ξ+, there is one point where n(0, ξ) = µk(ξ),

• at this point ∂n
∂ξ (0, ξ) > ∂µk

∂ξ (ξ).

As ωε2 → 0, one has (V.S.Buslaev, A.A.Fedotov, 1987)

tkl ≈ eiγkl
∫ 1

0
Φ(a, at) e

2i

(
πt(k−l)−a3/2

t∫
0
F (s) ds

)
+iπt

2
dt

F (s) =
√
s+ ζ(−1/2, s/2), ak = ω2/3εαk,

Φ is expressed in terms of Airy functions, γkl and αk are expressed
in terms of some geometric objects.



To describe Uk, one solves an initial-boundary value problem
for the ray method. A family of rays is associated to Uk. For
εx < ξ− these rays differ by horizontal translations, and each ray
is periodic.

One has to solve a problem similar to the problem of diffraction
on a smooth convex curve. This leads to Φ.

F enters into the formula describing the adiabatic invariant incre-
ment along the rays that begin to reflect from the sea surface.



Underwater upslope sound propagation
A.D. Pierce (1982), J. M. Arnold and L. B. Felsen (1983), ... ,
V.M. Babich

i
∂U

∂x
= −

∂2U

∂y2
+ v(y, εx)U, 0 < y <∞, U |x=0 = 0.

v(y, ξ) := −ω2n2(y, ξ) =

−1, 0 ≤ y ≤ −ξ,
0, otherwise.

H(ξ)ψ = −ψ′′+ v(y, ξ)ψ, H(ξ) acts in L2(0,∞), ψ(0, ξ) = 0.



Exact solutions U and Un

U(y, x, p) = eix
∑

k=p+εl, l∈Z
e−ik

2xsin(ky)R(k), 0 ≤ y < −εx,

( plane wave e−i(p
2−1)x+ipy and all the reflected waves)

U(y, x, p) =
∑

k=p+εl, l∈Z
e−ip

2
1(k)x+ip1(k)y T (k)R(k), y < −εx.

(all the “refracted” waves)

• U(·, x, p) ∈ C1 ⇒ difference equation for R, formulas for T , p1.

• R is multivalued; convergence ⇒ an univalued branch of R.

U is periodic in p ⇒ Fourier series:

U(y, x, p) =
√
ε

π

∑
m∈Z

e
2πimp
ε Um(y, x).



Integral representation for Um. For 0 < y < −εx,

Um(y, x) =
eix
√
επ

∞∫
−∞

e−i(p
2ξ+2πmp)/εsin(py)R(p) dp, ξ = εx.

R

(
p+

ε

2

)
= ρ(p)R

(
p−

ε

2

)
, ρ(p) =

Q(p)− p
Q(p) + p

. Q(p) =
√
p2 − 1,

Branch points: p = ±
(
1+jε/2), j ∈ N. One has R(−p) = 1/R(p),

−iε
d

dp
lnR(p) = π +

√
2ε ζ

(
p− 1

ε

)
+O

(
ε

3
2 + |p− 1|

3
2

)
, p ∼ 1,

ζ(t) = lim
L→+∞

L−1∑
l=0

(
l + 1/2− t

)−1
2 − 2L

1
2

 .



Adiabatic asymptotics of Ψn : εt < τn

Consider H(ξ) = − d2

dx2 + v(·, ξ) with the Dirichlet b.c. at zero.

σ(H) = σac(H) + σd(H), σac(H) = [0,+∞), σd(H) ⊂ (−∞,0).

If ξk−1 < ξ < ξk, ξk = 1− πk+ π
2, k ∈ N, H has k eigenvalues. As

ξ increases Ek(ξ) moves to 0, and, at ξ = ξk, it disappears.

Fix C1 < C2 < ξk. Let ε be sufficiently small. If C1 ≤ εx ≤ C2 < ξk
and 0 ≤ y ≤ 1− εx, then

Uk(y, x) ∼ e
− iε

εx∫
ξk

Ek(ξ) dξ ∞∑
m=0

εmψk,m(y, εx).

Uk behaves like an adiabatic normal wave!



Aftermath. What happens in the water? ξ = εx

(1) Un ∼ 1 (2) Un ∼ ε
1
6 (3) Un ∼ ε (4) Un ∼ ε

2
3 d ∼ ε

1
3

(2) Un ∼ Airy functions of complex arguments,
(4) Un ∼ new special functions
(A.Fedotov, 2020)



What happens in the bottom? Answer 1.

Un ∼ is a combination of Airy functions with non-trivial complex
functions as their arguments
(Pierce, Felson and others, 1980-ies, Fedotov, Sergeev 2022)



What happens in the bottom? Answer 2.

(1) Un ∼
ξ

(ξ − ξn)3/2
exp

(
−

1

ε

η3

12(ξ − ξn)3

)
, ξ = εx, η = ε(y+εx).

(A.Fedotov, W. Sergeev, 2024)


