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Models for sound propagation in the ocean
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U is the acoustic field pressure,

w IS a sound frequency,

n iS a refraction index,

x and y are is the horizontal and vertical coordinates.

1. Ocean as a layered medium: n = n(y),
Water: O <y < H, its depth: H;, bottom: y> H.

Free ocean surface: U(x,0) = 0, bottom: U, U, are continuous
at y = H, conditions at oo depend on the physical problem.



Ocean adiabatic inhomogeneities

current

synoptic ring upslope
Two-dimensional models:
n_(y), z<ux_ (no >1, O<y< —ex,
n=(n(ex,y), r— <x < x4 n = | x <0
ny(y), x=>x4 |1 otherwise

n =n(y,ex), O<e<«l1
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Normal waves for equation gng + %yg + w?n2(y,ex) U = O.

When there exist ¥ (-, &) € L?(Ry) and ui(€) € R satisfying
hyy + W n?(y, Oy = wpY, ¥(0,£) =0,

one constructs adiabatic normal wave, a formal asymptotic so-
lution,
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Up(z,y) =e O S elug (y,ex),  upo = Yy (1)
>0

If n = n(y), by separation of variables, one constructs a normal
wave, an exact solution,

Up(z,y) = M (y).
Solutions (1) are constructed by “asymptotic separation of vari-
ables” .



Model problem for synoptic rings

Recall that n = n—(y), =<z . One looks for solutions

ny(y), x>z

U, = U, + reflected waves, ex <§_,

U, = tuU, ex > &4,
l
U,;t correspond to nt.

Problem: describe asymptotics of ¢t;; as € — 0.

V.S. Buldyrev, 1981: if we — 0, then ||t||x; = dr1 tik
(formal asymptotic expansions)

Difficulty: for synoptic ring problems we can be large!
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Typical index of refraction Branch points

Branch points: points y(&) such that n(y,&) = ui(£).

V.A. Borovikov, A.V. Popov (early 80-ies): Assume that, V&,
e n(-,£) has one non-degenerate maximum,

e the number of branch points n(y,&) = ui(§) is constant,

e for a given m € N, we™ — 0.

T hen tk‘,l ~ 5kl LLt

(two-scale Cherry-type formal asymptotic expansions).



For a given k, assume that

e n(0,8) <pup(§) £<&—, on(0,8) > pup() &> &4,
e between £_ and £+, there is one point where n(0,&) = (),

e at this pomt 9¢(0,6) > 8“’“(5)

As we? — 0, one has (V.S.Buslaev, A.A.Fedotov, 1987)

t .
1 21 <7rt(k—l)—a3/2fF(S) ds) _|_%
tp = 67“/0 ®d(a,at) e 0 gt

F(s) = Vs +((~1/2,5/2), a), = w?/3eqy,

d is expressed in terms of Airy functions, ~;; and oy are expressed
in terms of some geometric objects.



To describe Ui, one solves an initial-boundary value problem
for the ray method. A family of rays is associated to U,. For
ex < &_ these rays differ by horizontal translations, and each ray
IS periodic.

One has to solve a problem similar to the problem of diffraction
on a smooth convex curve. This leads to &.

F' enters into the formula describing the adiabatic invariant incre-
ment along the rays that begin to reflect from the sea surface.



Underwater upslope sound propagation
A.D. Pierce (1982), J. M. Arnold and L. B. Felsen (1983),
V.M. Babich
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b = 8 — + v(y,ex)U, 0O0<y<oo, Ul|z=0=0.
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0, otherwise.

v(y, €)= —w?n?(y, &) = {

H(E)w = " +v(y, &), H(E) acts in L?(0,00), %(0,£) = 0.



Exact solutions U and U,
Uly,z,p) =€ Y e " %sin(ky) R(k), 0<y< —ex,
k=p--cl, leZ

( plane wave ¢ {"-Dz+iry gnd all the reflected waves)

Uly,z,p) = S e iRzt ey R(k), y < —ea.
k=p—+-el,lcZ
(all the ‘“refracted” waves)
e U(-,z,p) € Cl = difference equation for R, formulas for T, p1.
e R is multivalued; convergence = an univalued branch of R.

U is periodic in p = Fourier series:

TIMP

Ute.p) = 3 & Untuso)



Integral representation for U,,. For 0 <y < —ez,

O

Un(y,x) = \6/36—7T eI+ 2mmp)/ “sin(py) R(p) dp, & = ex.
e\ £ QM) —p _ /|2
R (p—l— 5) = p(p)R (p — 5) , p(p) = 000) ¥ Q(p) = \p© — 1,

Branch points: p = i(1—|—ja/2), j € N. One has R(—p) = 1/R(p),

—iediplnR(p) =71+ Vv2e( (p%l) —I—O(s%—k p — 1|%), p~1,

N|—
N~

C(t) = lim (Lil(l+1/2—t) _ 2L )
[=0

L—+>



Adiabatic asymptotics of V,, : st <

Consider H(¢) = —%, + v(-,€) with the Dirichlet b.c. at zero.

o(H) = oac(H) + 04(H), cac(H) = [0,+00), o4(H) C (—00,0).

If €1 <E&<&, & =1-mk+ 5, k€N, H has k eigenvalues. As
¢ increases F.(£) moves to 0, and, at £ = &, it disappears.

Fix C1 < Uy < &.. Let e be sufficiently small. If C1 <ex < Coy < &
and 0 <y <1-—e¢ex, then

~L [ EL(&)dE oo
Up(y,z) ~e > €My, ex).

m=0

U, behaves like an adiabatic normal wave!



Aftermath. What happens in the water? £ =ex
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(2) Uy, ~ Airy functions of complex arguments,

(4) U, ~ new special functions
(A.Fedotov, 2020)



What happens in the bottom? Answer 1.
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U, ~ iS a combination of Airy functions with non-trivial complex
functions as their arguments

(Pierce, Felson and others, 1980-ies, Fedotov, Sergeev 2022)



What happens in the bottom? Answer 2.

1 3
1) Unr o tpen (-2 T ) e= e 1= e

(A.Fedotov, W. Sergeev, 2024)



