


This year is the 60th anniversary of V.P. Maslov’s book

“Perturbation Theory and Asymptotic Methods”
(Moscow, Moscow State University Publ., 1965),

which was approved for printing on June 26, 1965 and 
which can be viewed as the first detailed exposition of the

Canonical Operator

Viktor Pavlovich Maslov (1930-2023)

Viktor Pavlovich was my Teacher.   I dedicate this talk to his benevolent memory.



What Is the talk about?
• Since 1965, there have been many publications on the canonical operator, notably, 

“Semiclassical Approximation for Equations of Quantum Mechanics” 

(Moscow, Nauka, 1976) by V.P. Maslov and M.V. Fedoryuk
so far, arguably, one of the most accessible monograph expositions of the theory

• These publications were by the effort of quite a few people working on this and related topics

V.M. Babich, V.A. Borovikov, V.S. Buldyrev, S.Yu. Dobrokhotov, V.G. Danilov, M.V.  Karasev, 
M.Ya.Kelbert, Yu.A. Kravtsov, A.S.Kryukovskii, V.V. Kucherenko, V.F. Lazutkin, D.S. Lukin, Yu.I.Orlov,
E.A.Palkin, A.Yu. Shafarevich, V.E. Shatalov, S.Yu. Slavyanov, B.Yu. Sternin, B.R. Vainberg, V.M. Vorob’ev,  

P.N. Zevandrov …

M.V. Berry, J.J. Duistermaat, L. Hörmander, A. Melin, R.B. Melrose, 
F.W.J. Olver, J. Sjöstrand, G.A. Uhlmann …

(The list is, of course, very incomplete, and I have not even tried to mention any of the more recent 
developments…)



• On the other hand, in the last 60+ years, the computational tools available to researchers have 
dramatically changed. Technical computing systems (Wolfram Mathematica; MatLab) have 
appeared that provide fundamentally new possibilities for the implementation and visualization 
of mathematical objects but at the same time necessitate reshaping the construction of the 
canonical operator so as to ensure efficient application of such systems.

• Further, there arise new problems (such as equations with singularities) to which the “classical” 
canonical operator cannot be applied and hence needs appropriate generalizations and 
modifications. 

In the talk, I discuss some of the results obtained in these two directions in the recent 10+ years 
at the Laboratory of Mechanics of Natural Hazards, Ishlinsky Institute for Problems in Mechanics, 
RAS, by a team including S.Yu. Dobrokhotov, A.I. Shafarevich, and myself  (general theoretical 
questions) and A.Yu. Anikin, D.S. Minenkov, A.A. Tolchennikov, A.V. Tsvetkova, as well as younger 
scientists and postgraduate students (specific problems and applications), sometimes in 
collaboration with scientists from other institutions and countries (J. Brüning, G. Makrakis,              
M. Rouleux,  B. Tirozzi and others)



Equations with small parameter
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Semiclassical asymptotics 
and Maslov’s canonical operator

///



Semiclassical asymptotics = rapidly oscillating asymptotic solutions of                asˆ 0Hu = 0 →

Simplest example: WKB solutions
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Canonical operator as a black box



Commutation formulas with a μ-ΨDO
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The main disadvantage of the “classical” canonical operator is the use of 
coordinate systems of the form                                                  , very often 
unnatural in the problem being solved. Hence plenty of charts, partitions 
of unity, etc. This necessitates looking for more  computationally efficient  
formulas for the canonical operator.



Main New Developments

1. Reworking and improving known asymptotic formulas so that they 
could be implemented efficiently on such systems 

❑ New formulas in arbitrary coordinates on the Lagrangian manifold

❑ Representations via special functions in neighborhoods of caustics

2. Developing modifications of the canonical operator based on a 
wider class of phase spaces and Lagrangian manifolds  so as to 
extend the class of problems where the canonical operator applies 



New Formulas



General Oscillating Integrals
• Nondegenerate phase function               defined on                               :                     

the differentials                                      are linearly independent on 

• Lagrangian manifold 

• Oscillating integral 
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L. Hörmander (1971)
Fourier integral operators



Universal Phase Function and the Main Formula
• Lagrangian manifold                                                                                        loc. coord.

• Action                                        measure (volume form)  

Universal phase function 

• Local canonical operator: 

;
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Simplest Case: Eikonal Coordinates
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Example: Bessel functions of integer index

Reminder:
Equation

Integral 
representation

Let us pretend we do not know the integral representation and try to obtain 
the asymptotics as                   and/orn → r →



2

1 2, (( ) , , )x x rx =

)( ,, in

nu
r

e nx  


 

 
= = 

 
J

polar coordinates

2

1

2 1 2

2 1

ˆ

ˆ

H u u u

H u x i u x i u u
x x



  

 −  =

    
= − − − =   

    

Consider the function

Hamiltonians in involution; “Liouville” Lagrangian manifold (their common level)



Parametric description:Lagrangian manifold

0 
0, 0 = 

0 =
focal points
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REPRESENTATION 
VIA SPECIAL FUNCTIONS 

IN A NEIGHBORHOOD OF CAUSTICS



General Principles

• In semiclassical problems (and ray expansions) in the vicinity of caustics (that is, 
the projections of Lagrangian singularities onto the configuration space), the 
asymptotic behavior of the solution determined by special functions, with rare 
exceptions, is given in parametric form.

• Suitable parameters in this representation are given by the coordinates on the 
corresponding Lagrangian manifold.

• Although WKB solutions (or ray expansions) do not work in the vicinity of 
caustics, the (multivalued) phases, Jacobians and amplitudes are determined,  
and it is these objects that participate in the efficient representation of 
asymptotic solutions in the vicinity of caustics with the use of special functions.



Studies of rapidly oscillating integrals with 
degenerating and merging stationary points

• V.P. Maslov, M.V. Fedoryuk, V.M. Babich, V.S. Buldyrev, I.A. Molotkov, 
V.A. Borovikov, D.S. Lukin, E.A. Palkin, A.S. Kryukovsky, S.Yu. Slavyanov, 
Yu.A. Kravtsov, Yu.I. Orlov …

• D. Ludwig, J.B. Keller, F.W.J. Olver , M.V. Berry, C.J. Howls …

and many other people…



Asymptotics in a Neighborhood 
of a Generic Fold



Canonical operator 
on a Lagrangian manifold
with a turning point
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Arnold, Varchenko, Gussein-Zade
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Then one can simplify the canonical operator, namely,
eliminate the integral by expressing it via the Airy function 
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How to do that?

(a) Consider the standard fold  
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2A(b) General         fold: change of variables reduces the case to the standard fold,
and we obtain Airy function (and its derivative)  of the composite argument.

How to compute these expressions more easily? There is a simple trick.



Asymptotics as                    :

Let us make the “fake” exponential
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Asymptotics via Airy functions. Bessel functions of arbitrary index 

• Schläfli formula

• Problem: asymptotics of               as                                  .   Then

• This is oscillatory integral with small parameter                                       and 
variables               ,                                                                .    Canonical operator



Lagrangian manifold for the oscillatory integral

• Lagrangian manifold        is given by the parametric equations

(                                        for             )

dotted line:

Nonparametric equation: 

Canonical operator on       gives the desired 

asymptotics. Focal points ➔ Airy functions



Bessel function via the canonical operator
• Theorem. One has the asymptotics

Denote the amplitude by



Global expression via the Airy function

• Unique simple singular point ➔ canonical operator expressed via Airy function

• Holds not only for                 but also for all             by continuation to              :    



Numerical comparison
• Computations for              (left) and             (right)

• (solid line:                ; dotted line, canonical operator (Airy) approximation)

• Difference almost invisible; hence the next graph 



Approximation error under microscope
• Error magnified by a factor of 100 

• Solid lines:                 (            ,     ). Dotted lines: approximation error x 100



Asymptotics in a Neighborhood 
of a Standard Cusp Point



Lagrangian Manifold

• Standard Lagrangian singularity       : Lagrangian manifold

• Can be given by the generating function

• Equation of focal points

                                                                                                                             caustic

3A

One real root

Three real roots



Canonical operator

• General formula (measure                            )

• For the unit amplitude we obtain the Pearcey function

• For a general amplitude                 :  the first equation of the manifold         has the form

hence
Malgrange’s
preparation thm



How to compute the functions              explicitly? 

Roots of the cubic polynomial 

• In         there are 3 roots

• In               there is one real root

    and two complex conjugate roots          , 

( )j x

(Cardano’s formulas)

One real root

Three real roots



In the domain      

• Since                                                                     ,  we have                                                 

   for

• Hence in the domain        (all three roots are real)  we have                

    This is an interpolation polynomial for                     on the points           . Hence

The triple                        is a cyclic permutation of the triple( , , )k l m



In the domain

• Task: continue the functions                into                       as smooth functions with the 
preservation of the identity   

• Here the analytic continuation is (a) nonconstructive; (b) impossible if the amplitude is 
nonanalytic; (c) is not required, because the following theorem holds:

    Theorem: It suffices to continue the functions              ,  j=1,2, into                      in an arbitrary 
smooth way  and then set

We know (by Malgrange’s theorem), that there exists at least one smooth continuation.

  How to construct it explicitly? The continuation through a smooth curve is trivial.

  However, the caustic has a cusp!

  

( )j x

( )j x



Constructive continuation of the functions , j=1,2

• Consider the projection

• Use the projection to lift the function =            , j=1,2, from the domain       to the domain

• The lift                                 admits a smooth continuation               to the entire

• The desired continuation of     has the form

• A constructive extension (finite smoothness, but we do not need more) is given by
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Asymptotics in a Neighborhood 
of a Generic       Cusp 

3A



Reduction to Normal Form

• Lagrangian equivalence: a symplectic diffeomorphism                                   commuting with the 
projection  i.e., taking fibers to fibers.

• Any Lagrangian equivalence                                                              , has the form

• If a Lagrangian equivalence takes to                         then

  where                    is the inverse function of

There exists a Lagrangian equivalence of this kind by the theorem on the reduction
to normal form due to [Arnold, Varchenko, Gussein-zade]

( )y y x= ( )x f y=



Computation of the transformation producing the reduction

• Action functions

• In the nonsingular charts corresponding to each other, we have

• In the domains and there exist three branches of the action function



How to find       and        from these data    

• Set

• Then

• Hence in        we can set

• Outside       we extend        to a  diffeomorphism           of full neighborhoods and set

is found from any of the equations

in

outside



Example of extension of the 
canonical operator:
Punctured (pseudohomogeneous) 
Lagrangian manifolds



Model problem

Potential motion of a liquid in the uniform field of gravity in a horizontally infinite basin of finite depth

Parameters:

• Basin depth                                                                                  Assumptions:

• Characteristic basin horizontal size

• Initial perturbation horizontal size                                                                           (strong dispersion case)

• Initial perturbation vertical amplitude 

Equation for the free surface elevation:

Dobrokhotov, Zhevandrov, Funct. Anal. Appl. 1985

d

L

l

A

/ , / , / 1d L l L A d =

~d l

2
2

0 02
0, | , | 0t t t

x
V

t


   


= =

 
+ = = = 

  

1
22

2

1

, , ( , , ) ( , ) ( , ) ( ),,
2 j jx p

j

ih
x i x p H x p xH p O

x
   

=

 
 = − = − +
 

 



tanh( ( ) | |)( , ) | |H D xx p pp=



Cauchy problem
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Evolution equation with small parameter 

where the symbol   is an            matrix  and a polynomial of degree    in       

0 
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Localized initial conditions

decay as( ', '')j y xV 'y →

Task: construct an asymptotic solution as

(under certain conditions on the symbol       )

near the submanifold

0 →



Representation of localized initial data

• Simplest case:                       is a point
0{ }Y x=

0
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Maslov’s canonical operator 
    on the Lagrangian manifold
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Representation of localized initial data (continued)

• General case: is a submanifold of codimension    Y codimY k=

0
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General scheme for constructing semiclassical asymptotics in the Cauchy problem
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Solution:   effective Hamiltonians                  
                     (roots of the equation                                              ) 
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Difficulties in specific problems. Examples of effective Hamiltonians

The general scheme works “as is” if the roots are real and smooth (of constant multiplicity) at least in a 
neighborhood of the Lagrangian manifolds etc. etc. etc.

The roots of the equation                                                 are branches of an algebraic function of the
 coefficients               nonsmoothness (at the branching points)

det ( , , , ,0) 0t x p =


One often has nonsmoothness at 0p =

Examples: • Petrovsky hyperbolic systems:                        are homogeneous functions of

• Wave equation: just the same, 

• Water wave equation with dispersion: 

• Wave equation on a 2D lattice:

( , , )s t x p p

( , ) ( ) | |x p c x p = 

( , ) | | tanh(| | ( ))x p p p D x = 

2 2

1 2( , ) ( ) sin sinx p c x p p =  +



A class of effective Hamiltonians: – pseudo-homogeneous Hamiltonians

That is, Hamiltonians admitting expansion in homogeneous functions:
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The substitution

is very convenient
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What does the Hamiltonian flow do with the Lagrangian manifold? “Punctured” manifold



Punctured Lagrangian manifolds

Definition
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Invariance with respect to the Hamiltonian flow

Theorem

The class of punctured Lagrangian manifolds is invariant 
under shifts along Hamiltonian vector fields corresponding
to pseudo-homogeneous Hamiltonians.



Statement of the problem

On punctured Lagrangian manifolds, define a canonical operator

On functions in ,     where                                , it must

coincide with the “standard” Maslov canonical operator.

 =  



Microlocal definition of the standard canonical operator
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Nondegenerate phase function:  is defined on an open set
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Fourier integral
distributions



New phase functions

We need a new notion of phase function to describe a punctured Lagrangian manifold near the boundary

is a (relatively) open set

is a smooth real function  on    ,      

The following conditions hold on the set 

0 =

Define



New phase functions (continued)

Теорема

Punctured Lagrangian manifolds = Lagrangian manifolds locally 
described by phase functions of this form via the mapping

: ( , ) ( , ( , ))xx x x  



What about oscillatory integrals?
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What about oscillatory integrals? (continued)

Pre-canonical operator 
in the     -chart 0 ( ),A C 

*

,( ) .|C da A F   =

4 ( , , )

/2

0

[ ,]( , )
(

( , , )
2 )

im
i

x

m

e
A x d dK e a x




 
     






 =  

4 1
/2

/2

0

]( , ) , ,[ [ ]
(2 )

im
k m

m

e
A x B x dK K





    
  

 

 +
−

 

 
=  

 


 = 

1
2, ) ( , ,, )( ,

k m

a x b x    
+

−

= 0 .b C

( , )ord 2dF k m = + −

Hence

0 ( ),CB 

 


 

( , ) ( , , )x x    = 
is a nondegenerate phase
function on its own

h



=

new small
parameter



What about oscillatory integrals? (still continued)
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Examples of solution of the original problem
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